Property Library for Sulfur Dioxide LibSO2 Prof. Hans-Joachim Kretzschmar Dr. Sebastian Herrmann Dr. Matthias Kunick Ines Jaehne Tobias Goepfert # **Property Functions** | Functional Dependence | Function Name | Call from Fortran Program | Property or Function | Unit of the Result | |-------------------------------|---------------|---------------------------|--|--------------------| | $c_{\rm p} = f(p,t,x)$ | cp_ptx_SO2 | CP_PTX_SO2(P,T,X) | Specific isobaric heat capacity | kJ/(kg K) | | $c_{V} = f(p,t,x)$ | cv_ptx_SO2 | CV_PTX_SO2(P,T,X) | Specific isochoric heat capacity | kJ/(kg K) | | h = f(p,t,x) | h_ptx_SO2 | H_PTX_SO2(P,T,X) | Specific enthalpy | kJ/kg | | $\kappa = f(p,t,x)$ | ka_ptx_SO2 | KA_PTX_SO2(P,T,X) | Isentropic exponent | - | | $p_{\rm S} = f(t)$ | ps_t_SO2 | PS_T_SO2(T) | Vapor pressure from temperature | bar | | ρ = f(p , t , x) | rho_ptx_SO2 | RHO_PTX_SO2(P,T,X) | Density | kg/m ³ | | s = f(p,t,x) | s_ptx_SO2 | S_PTX_SO2(P,T,X) | Specific entropy | kJ/(kg K) | | σ = f(t) | sigma_t_SO2 | SIGMA_T_CO(T) | Surface tension from temperature | N/m | | $t = f(\rho,h)$ | t_ph_SO2 | T_PH_SO2(P,H) | Backward function: Temperature from pressure and enthalpy | °C | | t = f(p,s) | t_ps_SO2 | T_PS_SO2(P,S) | Backward function: Temperature from pressure and entropy | °C | | $t_{\rm S} = f(p)$ | ts_p_SO2 | TS_P_SO2(P) | Saturation temperature from pressure | °C | | u = f(p,t,x) | u_ptx_SO2 | U_PTX_SO2(P,T,X) | Specific internal energy | kJ/kg | | v = f(p,t,x) | v_ptx_SO2 | V_PTX_SO2(P,T,X) | Specific volume | m³/kg | | w = f(p,t,x) | w_ptx_SO2 | W_PTX_SO2(P,T,X) | Isentropic speed of sound | m/s | | x = f(p,h) | x_ph_SO2 | X_PH_SO2(P,H) | Backward function: Vapor fraction from pressure and enthalpy | kg/kg | | $x = f(\rho, s)$ | x_ps_SO2 | X_PS_SO2(P,S) | Backward function: Vapor fraction from pressure and entropy | kg/kg | Units: $t \text{ in } ^{\circ}\text{C}$ p in bar x in (kg saturated steam)/(kg wet steam) ## Range of validity Temperature range: from - 75.45 °C to 251.85 °C Pressure range: from 1.66023 x 10⁻² bar to 350 bar #### Reference state h = 0 kJ/kg and s = 0 kJ/(kg K) at p = 1.01325 bar on the saturated liquid line (x = 0) # Details on the vapor fraction x The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction *x* are to be considered: #### Single-phase region If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value. ## Wet-steam region If the state point to be calculated is located in the wet steam region, a value for x between 0 and 1 (x = 0 for saturated liquid, x = 1 for saturated steam) must be entered. In this case, the backward functions result in the appropriate value between 0 and 1 for x. When calculating wet steam either the given value for t and t = -1000 or the given value for t and t = -1000 or the given value for t and t = -1000 or the given value for t and t = -1000 or the given value for t and t = -1000 or the given value for t and t = -1000 or the given value for t and t = -1000 or the given value for t and t = -1000 or the given value for - If p and t and t are entered as given values, the program considers p and t to be appropriate to represent the vapor pressure curve. If this is not the case the calculation for the property of the chosen function results in -1. Wet steam region: Temperature ranges from $t_{min} = -75.45 \, ^{\circ}\text{C}$ to $t_{c} = 157.49 \, ^{\circ}\text{C}$ Pressure ranges from $p_{\text{min}} = 1.66023 \text{ x } 10^{-2} \text{ bar to } p_{\text{c}} = 78.753 \text{ bar}$ #### Note: If the input values are located outside the range of validity, the calculated function will always result in –1000. Please find more exact details on every function and its corresponding range of validity in the enclosed software documentation in Chapter 3.