ThermoFluidProperties

Property Library for Isohexane

LibC6H14

Property Functions

Functional Dependence	Function Name	Call from Fortran Program	Property or Function	Unit of the Result
$a=f(p, t, x)$	a_ptx_C6H14	A_PTX_C6H14(P,T,X)	Thermal diffusivity	$\mathrm{m}^{2} / \mathrm{s}$
$c_{p}=f(p, t, x)$	cp_ptx_C6H14	CP_PTX_C6H14(P,T,X)	Specific isobaric heat capacity	kJ/(kg K)
$c_{\mathrm{v}}=\mathrm{f}(p, t, x)$	cv_ptx_C6H14	CV_PTX_C6H14(P,T,X)	Specific isochoric heat capacity	kJ/(kg K)
$\eta=f(p, t, x)$	eta_ptx_C6H14	ETA_PTX_C6H14(P,T,X)	Dynamic viscosity	Pa.s
$h=\mathrm{f}(p, t, x)$	h_ptx_C6H14	H_PTX_C6H14(P,T,X)	Specific enthalpy	kJ/kg
$\kappa=\mathrm{f}(p, t, x)$	ka_ptx_C6H14	KA_PTX_C6H14(P,T,X)	Isentropic exponent	-
$\lambda=\mathrm{f}(p, t, x)$	lam_ptx_C6H14	LAM_PTX_C6H14(P,T,X)	Thermal conductivity	W/(m.K)
$v=\mathrm{f}(p, t, x)$	ny_ptx_C6H14	NY_PTX_C6H14(P,T,X)	Kinematic viscosity	$\mathrm{m}^{2} / \mathrm{s}$
$\operatorname{Pr}=f(p, t, x)$	pr_ptx_C6H14	PR_PTX_C6H14(P,T,X)	Prandtl-number	-
$p_{\mathrm{s}}=\mathrm{f}(t)$	ps_t_C6H14	PS_T_C6H14(T)	Vapor pressure from temperature	bar
$\rho=\mathrm{f}(p, t, x)$	rho_ptx_C6H14	RHO_PTX_C6H14(P,T,X)	Density	kg/m ${ }^{3}$
$s=\mathrm{f}(p, t, x)$	s_ptx_C6H14	S_PTX_C6H14(P,T,X)	Specific entropy	kJ/(kg K)
$\sigma=\mathrm{f}(t)$	sigma_t_C6H14	SIGMA_T_C6H14(T)	Surface tension from temperature	N/m
$t=\mathrm{f}(p, h)$	t_ph_C6H14	T_PH_C6H14(P,H)	Backward function: Temperature from pressure and enthalpy	${ }^{\circ} \mathrm{C}$
$t=\mathrm{f}(\mathrm{p}, \mathrm{s})$	t_ps_C6H14	T_PS_C6H14(P,S)	Backward function: Temperature from pressure and entropy	${ }^{\circ} \mathrm{C}$
$t_{\mathrm{s}}=\mathrm{f}(p)$	ts_p_C6H14	TS_P_C6H14(P)	Saturation temperature from pressure	${ }^{\circ} \mathrm{C}$
$u=\mathrm{f}(p, t, x)$	u_ptx_C6H14	U_PTX_C6H14(P,T,X)	Specific internal energy	kJ/kg
$v=\mathrm{f}(p, t, x)$	v_ptx_C6H14	V_PTX_C6H14(P,T,X)	Specific volume	$\mathrm{m}^{3} / \mathrm{kg}$
$w=f(p, t, x)$	w_ptx_C6H14	W_PTX_C6H14(P,T,X)	Isentropic speed of sound	m / s

Functional Dependence	Function Name	Call from Fortran Program	Property or Function	Unit of the Result
$x=\mathrm{f}(p, h)$	x_ph_C6H14	X_PH_C6H14(P,H)	Backward function: Vapor fraction from pressure and enthalpy	$\mathrm{kg} / \mathrm{kg}$
$x=\mathrm{f}(p, s)$	x_ps_C6H14	X_PS_C6H14(P,S)	Backward function: Vapor fraction from pressure and entropy	$\mathrm{kg} / \mathrm{kg}$

Units:

$$
\begin{aligned}
& t \text { in }{ }^{\circ} \mathrm{C} \\
& p \text { in bar } \\
& x \text { in }(\mathrm{kg} \text { saturated steam }) /(\mathrm{kg} \text { wet steam })
\end{aligned}
$$

Range of validity

for transport properties (a, $\eta, \lambda, v, \operatorname{Pr})$:
Temperature range: from $-153.55^{\circ} \mathrm{C}$ to $276.85{ }^{\circ} \mathrm{C}$
Pressure range:
from 7.6739×10^{-11} bar to 1000 bar
for other properties:

Temperature range:	from $-153.55^{\circ} \mathrm{C}$ to $276.85^{\circ} \mathrm{C}$
Pressure range:	from 7.6739×10^{-11} bar to 1×10^{4} bar

Reference state

$h=0 \mathrm{~kJ} / \mathrm{kg}$ and $s=0 \mathrm{~kJ} /(\mathrm{kg} \mathrm{K})$ at $p=1,01325 \mathrm{bar}$ on the saturated liquid line $(\mathrm{x}=0)$

Details on the vapor fraction x

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction x are to be considered:

Single-phase region

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) $x=-1$ must be entered as a pro-forma value.

Wet-steam region

If the state point to be calculated is located in the wet steam region, a value for x between 0 and 1 ($x=0$ for saturated liquid, $x=1$ for saturated steam) must be entered. In this case, the backward functions result in the appropriate value between 0 and 1 for x. When calculating wet steam either the given value for t and $p=-1000$ or the given value for p and $t=-1000$ and in both cases the value for x between 0 and 1 must be entered.

If p and t and x are entered as given values, the program considers p and t to be appropriate to represent the vapor pressure curve. If this is not the case the calculation for the property of the chosen function results in -1 .

Wet steam region: Temperature ranges from	$t_{\min }=-153.55^{\circ} \mathrm{C}$ to $t_{\mathrm{C}}=224.55^{\circ} \mathrm{C}$
Pressure ranges from	$p_{\text {min }}=7.6739 \times 10^{-11}$ bar to $p_{\mathrm{C}}=30.426$ bar

Note:

If the input values are located outside the range of validity, the calculated function will always result in -1000. More exact details on every function and its corresponding range of validity can be found in the enclosed program documentation in chapter 3.

