

Property Library for Combustion Gas Mixtures calculated from VDI-Guideline 4670

FluidPRIME with LibIDGAS for Mathcad Prime®

Prof. Hans-Joachim Kretzschmar Dr. Matthias Kunick Dr. Sebastian Herrmann Martin Sünder

Property Library for Combustion Gas Mixtures Calculated from the VDI-Guideline 4670

LibIDGAS FluidPRIME for Mathcad Prime[®]

Contents

- 0 Package Contents
 - 0.1 Zip-file for 32-bit Mathcad Prime®
 - 0.2 Zip-file for 64-bit Mathcad Prime®
- 1 Property Functions
 - 1.1 Range of Validity and Structure of Program Library
 - 1.2 Property Functions for Ideal Gases and Mixtures
- 2 Application of FluidPRIME in Mathcad Prime®
 - 2.1 Installing FluidPRIME
 - 2.2 Licensing the LibIDGAS Property Library
 - 2.3 Example: Calculation of the Enthalpy $h = f(p,t,\xi_1...,\xi_{10})$ of the Gas Mixture
 - 2.4 Removing FluidPRIME
- 3 Program Documentation
- 4 Property Libraries for Calculating Heat Cycles, Boilers, Turbines and Refrigerators
- 5 References
- 6 Satisfied Customers

KCE-ThermoFluidProperties UG & Co. KG Prof. Dr. Hans-Joachim Kretzschmar Wallotstr. 3, 01307 Dresden, Germany Phone: +49-351-27597860 Mobile: +49-172-7914607 Fax: +49-3222-4262250 Email: info@thermofluidprop.com Internet: www.thermofluidprop.com

0. Package Contents

Zip file "CD_FluidPRIME_LibIDGAS.zip" includes the following files:

FluidPRIME_LibIDGAS_Docu.pdf Functions_LibIDGAS.mcdx

LibIDGAS.msi

LibIDGAS.dll

setup.exe

- User's Guide

- Mathcad Prime[®] worksheet with all functions
- MSI installer
- Setup installer
- DLL with functions of the LibIDGAS library

1. Property Functions

1.1 Range of Validity and Structure of the Program Library

The thermodynamic properties of combustion gas mixtures in the ideal gas state are calculated corresponding to the

VDI Guideline 4670 [21].

The transport properties are calculated corresponding to

Brandt [15] and VDI-Wärmeatlas [19].

Important property constants were taken from the compendium from Blanke [20].

Number	Component	
1	Argon	Ar
2	Neon	Ne
3	Nitrogen	N2
4	Oxygen	O ₂
5	Carbon monoxide	СО
6	Carbon dioxide	CO ₂
7	Steam	H ₂ O
8	Sulfur dioxide	SO ₂
9	Air (dry)	
10	Air nitrogen	

The mixture can contain the following components:

Range of validity:

Temperature <i>t</i> :	from -73.15 °C to 3026.85 °C
Mixture pressure <i>p</i> :	from >0 bar to 10 (30), max 50 bar

The pressure range is limited for gases and mixtures in the ideal gas state.

For temperatures above 1000 °C and mole fractions of oxygen of more than 1 % ($\psi_{O_2} \ge 0.01)$

the dissociation based on the VDI 4670 for the gases nitrogen, oxygen, carbon dioxide, steam, and sulfur dioxide are considered. For programming reasons, the calculation of the correction for the dissociation is already carried out from 500 $^{\circ}$ C.

1.2 Property Functions for Ideal Gas Mixtures

Functional Dependence	Function Name	Call as Fortran Program	Property or Function	Unit of the Result	Reference	Page
a = f(p,t,ξ1ξ10 or ψ1ψ10)	a_pt_id	a_pt_id(p,t,type,zu(1:10))	Thermal diffusivity	m²/s	[15], [18]	3/1
<i>c</i> ρ = f(p, <i>t</i> , <i>ξ</i> 1 <i>ξ</i> 10 or ψ1ψ10)	cp_pt_id	cp_pt_id(p,t,type,zu(1:10))	Specific isobaric heat capacity	kJ/(kg · K)	[18]	3/2
<i>cv</i> = f(<i>p</i> , <i>t</i> , <i>ξ</i> 1 <i>ξ</i> 10 or <i>ψ</i> 1 <i>ψ</i> 10)	cv_pt_id	cv_pt_id(p,t,type,zu(1:10))	Specific isochoric heat capacity	kJ/(kg · K)	[18]	3/3
$\eta = f(t, \xi_1, \xi_{10} \text{ or } \psi_1, \psi_{10})$	Eta_t_id	Eta_t_id(t,type,zu(1:10))	Dynamic viscosity	Pa₃s = kg/(m₃s)	[15], [18]	3/4
h = f(p,t,ξ1ξ10 or ψ1ψ10)	h_pt_id	h_pt_id(p,t,type,zu(1:10))	Specific enthalpy	kJ/kg	[18]	3/5
κ = f(p,t,ξ1ξ10 or ψ1ψ10)	Kappa_pt_id	Kappa_pt_id(p,t,type,zu(1:10))	Isentropic exponent		[18]	3/6
$\lambda = f(t, \xi_1\xi_{10} \text{ or } \psi_1\psi_{10})$	Lambda_t_id	Lambda_t_id(t,type,zu(1:10))	Thermal conductivity	W/(m·K)	[15]	3/7
$M = f(\xi_1\xi_{10} \text{ or } \psi_1\psi_{10})$	M_id	M_id(type,zu(1:10))	Molar mass of the mixture	kg/kmol	[17]	3/8
$v = f(p, t, \xi_1 \dots \xi_{10} \text{ or } \psi_1 \dots \psi_{10})$	Ny_pt_id	Ny_pt_id(p,t,type,zu(1:10))	Kinematic Viscosity	m²/s	[15], [16]	3/9
$p = f(t, s, \xi_1\xi_{10} \text{ or } \psi_1\psi_{10})$	p_ts_id	p_ts_id(t,s,type,zu(1:10))	Backward Function: Mixture pressure from temperature and entropy of the mixture	bar	[18]	3/10
$p = f(t, v, \xi_1\xi_{10} \text{ or } \psi_1\psi_{10})$	p_tv_id	p_tv_id(t,v,type,zu(1:10))	Backward Function Mixture pressure from temperature and specific volume	bar	Ideal gas equation	3/11
$Pr = f(p, t, \xi_1, \xi_{10} \text{ or } \psi_1, \psi_{10})$	Pr_pt_id	Pr_pt_id(p,t,type,zu(1:10))	<i>Prandtl</i> -number		[15], [16]	3/12
$\psi_i = f(i,\xi_1\xi_{10})$	Psi_igas_Xsi_id	Psi_igas_Xsi_id(i,Xsi(1:10))	Mole fraction of the mixture gas i from the mass fractions of all mixture gases	kmol/kmol	Mixture calculation	3/13
$R = f(\xi_1\xi_{10} \text{ or } \psi_1\psi_{10})$	R_id	R_id(type,zu(1:10))	Specific gas constant	kJ/(kg · K)	[17]	3/14
$\rho = f(p, t, \xi_1\xi_{10} \text{ or } \psi_1\psi_{10})$	Rho_pt_id	Rho_pt_id(p,t,type,zu(1:10))	Density	kg/m ³	Ideal gas equation	3/15

Functional Dependence	Function Name	Call as Fortran Program	Property or Function	Unit of the Result	Reference	Page
$s = f(p,t,\xi_1\xi_{10} \text{ or } \psi_1\psi_{10})$	s_pt_id	s_pt_id(p,t,type,zu(1:10))	Specific entropy of the mixture	kJ/(kg · K)	[18]	3/16
$t = f(p,h,\xi_1\xi_{10} \text{ or } \psi_1\psi_{10})$	t_ph_id	t_ph_id(p,h,type,zu(1:10))	Backward Function: Temperature from pressure and enthalpy of the mixture	°C	[18]	3/17
$t = f(p,s,\xi_1\xi_{10} \text{ or } \psi_1\psi_{10})$	t_ps_id	t_ps_id(p,s,type,zu(1:10))	Backward Function: Temperature from pressure and entropy of the mixture	°C	[18]	3/18
$t = f(p, v, \xi_1\xi_{10} \text{ or } \psi_1\psi_{10})$	t_pv_id	t_pv_id(p,v,type,zu(1:10))	Backward Function: Temperature from pressure and specific volume of the mixture	°C	[18]	3/19
<i>u</i> = f(<i>p</i> , <i>t</i> , <i>ξ</i> 1 <i>ξ</i> 10 or <i>ψ</i> 1 <i>ψ</i> 10)	u_pt_id	u_pt_id(p,t,type,zu(1:10))	Specific internal energy	kJ/kg		3/20
$v = f(p,t,\xi_1\xi_{10} \text{ or } \psi_1\psi_{10})$	v_pt_id	v_pt_id(p,t,type,zu(1:10))	Specific volume	m ³ /kg	Ideal gas equation	3/21
$w = f(p, t, \xi_1\xi_{10} \text{ or } \psi_1\psi_{10})$	w_pt_id	w_pt_id(p,t,type,zu(1:10))	Isentropic speed of sound of the mixture	m/s	[18]	3/22
$\xi_i = f(i, \psi_1 \dots \psi_{10})$	Xsi_igas_Psi_id	Xsi_igas_Psi_id(i,Psi(1:10))	Mass fraction of the mixture gas i from the mole fractions of all mixture gases	kg/kg	Mixture calculation	3/23

Units:

Symbol	Name	Unit
t	Temperature	°C
р	Mixture pressure	bar
ξ1 ξ10	Mass fractions of the components	kg/kg
ψ1 ψ10	Mole fractions, volume fractions of the components	kmol/kmol
type	Input: type = 1 for mass fractions ξ_1, \dots, ξ_{10} type = 0 for mole fractions ψ_1, \dots, ψ_{10}	
comp(1:10) for type =1	Mass fractions ξ1, ξ10	kg/kg
comp(1:10) for type =0	Mole fractions ψ_1, \dots, ψ_{10}	kmol/kmol

KCE Kretzschmar Consulting Engineers

Mixture Gases:

Gas	Mixture gas	
1	Argon	Ar
2	Neon	Ne
3	Nitrogen	N2
4	Oxygen	O2
5	Carbon monoxide	CO
6	Carbon dioxide	CO ₂
7	Steam	H ₂ O
8	Sulfur dioxide	SO2
9	Air (dry) from VDI4670 [21]	Composition in mole fractions: 78.1109 % N2 20.9548 % O2 0.9343 % Ar Composition in mass fractions: 75.5577 % N2 23.1535 % O2, 1.2888 % Ar
10	Air nitrogen from <i>Brandt</i> [15]	Composition in mole fractions: 98.8180 % N2 1.1820 % Ar Composition in mass fractions: 98.3229 % N2 1.6771 % Ar

Range of Validity:

Temperature:

Pressure:

Reference States:

t = -73.15 °C 3026.85 °C	Property	Gases (except steam)	Steam
p = 0.01 mbar 50 bar	Pressure	1.01325 bar	0.006112127 bar
	Temperature	0.0 °C	0 °C
	Enthalpy	0 kJ/kg	2500.9342 kJ/kg
	Entropy	0 kJ/kg K	9.15591 kJ/(kg K)

Variable Types for Function Call:

All functions:	Double
Variable p, t, v, h, s :	Double
Variable to [110] :	Array of Double
Variable type, i :	Integer

Note:

If the input values are located outside the range of validity or if they do not fit together, the chosen function to be calculated results in -1.

1/4

2 Application of FluidPRIME in Mathcad Prime®

FluidPRIME has been developed to calculate thermodynamic properties in Mathcad Prime[®] more conveniently. Within Mathcad Prime, it enables the direct call of functions relating to humid air from the LibIdGas property library.

2.1 Installing FluidPRIME

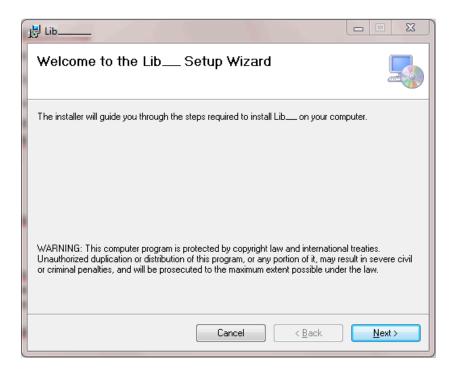
In this section, the installation of FluidPRIME LibIdGas is described. After you have downloaded and extracted the zip-file "CD_FluidPRIME_LibIdGas.zip", you will see the folder

CD_FluidPRIME_LibIdGas

in your Windows Explorer, Norton Commander etc.

Now, open this folder by double-clicking on it.

Within this folder you will see the following files and a folders:


FluidPRIME_LibIdGas_Docu.pdf Functions_LibIdGas.mcdx LibIdGas.msi setup.exe LibIdGas.dll

In order to run the installation of FluidPRIME double-click the file

setup.exe.

Note: If you get an error message during the installation, please try the LibIdGas.msi instead of the setup.exe for the installation. The steps trough the install assistent are similiary on both the .exe and the .msi file.

After opening the installer-file you get the start window of the setup wizard (Figure 1.1). Please confirm with "Next".

Figure 2.1: Setup Wizard

In Figure 2.2 you can see a note window that will inform you additionally to the next steps.

Pleas	se note:		
	w you will find the a Browse" and sele		
for your Mathcad	i Prime Version.		
Example for the			
C:\Program Files	s\PTC\Mathcad Prin	ne 5.0.0.0 custon	n functions/
			Next >

Figure 2.2: Note Window

Click on the "Next" button to get the "Select Installation Folder"-window (Figure 2.3).

튛 Lib		
Select Installation	n Folder	
The installer will install Libt	o the following folder.	
To install in this folder, click "N	Next". To install to a different folder, e	enter it below or click "Browse".
<u>F</u> older:		
C:\Program Files\PTC\		Browse
		Disk Cost
leatell Libble for yourself, or	for anyone who uses this computer:	
instali upne for yoursell, or	tor anyone who uses this computer.	
🔘 Everyone		
Just me		
	Cancel	< Back Next >

Figure 2.3: Select Installation Folder

Please click on "Browse..." to get another window where you can select the installation path.

You will get the standard path:

C:\Program Files\PTC\

Now select your Mathcad Prime® version folder. For example

C:\Program Files\PTC\Mathcad Prime 5.0.0.0 (Version 5.0.0.0).

On the next step you have to choose the "Custom Functions" folder, so that your final installation path looks like

C:\Program Files\PTC\Mathcad Prime 5.0.0.0\Custom Functions\

that you can also see in Figure 2.4.

Browse for F	older 📃
Browse:	Custom Functions
multiply	
Eolder:	C:\Program Files\PTC\Mathcad Prime 5.0.0.0\Custom Functions\
	OK Cancel

Figure 2.4: "Browse for Folder"-window with the full installation path

Please confirm with "OK" and continue in the further window (Figure 2.5) with "Next".

HuidPRIME - Lib
Select Installation Folder
The installer will install FluidPRIME - Lib to the following folder.
To install in this folder, click "Next". To install to a different folder, enter it below or click "Browse".
Eolder: C:\Program Files\PTC\Mathcad Prime 5.0.0.0\Custom Functions\ Browse Disk Cost Disk Cost Install FluidPRIME - Lib for yourself, or for anyone who uses this computer:
 ⊙ Everyone O Just me
Cancel < Back Next >

Figure 2.5: "Select Installation Folder"-window

To start the installation you have to click again on "Next".

After a few moments, you gets a message that the installation was successful and you can exit the setup with "Close".

The installation of FluidPRIME with the library LibIdGas is finished.

Finally, please copy or overwrite the LibIdGas.dll-file in the installation folder that is described before, with the file in the zip-file.

 "C:\Program Files\PTC\Mathcad Prime 5.0.0.\Custom Functions\":

 LC.dll
 LibIdGas.dll
 PRIME_LibIdGas.dll

 libifcoremd.dll
 libiomp5.dll
 libmmd.dll.

Note:

The shown default installation path for Mathcad Prime[®] may be different depending on the installation on your machine. In addition, the Mathcad Prime[®] version can be another than 5.0.0.0 that is used in this manual.

The underscore after "Lib" in the figures before, is representative of the library name of the library to be installed.

2.2 Licensing the LibIdGas Property Library

Within the installation that was shown in chapter 2.1 the licensing key will be registered on your computer automatically.

2.3 Example: Calculation the Enthalpy $h = f(p, t, \xi_1 \dots \xi_{10})$ of the Gas Mixture

We will now calculate, step by step, the specific enthalpy *h* of a combustion gas as a function of pressure p = 1 bar, temperature t = 100 °C, and a mixture composed of the following mass fractions using FluidPRIME:

13 % carbon dioxide, 11 % steam, and 76 % air nitrogen.

According to the "Mixture gases" table in Chapter 1.2, carbon dioxide represents in the LibIDGAS program library the gas no. 6, steam the gas no. 7 and air nitrogen the gas no. 10. Thus the mass fractions are

$$\xi_6 = 13\%$$
, $\xi_7 = 11\%$, $\xi_{10} = 76\%$.

- Start Mathcad Prime.
- Type "p:" and enter the value for the pressure *p* in bar. (Range of validity: p = 0.01 bar ... 50 bar)
 e. g.: Enter "p:1 bar" for the first operand
- Type "t:" and enter the value for the temperature *t* in °C. (Range of validity: *t* = 73.15 °C ... 3,026.85 °C)
 e. g.: Enter "t:100 °C" for the second operand
- Enter the code "type" to identify if the composition of the mixture is entered in mass fractions or mole fractions, i. e. volume fractions

type = 1 for input of composition in mass fractions ξ_1, \dots, ξ_{10}

type = 0 for input of composition in mass fractions ψ_1, \dots, ψ_{10}

e. g.: Enter the value 1 for the third operand

Situate the cursor on the fourth operand and type "zu:". Insert a matrix with ten rows and one column by clicking on the "Matrix/Tables"-toolbar. Then click the "Matrix insert" button and choose a 10x1-matrix.

- Enter the values for the mass fractions $\xi_1 \dots \xi_{10}$ of the mixture gases into the vector

<u></u> ر ا	for argon	Ar	\Rightarrow e. g.: Enter the value 0	into the 1 st row
ξ2	for neon	Ne	\Rightarrow e. g.: Enter the value 0	into the 2 nd row
ξ3	for nitrogen	0 ₂	\Rightarrow e. g.: Enter the value 0	into the 3 rd row
ξ4	for oxygen	N ₂	\Rightarrow e. g.: Enter the value 0	into the 4 th row
ξ5	for carbon monoxide	CO	\Rightarrow e. g.: Enter the value 0	into the 5 th row
ξ6	for carbon dioxide	CO_2	\Rightarrow e. g.: Enter the value 0.13	into the 6 th row
<i>ξ</i> 7	for steam	H_2O	\Rightarrow e. g.: Enter the value 0.11	into the 7 th row
ξ8	for sulfur dioxide	SO ₂	\Rightarrow e. g.: Enter the value 0	into the 8 th row
ξ9	for air - dry		\Rightarrow e. g.: Enter the value 0	into the 9 th row
<i>5</i> 10	for air nitrogen		\Rightarrow e. g.: Enter the value 0.76	into the 10 th row

- Confirm your entry by pressing the "ENTER" key.

 To insert units you can type it directly behind the value or you can use the units menu to search for the desired units (see Figure 2.6, marked red).

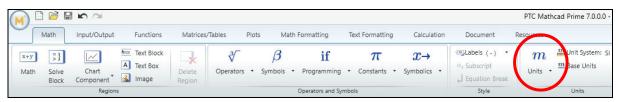


Figure 2.6: Mathcad Prime[®] menu bar with the units function

- Your Mathcad Prime calculation window should look like Figure 2.7:

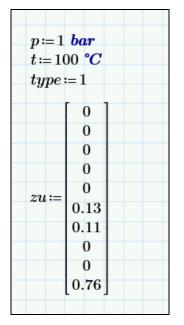


Figure 2.7: Example Mathcad Prime® sheet after input of the given parameters

- Now, type open the file Functions_LibIDGAS.mcdx. In this Mathcad Prime[®] worksheet you can find all the functions of the library (see Figure 2.8)

thnen Eingabe/Ausgabe Funktioner	1	atische Formatierung Textformatierung Berechnung Dokument Ressou	
in an	Textblock Textfeld Bid Bereich Bid Bereich	if π x→ ⊡Beschriftungen (.) * Programmierung Konstanten Symbolische Mathematik	m melinheitensystem: SI • Ausschneiden Einheiten • Basiseinheiten • Kopieren
Bereiche	Bild löschen	Operatoren und Symbole Stil	Einheiten Zwischenablage
Functions LibldGas			
	Functional Dependence	Function Name	Property or Function
	a = f(p,t, 51510 or \u03c61\u03c610)	$a_pt_id\left(rac{p}{bar}, t-273.15\ K, type, zu ight)rac{m^2}{s}$	Thermal diffusivity
	$cp = f(p,t,\xi 1 \dots \xi 10 \text{ or } \psi 1 \dots \psi 10)$	$cp_pt_id\left(\frac{p}{bar}, t-273.15 \ K, type, zu\right) \frac{10^3 \ J}{kg \cdot K}$	Specific isobaric heat capacity
	$cv = f(p, t, \xi 1\xi 10 \text{ or } \psi 1\psi 10)$	$cv_pt_id\left(\frac{p}{bar}, t-273.15 \ K, type, zu\right) \frac{10^3 \ J}{kg \cdot K}$	Specific isochoric heat capacity
	$\eta = f(t,\xi 1\xi 10 \text{ or } \psi 1\psi 10)$	$Eta_t_id(t-273.15 K, type, zu) Pa \cdot s$	Dynamic viscosity
	$h = f(p, t, \xi 1\xi 10 \text{ or } \psi 1\psi 10)$	$h_pt_id\left(rac{p}{bar}, t-273.15\ K, type, zu ight)rac{10^3\ J}{kg}$	Specific enthalpy
	$\kappa = f(p,t,\xi 1\xi 10 \text{ or } \psi 1\psi 10)$	$Kappa_pt_id \left(\frac{p}{bar}, t-273.15 \textbf{K}, type, zu \right)$	Isentropic exponent
	$\lambda = f(t, \xi_1, \xi_{10} \text{ or } \psi_1, \psi_{10})$	$Lambda_t_id(t-273.15 K, type, zu) \frac{W}{m \cdot K}$	Thermal conductivity
	$M = f(\xi 1\xi 10 \text{ or } \psi 1\psi 10)$	$M_{id}(type, zu)$	Molar mass of the mixture
	$\nu = f(p,t,\xi 1\xi 10 \text{ or } \psi 1\psi 10)$	$Ny_pt_id\left(\frac{p}{bar}, t-273.15 \text{ K}, type, zu\right)\frac{m^2}{s}$	Kinematic Viscosity
	$p = f(t,s,\xi 1\xi 10 \text{ or } \psi 1\psi 10)$	$p_ts_id\left(t-273.15\ \textbf{K}, s\ \frac{\textbf{kg}\cdot\textbf{K}}{10^3\ \textbf{J}}, type, zu\right) bar$	Backward Function: Mixture pressure from temperature and entropy of the mixture
	$p = f(t,v,\xi1\xi10 \text{ or } \psi1\psi10)$	$p_tv_id\left(t-273.15\ \textbf{K}, v \cdot \frac{\textbf{kg}}{\textbf{m}^3}, type, zu\right) \textbf{bar}$	Backward Function Mixture pressure from temperature and specific volume
	$Pr = f(p, t, \xi 1 \xi 10 \text{ or } \psi 1 \psi 10)$	$Pr_pt_id\left(\frac{p}{bar}, t-273.15 K, type, zu\right)$	Prandtl-number

Figure 2.8: Mathcad Prime® worksheet for the LibIF97-Functions

- Search the function h_pt_id and mark it by drag a selection rectangle around it.
- Copy the marked function and paste it into your example worksheet
- Click it the function and type "h:" in front of it.
- Your Mathcad Prime calculation window should look like Figure 2.9:

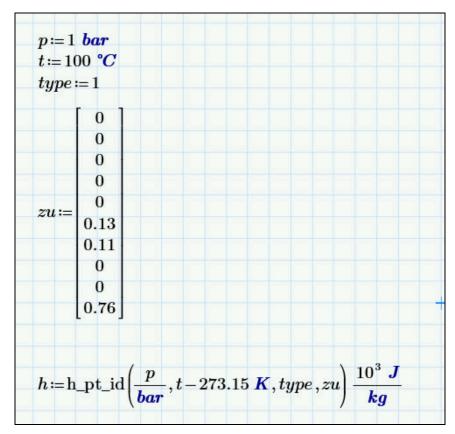


Figure 2.9: Example Mathcad Prime[®] sheet i

- Now click in the first operand in the brackets of the function. . You can now enter the value for *p* either by entering the value directly or by entering the name of the variable where the value was saved.

 \Rightarrow e.g.: Enter "p".

- Situate the cursor on the next placeholder and set all the variables we set above.
- Close the input formula by pressing the "Enter"-Key.
- You can now go on working with the variable *h* which we have just calculated.
- If you wish to see the result, you have to type the following command on the next line in the Mathcad Prime window:

"h =".

You will now see the result h=1.103•10⁵. m²/s⁻¹. The corresponding unit is kJ/kg (see table of the property functions in Chapter 1). In Mathcad Prime® the final unit (given behind the function call) changed to base units. To display the result in the unit you have chosen, you can change the unit after the result value.

In the next figure you can the calculated value.

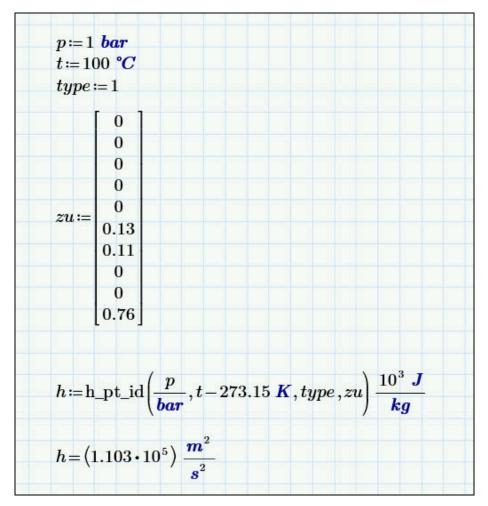


Figure 2.10: Example Mathcad Prime[®] sheet with finished calculation

2.4 Removing FluidPRIME

To remove FluidPRIME with the library LibIDGAS from your hard drive, carry out the following steps:

- Click "Start" in the lower task bar of your desktop, then "Settings" and then "Control Panel".
- Now, double click on "Add or Remove Programs".
- In the list box of the "Add or Remove Programs" window that appears select "FluidPRIME LibIDGAS" by clicking on it and click the "Add/Remove..." button.
- In the following dialog box click "Yes" and wait until the windows is closing.
- Finally, close the "Add or Remove Programs" and "Control Panel" windows.

Now FluidPRIME with the library LibIDGAS has been removed.

3. Program Documentation

Thermal Diffusivity $a = f(p, t, \xi_1 \dots \xi_{10} \text{ or } \psi_1 \dots \psi_{10})$		
Function Name:	a_pt_id	
Subprogram with value of the function: for the call out of Fortran	REAL*8 FUNCTION A_PT_ID(P,T,ART, ZU) REAL*8 P, T, COMP(0:10) INTEGER*4 ART	
for the call out of the DLL REAL	GER*4 FUNCTION C_A_PT_ID(A,P,T,ART, ZU) *8 A, P, T, ZU(0:10) GER*4 C_APT_ID, ART	

Input Values:

р	- Mixture pressure <i>p</i> in bar
t	- Temperature <i>t</i> in °C
type	= 1 for composition in mass fractions ξ = 0 for composition in mole fractions ψ
comp(1:10)	- Composition in mass fractions $\xi_1\xi_{10}$ in kg/kg for type = 1 - Composition in mole fractions $\psi_1 \psi_{10}$ in kmol/kmol for type = 0

Result:

a_pt_id, a - Thermal diffusivity a in m²/s

Range of Validity:

Mixture pressure <i>p</i> :	from 0.01 mbar to 50 bar
Temperature <i>t</i> :	from - 73.15 °C to 3026.85 °C

Comments:

Thermal diffusivity $\boldsymbol{a} = \frac{\lambda}{\rho \cdot \boldsymbol{c}_p}$

Results for wrong input values:

a_pt_id, a = -1

References:

Unsaturated and saturated humid air:

- λ corresponding to *Brandt* [15]
- c_p corresponding to VDI 4670 [18]
- ρ for ideal gas mixture

Specific Isobaric Heat Capacity $c_p = f(p, t, \xi_1 \dots \xi_{10} \text{ or } \psi_1 \dots \psi_{10})$

Function Name:			cp_pt_id
Subprogram with value of the function: for the call out of Fortran		function:	REAL*8 FUNCTION CP_PT_ID(P,T,ART, COMP) REAL*8 P, T, COMP(0:10) INTEGER*4 ART
for the call out of the DLL REAL*8 CP		REAL*8 CF	\$ FUNCTION C_CP_PT_ID(CP,P,T,ART, COMP) P, P, T, COMP(0:10) \$ C_APT_ID, ART
Input Values:			
р	- Mixtu	ire pressure <i>j</i>	ס in bar
t	- Temperature <i>t</i> in °C		C
type	= 1 for composition in mass fractions ξ = 0 for composition in mole fractions ψ		
comp(1:10)	- Composition in mass fractions $\xi_{1}\xi_{10}$ in kg/kg for type = 1 - Composition in mole fractions $\psi_{1} \psi_{10}$ in kmol/kmol for type = 0		
Result:			
	0		

cp_pt_id, cp - Specific isobaric heat capacity in kJ/(kg K)

Range of Validity:

Mixture pressure <i>p</i> :	from 0.01 mbar to 50 bar
Temperature <i>t</i> :	from - 73.15 °C to 3026.85 °C

Comments:

Model of ideal mixture in consideration of dissociation above 500°C and $\psi_{O_2} \ge 0.01$

Results for wrong input values:

cp_pt_id, cp = -1

References:

 c_p corresponding to VDI 4670 [18]

Specific Isochoric Heat Capacity $c_v = f(p,t,\xi_1...\xi_{10} \text{ or } \psi_1...\psi_{10})$

Function Name:		cv_pt_id
Subprogram with value of the function: for the call out of Fortran		REAL*8 FUNCTION CV_PT_ID(P,T,ART, COMP) REAL*8 P, T, COMP(0:10) INTEGER*4 ART
Subprogram with parameter: INTEGER*4		ER*4 FUNCTION C_CV_PT_ID(CV,P,T,ART, COMP)
		B CV, P, T, COMP(0:10)
Input Values:	INTEG	ER*4 C_APT_ID, ART
р	- Mixture press	ure <i>p</i> in bar
t	- Temperature	t in °C
type	= 1 for composition in mass fractions ξ = 0 for composition in mole fractions ψ	
comp(1:10)	•	in mass fractions $\xi_{1}\xi_{10}$ in kg/kg for type = 1 in mole fractions $\psi_{1} \psi_{10}$ in kmol/kmol for type = 0

Result:

cv_pt_id, cv - Specific isobaric heat capacity in kJ/(kg K)

Range of Validity:

Mixture pressure <i>p</i> :	from 0.01 mbar to 50 bar
Temperature <i>t</i> :	from - 73.15 °C to 3026.85 °C

Comments:

 $- c_v = c_p - R$

- Model of ideal mixture in consideration of dissociation above 500°C and $\psi_{O_2} \ge 0.01$

Results for wrong input values:

cv_pt_id, cv = -1

References:

Unsaturated and saturated humid air:

c_p corresponding to VDI 4670 [18]

Dynamic Viscosity $\eta = f(t, \xi_1...\xi_{10} \text{ or } \psi_1...\psi_{10})$

Function Name:		Eta_t_id
Subprogram with value of the function: for the call out of Fortran		REAL*8 FUNCTION ETA_T_ID(P,T,ART, COMP) REAL*8 T, COMP(0:10) INTEGER*4 ART
for the call out of the DLL REAL*8 ET		4 FUNCTION C_ETA_T_ID(ETA,T,ART, COMP) TA, T, COMP(0:10) 4 C_APT_ID, ART
t type	•	°C on in mass fractions ξ on in mole fractions ψ
comp(1:10)	- Composition in m	hass fractions $\xi_1\xi_{10}$ in kg/kg for type = 1

- Composition in mole fractions $\psi_{1}... \psi_{10}$ in kmol/kmol for type = 0

Result:

Eta_t_id, eta - Dynamic viscosity in Pa s

Range of Validity:

Temperature *t* : from - 73.15 °C to 3026.85 °C

Comments:

Calculation from Brandt - Model of ideal mixture

Results for wrong input values:

Eta_t_id, Eta = -1

References:

Unsaturated and saturated humid air:

 η corresponding to *Brandt* [15]

Specific Enthalpy $h = f(p, t, \xi_1...\xi_{10} \text{ or } \psi_1...\psi_{10})$

Function Name:			h_pt_id
Subprogram with value of the function: for the call out of Fortran		function:	REAL*8 FUNCTION H_PT_ID(P,T,ART, COMP) REAL*8 P, T, COMP(0:10) INTEGER*4 ART
Subprogram with parameter: for the call out of the DLL		REAL*8 H,	4 FUNCTION C_H_PT_ID(H,P,T,ART, COMP) P, T, COMP(0:10) 4 C_APT_ID, ART
Input Values:			
р	- Mixture pressure <i>p</i>		ט in bar
t	- Temperature <i>t</i> in °0		°C
type		•	n in mass fractions ξ n in mole fractions ψ

comp(1:10)- Composition in mass fractions $\xi_1...\xi_{10}$ in kg/kg for type = 1- Composition in mole fractions $\psi_1... \psi_{10}$ in kmol/kmol for type = 0

Result:

h_pt_id, h - Specific enthalpy in kJ/kg

Range of Validity:

Mixture pressure <i>p</i> :	from 0.01 mbar to 50 bar
Temperature <i>t</i> :	from - 73.15 °C to 3026.85 °C

Comments:

Model of ideal mixture in consideration of dissociation above 500°C and $\psi_{O_2} \ge 0.01$

Results for wrong input values:

h_pt_id, h = -1

References:

h corresponding to VDI 4670 [18]

Isentropic Exponent $\kappa = f(p, t, \xi_1 \dots \xi_{10} \text{ or } \psi_1 \dots \psi_{10})$

Function Name:	Kappa_pt_id
Subprogram with value of the function for the call out of Fortran	n: REAL*8 FUNCTION KAPPA_PT_ID(P,T,ART, COMP) REAL*8 P, T, COMP(0:10) INTEGER*4 ART
for the call out of the DLL C	NTEGER*4 FUNCTION C_KAPPA_PT_ID(KAPPA,P,T,ART,COMP) REAL*8 KAPPA, P, T, COMP(0:10) NTEGER*4 C_APT_ID, ART
Innut Values:	

Input Values:

р	- Mixture pressure <i>p</i> in bar
t	- Temperature <i>t</i> in °C
type	= 1 for composition in mass fractions ξ = 0 for composition in mole fractions ψ
comp(1:10)	- Composition in mass fractions $\xi_1\xi_{10}$ in kg/kg for type = 1 - Composition in mole fractions $\psi_1 \psi_{10}$ in kmol/kmol for type = 0

Result:

Kappa _pt_id, Kappa - Isentropic exponent

Range of Validity:

Mixture pressure <i>p</i> :	from 0.01 mbar to 50 bar
Temperature t :	from - 73.15 °C to 3026.85 °C

Comments:

- Kappa $\kappa = \frac{c_p}{c_p - R}$

- Model of ideal mixture in consideration of dissociation above 500°C and $\psi_{O_2} \ge 0.01$

Results for wrong input values:

Kappa_pt_id, Kappa = -1

References:

Unsaturated and saturated humid air:

 c_p corresponding to VDI 4670 [18]

Thermal Conductivity $\lambda = f(t, \xi_1...\xi_{10} \text{ or } \psi_1...\psi_{10})$

Function Name:	Lambda_t_id	
Subprogram with value for the call out of Fort	ue of the function: REAL*8 FUNCTION LAMBDA_T_ID(T,ART, COMP) tran REAL*8 T, COMP(0:10) INTEGER*4 ART	
Subprogram with par for the call out of the	ameter: INTEGER*4 FUNCTION C_LAMBDA_T_ID(LAMBDA,T,ART,ZU) DLL REAL*8 LAMBDA, T, COMP(0:10) INTEGER*4 C_APT_ID, ART	
Input Values:		
t	- Temperature <i>t</i> in °C	
type	= 1 for composition in mass fractions ξ	

	= 0 for composition in mole fractions ψ
comp(1:10)	- Composition in mass fractions $\xi_1\xi_{10}$ in kg/kg for type = 1 - Composition in mole fractions $\psi_1 \psi_{10}$ in kmol/kmol for type = 0

Result:

Lambda_t_id, Lambda - Thermal conductivity in W/(m K)

Range of Validity:

Temperature *t* : from - 73.15 °C to 3026.85 °C

Comments:

Calculation from Brandt - Model of ideal mixture

Results for wrong input values:

Lambda_t_id, Lambda = -1

References:

Unsaturated and saturated humid air:

 λ corresponding to *Brandt* [15]

Molar Mass *M* = f($\xi_1...\xi_{10}$ or $\psi_1...\psi_{10}$)

Function Name:		M_id		
Subprogram with value of the function: for the call out of Fortran		REAL*8 FU REAL*8 CO INTEGER*4		
	ogram with para e call out of the [DLL R	EGER*4 FUNC AL*8 M, COMP EGER*4 C AP	
Input	Values:		_	-
	type	•	tion in mass frac tion in mole frac	5
	comp(1:10)	- Composition	mass fractions	$\xi_{1}\xi_{10}$ in kg/kg for type = 1

comp(1:10) - Composition in mass fractions $\xi_1...\xi_{10}$ in kg/kg for type = 1 - Composition in mole fractions $\psi_{1...} \psi_{10}$ in kmol/kmol for type = 0

Result:

M_id, M - Molar mass in kg/kmol

Comments:

Calculation from Blanke

Results for wrong input values:

 $M_{id}, M = -1$

References:

M corresponding to Blanke [17]

Kinematic Viscosity $v = f(p, t, \xi_1...\xi_{10} \text{ or } \psi_1...\psi_{10})$

Function Name:		Ny_pt_id
Subprogram with value of the function: for the call out of Fortran		REAL*8 FUNCTION NY_PT_ID(P,T,ART, COMP) REAL*8 P, T, COMP(0:10) INTEGER*4 ART
for the call out of the DLL REAL*8 NY		FUNCTION C_NY_PT_ID(CV,P,T,ART, COMP) (, P, T, COMP(0:10) C_APT_ID, ART
Input Values:		

р	- Mixture pressure <i>p</i> in bar
t	- Temperature <i>t</i> in °C
type	= 1 for composition in mass fractions ξ = 0 for composition in mole fractions ψ
comp(1:10)	- Composition in mass fractions $\xi_1\xi_{10}$ in kg/kg for type = 1 - Composition in mole fractions $\psi_1 \psi_{10}$ in kmol/kmol for type = 0

Result:

Ny_pt_id, Nue - Kinematic viscosity in m^2/s

Range of Validity:

Mixture pressure <i>p</i> :	from 0.01 mbar to 50 bar
Temperature <i>t</i> :	from - 73.15 °C to 3026.85 °C

Comments:

Kinematic viscosity

Results for wrong input values:

 $Ny_pt_id, Ny = -1$

References:

Unsaturated and saturated humid air:

- corresponding to Brandt [15] η
- for ideal gas mixture ρ

Backward Function: Pressure $p = f(t, s, \xi_1...\xi_{10} \text{ or } \psi_1...\psi_{10})$

Function Name:		p_ts_id
Subprogram with value of the function: for the call out of Fortran		REAL*8 FUNCTION P_TS_ID(T,S,ART, COMP) REAL*8 T, S, COMP(0:10) INTEGER*4 ART
Subprogram with para for the call out of the I	DLL REAL*8 P,	4 FUNCTION C_P_TS_ID(P,T,S,ART, COMP) T, S, COMP(0:10) 4 C_APT_ID, ART
Input Values:		
t	- Temperature <i>t</i> in °C	
S	- Specific Entropy in kJ/(kg K)	
type	•	n in mass fractions ξ n in mole fractions ψ
comp(1:10)		ass fractions $\xi_1\xi_{10}$ in kg/kg for type = 1 tole fractions $\psi_1 \psi_{10}$ in kmol/kmol for type = 0
_ <i>u</i>		

Result:

p_ts_id, p - Mixture pressure in bar

Range of Validity:

Temperature <i>t</i> :	from – 73.15 °C to 3026.85 °C
Entropy <i>s</i> :	from – 2.3771 kJ/(kg K) to 9.7061 kJ/(kg K)

Comments:

- Model of ideal mixture in consideration of dissociation above 500°C and $\psi_{\mathrm{O_2}} \ge 0.01$

- Iteration of *p* from s = f(p,t,(1:10))

Results for wrong input values:

p_ts_id, p = -1

References:

s corresponding to VDI 4670 [18]

Backward Function: Pressure $p = f(t, v, \xi_1...\xi_{10} \text{ or } \psi_1...\psi_{10})$

Function Name:		p_tv_id
Subprogram with value of the function: for the call out of Fortran		on: REAL*8 FUNCTION P_TV_ID(T,V,ART, COMP) REAL*8 T, V, COMP(0:10) INTEGER*4 ART
Subprogram with para		INTEGER*4 FUNCTION C_P_TV_ID(P,T,V,ART, COMP)
for the call out of the l		REAL*8 P, T, V, COMP(0:10) INTEGER*4 C APT ID, ART
Input Values:		
V	- Specific volume <i>v</i> in m³/kg	
t	- Temperature <i>t</i> in °C	
type	= 1 for composition in mass fractions ξ = 0 for composition in mole fractions ψ	
comp(1:10)	- Composition in mass fractions $\xi_1\xi_{10}$ in kg/kg for type = 1 - Composition in mole fractions $\psi_1 \psi_{10}$ in kmol/kmol for type = 0	

Result:

p_tv_id , v - Mixture pressure in bar

Range of Validity:

Temperature <i>t</i> :	from – 73.15 °C to 3026.85 °C
Specific volume <i>v</i> :	from 5.1 m ³ /kg to 2.9 109 m ³ /kg

Comments:

$$p = \frac{R \cdot T}{v}$$

Results for wrong input values:

PRANDTL-Number Pr = f(p,t, ξ_1 ... ξ_{10} or ψ_1 ... ψ_{10})

Function Name:		Pr_pt_id
Subprogram with value of the function: for the call out of Fortran		REAL*8 FUNCTION PR_PT_ID(P,T,ART, COMP) REAL*8 P, T, COMP(0:10) INTEGER*4 ART
Subprogram with par for the call out of the	DLL REAL*8	R*4 FUNCTION C_PR_PT_ID(PR,P,T,ART, COMP) PR, P, T, COMP(0:10) R*4 C_APT_ID, ART
Input Values:		
р	- Mixture pressure <i>p</i> in bar	
t	- Temperature <i>t</i> in °C	
type	= 1 for composition in mass fractions ξ = 0 for composition in mole fractions ψ	
comp(1:10)	- Composition in	n mass fractions $\xi_1\xi_{10}$ in kg/kg for type = 1

- Composition in mole fractions $\psi_{1...} \psi_{10}$ in kmol/kmol for type = 0

Result:

Pr_pt_id, Pr - PRANDTL-Number

Range of Validity:

Temperature <i>t</i> :	from – 73.15 °C to 3026.85 °C
Mixture pressure <i>p</i> :	from 0.01 mbar to 50 bar

Comments:

PRANDTL-number

Results for wrong input values:

 $Pr_pt_id, Pr = -1$

References:

Unsaturated and saturated humid air:

- λ corresponding to *Brandt* [15]
- η corresponding to *Brandt* [15]
- c_p corresponding to VDI 4670 [18]

Mole Fraction $\psi_i = f(i, \xi_1..., \xi_{10})$

Function Name:		Psi_igas_Xsi_id
Subprogram with value of the function: for the call out of Fortran		REAL*8 FUNCTION PSI_IGAS_ID(IGAS, COMP) REAL*8 IGAS, COMP(0:10) INTEGER*4 ART
Subprogram with parameter: for the call out of the DLL	REAL*8 PS	FUNCTION C_PSI_IGAS_ID(PSI,IGAS, COMP) SI, IGAS, COMP(0:10)
Input Values:	INTEGER"4	C_APT_ID, ART

i - Gas number comp(1:10) - Composition in mass fractions $\xi_1...\xi_{10}$ in kg/kg for type = 1

Result:

Psi_igas_Xsi_id, Psi - Mole fraction in kmol/kmol

Comments:

Calculation:
$$\psi_{i} = \frac{R_{i}}{\sum (\xi_{i} \cdot R_{i})} \cdot \xi_{i}$$

Results for wrong input values:

Psi_igas_Xsi_id, Psi = -1

Specific Gas Constant $R = f(\xi_1...\xi_{10} \text{ or } \psi_1...\psi_{10})$

Function Name:		R_id
Subprogram with value of the function: for the call out of Fortran		REAL*8 FUNCTION R_ID(ART, COMP) REAL*8 COMP(0:10) INTEGER*4 ART
Subprogram with para for the call out of the I Input Values:	DLL REAL*8 R,	FUNCTION C_R_ID(R,ART, COMP) COMP(0:10) C_APT_ID, ART
type	•	n in mass fractions ξ n in mole fractions ψ
comp(1:10)		ass fractions $\xi_{1}\xi_{10}$ in kg/kg for type = 1 ole fractions $\psi_{1} \psi_{10}$ in kmol/kmol for type = 0

Result:

R_id, R - Specific gas constant in kJ/(kg K)

Comments:

Calculation:
$$R = \sum_{i} (\xi_{i} \cdot R_{i})$$

 $R = \frac{1}{\sum_{i} (\frac{\psi_{i}}{R_{i}})}$

Results for wrong input values:

R_id, R = -1

Density $\rho = f(p, t, \xi_1 ... \xi_{10} \text{ or } \psi_1 ... \psi_{10})$

Function Name:	Rho_pt_id	
Subprogram with valu for the call out of Fort	e of the function: REAL*8 FUNCTION RHO_PT_ID(P,T,ART, COMP) an REAL*8 P, T, COMP(0:10) INTEGER*4 ART	
Subprogram with para for the call out of the [meter: INTEGER*4 FUNCTION C_RHO_PT_ID(RHO,P,T,ART,COMP) OLL REAL*8 RHO, P, T, COMP(0:10) INTEGER*4 C_APT_ID, ART	
Input Values:		
р	- Mixture pressure <i>p</i> in bar	
t	- Temperature <i>t</i> in °C	
type	= 1 for composition in mass fractions ξ = 0 for composition in mole fractions ψ	
comp(1:10)	- Composition in mass fractions $\xi_{1}\xi_{10}$ in kg/kg for type = 1 - Composition in mole fractions $\psi_{1} \psi_{10}$ in kmol/kmol for type = 0	

Result:

Rho_pt_id, Rho - Density in kg/m³

Range of Validity:

Mixture pressure <i>p</i> :	from 0.01 mbar to 50 bar
Temperature <i>t</i> :	from $$ - 73.15 °C to 3026.85 °C $$

Comments:

Calculation: $\rho = \frac{\rho}{R \cdot T}$

Results for wrong input values:

Rho_pt_id, Rho = -1

Specific Entropy $s = f(p, t, \xi_1...\xi_{10} \text{ or } \psi_1...\psi_{10})$

Function Name:		s_pt_id
Subprogram with value of the function: for the call out of Fortran		REAL*8 FUNCTION S_PT_ID(P,T,ART, COMP) REAL*8 P, T, COMP(0:10) INTEGER*4 ART
Subprogram with para for the call out of the I	DLL REAL*8 S,	4 FUNCTION C_S_PT_ID(S,P,T,ART, COMP) P, T, COMP(0:10) 4 C_APT_ID, ART
Input Values:		
р	- Mixture pressure <i>p</i> in bar	
t	- Temperature <i>t</i> in °C	
type	•	n in mass fractions ξ n in mole fractions ψ
comp(1:10)		ass fractions $\xi_1\xi_{10}$ in kg/kg for type = 1 ole fractions $\psi_1 \psi_{10}$ in kmol/kmol for type = 0

Result:

s_pt_id, s - Specific entropy in kJ/(kg K)

Range of Validity:

Mixture pressure <i>p</i> :	from 0.01 mbar to 50 bar
Temperature <i>t</i> :	from - 73.15 °C to 3026.85 °C

Comments:

Model of ideal mixture in consideration of dissociation above 500°C and $\psi_{O_2} \ge 0.01$

Results for wrong input values:

s_pt_id, s = -1

References:

s corresponding to VDI 4670 [18]

Backward Function: Temperature $t = f(p, h, \xi_1...\xi_{10} \text{ or } \psi_1...\psi_{10})$

Function Name:		t_ph_id
Subprogram with value of the function: for the call out of Fortran		REAL*8 FUNCTION T_PH_ID(P,H,ART, COMP) REAL*8 P, H, COMP(0:10) INTEGER*4 ART
Subprogram with para for the call out of the I	DLL REAL*8 T,	4 FUNCTION C_T_PH_ID(T,P,H,ART, COMP) P, H, COMP(0:10) 4 C_APT_ID, ART
Input Values:		
р	- Mixture pressure <i>p</i> in bar	
h	- Enthalpy <i>h</i> in kJ/kg	
type	= 1 for composition in mass fractions ξ = 0 for composition in mole fractions ψ	
comp(1:10)	- Composition in mass fractions $\xi_{1}\xi_{10}$ in kg/kg for type = 1 - Composition in mole fractions $\psi_{1} \psi_{10}$ in kmol/kmol for type = 0	

Result:

t_ph_id, t - Temperature in °C

Range of Validity:

Mixture pressure <i>p</i> :	from 0.01 mbar to 50 bar
Enthalpy <i>h</i> :	from –135.6 kJ/kg to 4100 kJ/kg

Comments:

- Iteration of t from h = f(p, t, (1:10))
- Model of ideal mixture in consideration of dissociation above 500°C and $\psi_{O_2} \ge 0.01$

Results for wrong input values:

t_ph_id, t = -1

References:

h corresponding to VDI 4670 [18]

Backward Function: Temperature $t = f(p, s, \xi_1...\xi_{10} \text{ or } \psi_1...\psi_{10})$

Function Name:			t_ps_id
Subprogram with value of the function: for the call out of Fortran		function:	REAL*8 FUNCTION T_PS_ID(P,S,ART, COMP) REAL*8 P, S, COMP(0:10) INTEGER*4 ART
Subprogram with par for the call out of the		REAL*8 T,	↓ FUNCTION C_T_PS_ID(T,P,S,ART, COMP) P, S, COMP(0:10) ↓ C_APT_ID, ART
Input Values:			
р	- Mixture pressure <i>p</i> in bar		
S	- Entropy s in kJ/(kg K)		
type		•	n in mass fractions ξ n in mole fractions ψ

comp(1:10)	- Composition in mass fractions $\xi_{1}\xi_{10}$ in kg/kg for type = 1
	- Composition in mole fractions $\psi_{1} \psi_{10}$ in kmol/kmol for type = 0

Result:

t_ps_id, t - Temperature in °C

Range of Validity:

Mixture pressure <i>p</i> :	from 0.001 bar to 50 bar
Enthalpy <i>s</i> :	from –2.377 kJ/(kg K) to 9.706 kJ/(kg K)

Comments:

- Iteration of t from s = f(p,t,(1:10))
- Model of ideal mixture in consideration of dissociation above 500°C and $\psi_{O_2} \ge 0.01$

Results for wrong input values:

t_ps_id, t = -1

References:

s corresponding to VDI 4670 [18]

Backward Function: Temperature $t = f(p, v, \xi_1...\xi_{10} \text{ or } \psi_1...\psi_{10})$

Function Name:		t_pv_id	
Subprogram with value of the function: for the call out of Fortran		REAL*8 FUNCTION T_PV_ID(P,V,ART, COMP) REAL*8 P, V, COMP(0:10) INTEGER*4 ART	
for the call out of the DLL REAL*8 T,		I FUNCTION C_T_PV_ID(T,P,V,ART, COMP) P, V, COMP(0:10) I C_APT_ID, ART	
Input Values:			
р	- Mixture pressure <i>µ</i>	o in bar	
v	- Specific volume <i>v</i>	[,] in m ³ /kg	
type	•	n in mass fractions ξ n in mole fractions ψ	
comp(1:10)	- Composition in m	ass fractions $\xi_1\xi_{10}$ in kg/kg for type = 1	

- Composition in mole fractions ψ_{1} ... ψ_{10} in kmol/kmol for type = 0

Result:

t_pv_id, t - Temperature in °C

Range of Validity:

Mixture pressure <i>p</i> :	from 0.01 mbar to 50 bar
Specific volume <i>v</i> :	from 5.1 m ³ /kg to 2.9 109 m ³ /kg

Comments:

Calculation: $T = \frac{p \cdot v}{R}$

Results for wrong input values:

t_pv_id, t = -1

Specific Internal Energy $u = f(p, t, \xi_1...\xi_{10} \text{ or } \psi_1...\psi_{10})$

Function Name:		u_pt_id
Subprogram with value of the function: for the call out of Fortran		REAL*8 FUNCTION U_PT_ID(P,T,ART, COMP) REAL*8 P, T, COMP(0:10) INTEGER*4 ART
for the call out of the DLL REAL*8 U,		4 FUNCTION C_U_PT_ID(U,P,T,ART, COMP) , P, T, COMP(0:10) 4 C_APT_ID, ART
Input Values:		
р	- Mixture pressure	<i>p</i> in bar
t	- Temperature <i>t</i> in	°C
		n in mass fractions ξ n in mole fractions ψ
(, , , , , , , , , , , , , , , , , , ,	- ··· ·	

comp(1:10)- Composition in mass fractions $\xi_1...\xi_{10}$ in kg/kg for type = 1- Composition in mole fractions $\psi_1... \psi_{10}$ in kmol/kmol for type = 0

Result:

u_pt_id, u - Specific internal energy in kJ/kg

Range of Validity:

Mixture pressure <i>p</i> :	from 0.01 mbar to 50 bar	
Temperature <i>t</i> :	from -73.15 °C to 3026.85 °C	

Comments:

- Calculation: $u = h(p, t, (1:10)) R \cdot T$
- Model of ideal mixture in consideration of dissociation above 500°C and $\psi_{O_2} \ge 0.01$

Results for wrong input values:

u_pt_id, u = -1

References:

h corresponding to VDI 4670 [18]

Specific Volume $v = f(p, t, \xi_1...\xi_{10} \text{ or } \psi_1...\psi_{10})$

Function Name:		v_pt_id
Subprogram with value of the function: for the call out of Fortran		REAL*8 FUNCTION V_PT_ID(P,T,ART, COMP) REAL*8 P, T, COMP(0:10) INTEGER*4 ART
for the call out of the DLL REAL*8 V,		4 FUNCTION C_V_PT_ID(V,P,T,ART, COMP) P, T, COMP(0:10) 4 C_APT_ID, ART
Input Values:		
р	- Mixture pressure	p in bar
t	- Temperature <i>t</i> in ^c	°C
type		n in mass fractions ξ n in mole fractions ψ
comp(1:10)	- Composition in m	ass fractions $\xi_1\xi_{10}$ in kg/kg for type = 1

- Composition in mole fractions ψ_{1} ... ψ_{10} in kmol/kmol for type = 0

Result:

v_pt_id, v - Specific volume in m³/kg

Range of Validity:

Mixture pressure <i>p</i> :	from 0.01 mbar to 50 bar
Temperature <i>t</i> :	from -73.15 °C to 3026.85 °C

Comments:

Calculation: $v = \frac{R_{\rm m} \cdot T}{p}$

Results for wrong input values:

Isentropic Speed of Sound $w = f(p, t, \xi_1...\xi_{10} \text{ or } \psi_1...\psi_{10})$

Function Name:		w_pt_id	
Subprogram with value of the function: for the call out of Fortran		nction: REAL*8 FUNCTION W_PT_ID(P,T,ART, COMP REAL*8 P, T, COMP(0:10) INTEGER*4 ART	')
for the call out of the DLL REAL*8 W,		ITEGER*4 FUNCTION C_W_PT_ID(W,P,T,ART, COMP) EAL*8 W, P, T, COMP(0:10) ITEGER*4 C_APT_ID, ART	
Input Values:			
р	- Mixture p	pressure <i>p</i> in bar	
t	- Tempera	ature <i>t</i> in °C	
type		omposition in mass fractions ξ omposition in mole fractions ψ	

comp(1:10)	- Composition in mass fractions $\xi_1\xi_{10}$ in kg/kg for type = 1
	- Composition in mole fractions ψ_{1} ψ_{10} in kmol/kmol for type = 0

Result:

w_pt_id , w - Isentropic speed of sound in m/s

Range of Validity:

Mixture pressure <i>p</i> :	from 0.01 mbar to 50 bar
Temperature t :	from -73.15 °C to 3026.85 °C

Comments:

Calculation:
$$w = \sqrt{\frac{R_{\rm m} \cdot T \cdot c_{\rho}}{c_{\rho} - R_{\rm m}}}$$

 $c_{\rho} = f(p,t,(1:10))$

Results for wrong input values:

 $w_pt_id, w = -1$

References:

 c_p corresponding to VDI 4670 [18]

Mass Fraction $\xi_i = f(i, \psi_1 \dots \psi_{10})$

Function Name:		Xsi_igas_Psi_id
Subprogram with value of the function: for the call out of Fortran		REAL*8 FUNCTION XSI_IGAS_ID(IGAS, COMP) REAL*8 IGAS, COMP(0:10) INTEGER*4 ART
Subprogram with parameter: for the call out of the DLL	REAL*8 XS	FUNCTION C_XSI_IGAS_ID(XSI,IGAS, COMP) SI, IGAS, COMP(0:10) C_APT_ID, ART
Input Values:		

i - Gas number comp(1:10) - Composition in mole fractions $\psi_{1...} \psi_{10}$ in kmol/kmol for type = 0

Result:

Xsi_igas_Psi_id, Xsi - Mass fraction in kg/kg

Comments:

Calculation:
$$\xi_i = \frac{M_i}{\sum (\psi_i \cdot M_i)} \cdot \psi_i$$

Results for wrong input values:

Xsi_igas_Psi_id, Xsi = -1

KCE-ThermoFluidProperties www.thermofluidprop.com

Property Libraries for Calculating Heat Cycles, Boilers, Turbines and Refrigerators

Water and Steam

Library LiblF97

- Industrial Formulation IAPWS-IF97 (Revision 2007)
- Supplementary Standards IAPWS-IF97-S01, -S03rev, -S04, and -S05
- IAPWS Revised Advisory Note No. 3 on Thermodynamic Derivatives (2008)

Library LibIF97_META

 Industrial Formulation IAPWS-IF97 (Revision 2007) for metastable steam

Humid Combustion Gas Mixtures

Library LibHuGas

Model: Ideal mixture of the real fluids: CO₂ - Span, Wagner H₂O - IAPWS-95

- O_2 Schmidt, Wagner N₂ Span et al. Ar - Tegeler et al.
 - and of the ideal gases: SO₂, CO, Ne
- (Scientific Formulation of Bücker et al.) Consideration of:
 - Dissociation from VDI 4670
 - Poynting effect

Humid Air

Library LibHuAir

Model: Ideal mixture of the real fluids:

 Dry air from Lemmon et al.
 Steam, water and ice from IAPWS-IF97 and IAPWS-06

Consideration of:

- Condensation and freezing of steam
- Dissociation from VDI 4670
 Poynting effect from
- ASHRAE RP-1485

Extremely Fast Property Calculations

Spline-Based Table Look-up Method (SBTL)

Library LibSBTL_IF97 Library LibSBTL_95 Library LibSBTL_HuAir

For steam, water, humid air, carbon dioxide and other fluids and mixtures according IAPWS Guideline 2015 for Computational Fluid Dynamics (CFD), real-time and non-stationary simulations

Carbon Dioxide Including Dry Ice

Library LibCO2

Formulation of Span and Wagner (1996)

Seawater

Library LibSeaWa

IAPWS Industrial Formulation 2013

lce

Library LibICE

Ice from IAPWS-06, Melting and sublimation pressures from IAPWS-08, Water from IAPWS-IF97, Steam from IAPWS-95 and -IF97

Ideal Gas Mixtures

Library LibIdGasMix

Model: Ideal mixture of the ideal gases:

			•
Ar	NO	He	Propylene
Ne	H ₂ O	F ₂	Propane
N ₂	SO ₂	NH ₃	Iso-Butane
0 ₂	H ₂	Methane	n-Butane
CO	H₂S	Ethane	Benzene
CO ₂	ОН	Ethylene	Methanol
Air			

Consideration of: • Dissociation from the VDI Guideline 4670

Library LibIDGAS

Model: Ideal gas mixture from VDI Guideline 4670

Consideration of: • Dissociation from the VDI Guideline 4670

Humid Air

Library ASHRAE LibHuAirProp

Model: Virial equation from ASHRAE Report RP-1485 for real mixture of the real fluids:

- Dry air
- Steam
- Consideration of
- Enhancement of the partial
- saturation pressure of water vapor at elevated total pressures
 - www.ashrae.org/bookstore

Dry Air Including Liquid Air

Library LibRealAir

Formulation of Lemmon et al. (2000)

Refrigerants

Ammonia

Library LibNH3

Formulation of Tillner-Roth et al. (1993)

R134a

Library LibR134a

Formulation of Tillner-Roth and Baehr (1994)

Iso-Butane

Library LibButane_Iso

Formulation of Bücker and Wagner (2006)

n-Butane

Library LibButane_n

Formulation of Bücker and Wagner (2006)

Mixtures for Absorption Processes

Ammonia/Water Mixtures

Library LibAmWa

IAPWS Guideline 2001 of Tillner-Roth and Friend (1998) Helmholtz energy equation for the mixing term (also useable for calculating the Kalina Cycle)

Water/Lithium Bromide Mixtures

Library LibWaLi

Formulation of Kim and Infante Ferreira (2004) Gibbs energy equation for the mixing term

Liquid Coolants

Liquid Secondary Refrigerants

Library LibSecRef

Liquid solutions of water with			
$C_2H_6O_2$	Ethylene glycol		
C ₃ H ₈ O ₂	Propylene glycol		
C₂H₅OH	Ethanol		
CH₃OH	Methanol		
C ₃ H ₈ O ₃	Glycerol		
K ₂ CO ₃	Potassium carbonate		
CaCl ₂	Calcium chloride		
MgCl ₂	Magnesium chloride		
NaCl	Sodium chloride		
$C_2H_3KO_2$	Potassium acetate		
CHKO ₂	Potassium formate		
LiCl	Lithium chloride		
NH ₃	Ammonia		
mulation of the International Institute			

Formulation of the International Institute of Refrigeration (IIR 2010)

Ethanol

Library LibC2H5OH

Formulation of Schroeder et al. (2014)

Methanol

Library LibCH3OH

Formulation of de Reuck and Craven (1993)

Propane

Library LibPropane

Formulation of Lemmon et al. (2009)

Siloxanes as ORC Working Fluids

Octamethylcyclotetrasiloxane $C_8H_{24}O_4Si_4$ Library LibD4 Decamethylcyclopentasiloxane $C_{10}H_{30}O_5Si_5$ Library LibD5 Tetradecamethylhexasiloxane $C_{14}H_{42}O_5Si_6$ Library LibMD4M Hexamethyldisiloxane $C_6H_{18}OSi_2$ Library LibMM Formulation of Colonna et al. (2006)

Dodecamethylcyclohexasiloxane $C_{12}H_{36}O_6Si_6$ Library LibD6 Decamethyltetrasiloxane $C_{10}H_{30}O_3Si_4$ Library LibMD2M Dodecamethylpentasiloxane $C_{12}H_{36}O_4Si_5$ Library LibMD3M Octamethyltrisiloxane $C_8H_{24}O_2Si_3$ Library LibMDM Formulation of Colonna et al. (2008)

Nitrogen and Oxygen

Libraries LibN2 and LibO2

Formulations of Span et al. (2000) and Schmidt and Wagner (1985)

Hydrogen

Library LibH2

Formulation of Leachman et al. (2009)

Helium

Library LibHe Formulation of Arp et al. (1998)

Hydrocarbons

Decane $C_{10}H_{22}$ Library LibC10H22 Isopentane C_5H_{12} Library LibC5H12_Iso Neopentane C_5H_{12} Library LibC5H12_Neo Isohexane C_6H_{14} Library LibC6H14 Toluene C_7H_8 Library LibC7H8 Formulation of Lemmon and Span (2006)

Further Fluids

Carbon monoxide CO Library LibCO Carbonyl sulfide COS Library LibCOS Hydrogen sulfide H_2S Library LibH2S Nitrous oxide N_2O Library LibN2O Sulfur dioxide SO₂ Library LibSO2 Acetone C_3H_6O Library LibC3H6O Formulation of Lemmon and Span (2006)

For more information please contact:

KCE-ThermoFluidProperties UG & Co. KG Prof. Dr. Hans-Joachim Kretzschmar Wallotstr. 3 01307 Dresden, Germany

Internet: www.thermofluidprop.com Email: info@thermofluidprop.com Phone: +49-351-27597860 Mobile: +49-172-7914607 Fax: +49-3222-1095810

The following thermodynamic and transport properties can be calculated^a:

Thermodynamic Properties

- Vapor pressure p_s
- Saturation temperature T_s
- Density ρ
- Specific volume v
- Enthalpy h
- Internal energy u
- Entropy s
- Exergy e
- Isobaric heat capacity c_p
- Isochoric heat capacity c_v
- Isentropic exponent κ
- Speed of sound w
- Surface tension σ

Transport Properties

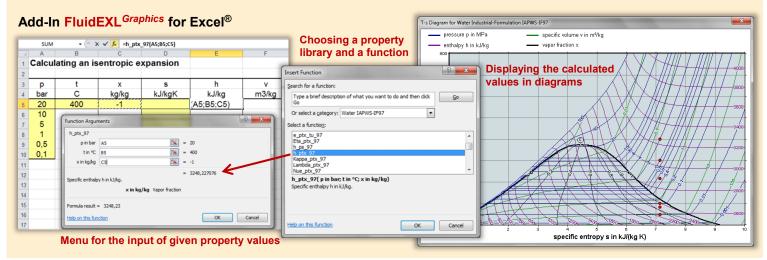
- Dynamic viscosity η
- Kinematic viscosity v
- Thermal conductivity λ
- Prandtl number Pr
- Thermal diffusivity a

Backward Functions

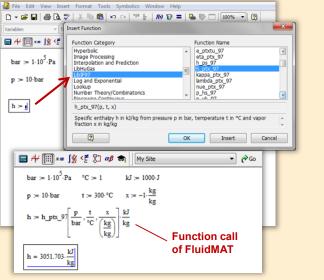
- *T*, *v*, *s* (*p*,*h*)
- *T*, *v*, *h* (*p*,*s*)
- *p*, *T*, *v* (*h*,*s*)
- p, T (v,h)
- p, T (v,u)

Thermodynamic Derivatives

 Partial derivatives used in process modeling can be calculated.


a Not all of these property functions are available in all property libraries.

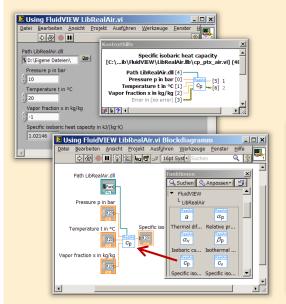
KCE-ThermoFluidProperties www.thermofluidprop.com



Property Software for Calculating Heat Cycles, Boilers, Turbines and Refrigerators

Add-On FluidMAT for Mathcad[®] Add-On FluidPRIME for Mathcad Prime[®]

The property libraries can be used in Mathcad[®] and Mathcad Prime[®].


Add-On FluidLAB for MATLAB[®] and SIMULINK[®]

Using the Add-In FluidLAB the property functions can be called in ${\rm MATLAB}^{\circledast}$ and ${\rm SIMULINK}^{\circledast}.$

Ele Edt Debug Desktop Window Image: State S	6 🗹 🖬	C:\Programme\FluidL	ABIJLIBHUAr_Example
Current Directory - C:\Programme	e\FluidLAB\Lib	oHuAir_Example 🔻 🗙	Editor - C:\Programme\FluidLAB\LibHuAir_Example\Example_hl ?
Al Files Bi hi_ ptxy_HuAir.mexw32 bi LibHuAir.dll bi libinmid.dll bi libinmid.dll bi msvc71.d.dll Example_hi_ptxw_HuAir.m Workspace_current.Directory Command History - % 20.06.07 10:50	File Type MEX-file DLL File DLL File DLL File DLL File DLL File DLL File M-file	Description hl_ptxw_HuAir.m	I * i i i i i x %* % Q 1 * h1 ptx Builtrim x %* % Q 1 * h1 ptx Builtrim x %* % Q 1 * * pt: * ptessure in bar * * 2 * * * * * * * 3 - pt: *
Start Click and drag to move Com	nand History		OVR

Add-On FluidVIEW for LabVIEW™

The property functions can be calculated in LabVIEW[™].

File Edit 🛎 🖬 🔍 🖨 ○ 🎸 A 🔳 🚣 • 🏝 • 🛱 🍡 🖾 • 🖏 • 🔶 ቅ 🖨 🖪 🛃 🛃 100% 💌 ₩ 1/ □ fluidDYM_LibSeaWa_Input in FluidDYM_SeaWa.TestMo ackage Browser Packages 🖲 🕕 Modelica Rei Add modifiers Modelica k=1 Name fluidDYM LibSeaWa Inpu FluidDYM_SeaWa Interfaces FluidDYM_Lib luidDYM_LibSeaVVa_Input FluidDYM_SeaWa.FluidDYM_LibSeaWa_Inpu TestModelle

The property functions can be called in DYMOLA® and SimulationX®.

Add-On FluidDYM for DYMOLA® (Modelica) and SimulationX®

Add-On FluidEES for Engineering Equation Solver[®]

?× Function Informatio C EES library routines Math functions Fluid properties External routines ○ Boiling and Condensation 💌 C Solid/liquid properties CIENCONTINO uer_EES\HuAirProp_SI\Be Tables Plots Windows Help Exa E_{ES} Equ ulating the Enthalpy - h_ptWHuAirPi p=11 Main t=20 Unit Settings: [kJ]/[C]/[kPa]/[kg]/[degrees] W=(h = 45.4866 [kJ/kg] p = 101.3 [kPa] t = 20 [C] W = 0.01 [kg/kg] CAL No unit problems were detected. Calculation time = .1 sec.

App International Steam Tables for iPhone, iPad, iPod touch, Android Smartphones and Tablets

International Steam Tables

IAPWS-IF97

p,x t,x p,h p,s

Spe Den

Enth

Ent

Online Property Calculator at www.thermofluidprop.com

luid:	Water and Steam IAPWS-	F97 - LiblF97 💌		
unction:	Specific enthalpy h(p.t,x)	• 4/		
Init System:	SI 👤			
nter given	values: Range of validity			
Pressure p		100	bar	- X X
Temperature	et	400	.c	-
				XX
Vapor fracti	on x	-1	kg/kg	-
	he vapor fraction x		KATTY	XY
	Calculat	te / Recalculate		
Result:		BARKER	HALLEN	XV
Result: Specific ent	thalpy h	= 3097.38	kJ/kg	•
Specific ent	3/1/18/2	THINK	ELT ELEL	Jett.
Specific ent	formation on property librarie	s available for EXCEL®	MATLAB®, Mathc	ad®,
Specific ent or further inf	3/1/18/2	s available for EXCEL®	MATLAB®, Mathc	ad®,
Specific ent or further inf ingineering E ere.	formation on property librarie Equation Sofver®, DYMOLA	s available for EXCEL® (Modelica), Simulation	, MATLAB®, Mathc X®, and LabView®	ad®, click
Specific ent or further inf ingineering E ere. In App for ca	formation on property librarie Equation Solver®, DYMOLAG	s available for EXCEL® (Modelica), Simulation	, MATLAB®, Mathc X®, and LabView®	ad®, click
Specific ent or further inf ingineering E ere. In App for ca	formation on property librarie Equation Solver®, DYMOLAG	s available for EXCEL® (Modelica), Simulation	, MATLAB®, Mathc X®, and LabView®	ad®, click
Specific ent or further int ingineering B <u>ere.</u> In App for ca 'DF with the D Zittau/Goerit	formation on property librarie Equation Solver®, DYMOLA liculating steam properties o description. 2 University of Applied Sciences	s available for EXCEL® 9 (Modelica), Simulation n iPhone, iPad, and iPoo Tel.: +49-3583-61-184	, MATLAB®, Mathc X®, and LabView® d touch can be four 6 or -1881	ad®, click
Specific ent or further int ingineering B ere. In App for ca 'DF with the D Zittau/Goerit Faculty of Me	formation on property librarie Equation Solver®, DYMOLAI liculating steam properties o description. University of Applied Sciences chanical Engineering	s available for EXCEL® (Modelica), Simulation n iPhone, iPad, and iPor Tel. +49-3583-61-184 Fax +49-3583-61-184	MATLAB®, Mathc X®, and LabView® I touch can be four 6 or -1881	ad®, click
Specific ent or further int ingineering E ere. In App for ca DF with the Statut Goerint Faculty of Me Department	formation on property librarie Equation Solver®, DYMOLAt liculating steam properties o description. 2 University of Applied Sciences ichanical Engineering of Technical Thermodynamics	s available for EXCEL® 9 (Modelica), Simulation n iPhone, iPad, and iPor Tel: +49-3583-61-184 Fax +49-3583-61-184 E-mail: info@thermod	MATLAB®, Mathc X®, and LabView® d touch can be four 6 or -1881 6 mamics-cittau de	ad®, click
Specific ent or further int ingineering B ere n App for ca 'DF with the DE with the Eacuty of Me Department Prof. Hans-J	formation on property Ibrane Equation Solver®, DYMOLAI Idulating steam properties o description 2 University of Applied Sciences chancal Engineering of Technical Thermodynamics achim Kretschmar	is available for EXCEL® 6 (Modelica), Simulation n iPhone, iPad, and iPoo Tel. +49-3583-61-184 Fax, +49-3583-61-184 E-mail: info@hermod www.hermodn.amica	MATLAB®, Mathc X®, and LabView® d touch can be four 6 or -1881 6 	ad®, click
Specific ent or further inl ingineering E ere n App for ca 'DF with the DF with the Department Prof. Hans-J Dr. Ines Stoe	formation on property Ibrane Equation Solver®, DYMOLAI Idulating steam properties o description 2 University of Applied Sciences chancal Engineering of Technical Thermodynamics achim Kretschmar	s available for EXCEL® 9 (Modelica), Simulation n iPhone, iPad, and iPor Tel: +49-3583-61-184 Fax +49-3583-61-184 E-mail: info@thermod	MATLAB®, Mathc X®, and LabView® d touch can be four 6 or -1881 6 	ad®, click

Property Software for Pocket Calculators

For more information please contact:

KCE-ThermoFluidProperties UG & Co. KG Prof. Dr. Hans-Joachim Kretzschmar Wallotstr. 3 01307 Dresden, Germany Internet: www.thermofluidprop.com Email: info@thermofluidprop.com Phone: +49-351-27597860 Mobile: +49-172-7914607 Fax: +49-3222-1095810

The following thermodynamic and transport properties^a can be calculated in Excel[®], MATLAB[®], Mathcad[®], Engineering Equation Solver[®] (EES), DYMOLA[®] (Modelica), SimulationX[®] and LabVIEW™:

Thermodynamic Properties

- Vapor pressure p_s
- Saturation temperature $T_{\rm s}$
- Density ρ
- Specific volume v
- Enthalpy h
- Internal energy u
- Entropy s
- Exergy e
- Isobaric heat capacity c_p
- Isochoric heat capacity c_v
- Isentropic exponent κ
- Speed of sound w
- Surface tension σ

Transport Properties

- Dynamic viscosity η
- Kinematic viscosity v
- Thermal conductivity λ
- Prandtl number Pr
- Thermal diffusivity a

Backward Functions

- T, v, s (p,h)
- T, v, h (p,s)
- p, T, v (h,s)
- p, T (v,h)
- p, T (v,u)

Thermodynamic Derivatives

 Partial derivatives used in process modeling can be calculated.

a Not all of these property functions are available in all property libraries.

5. References

- [1] Release on the IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam IAPWS-IF97.
 Available at the IAPWS website http://www.iapws.org
- [2] Wagner, W.; Kretzschmar, H.-J.: International Steam Tables. Springer-Verlag, Berlin (2008)
- [3] Wagner, W.; Cooper, J.R.; Dittmann, A.; Kijima, J.; Kretzschmar, H.-J.; Kruse, A.; Mares, R.; Oguchi, K.; Sato, H.; Stöcker, I.; Sifner, O.; Takaishi, Y.; Tanishita, I.; Trübenbach, J.; Willkommen, Th.: The IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam. Journal of Eng. for Gas Turbines and Power 122 (2000) No 1, pp. 150-182
- [4] Advisory Note No. 3, Calculation of Thermodynamic Derivatives for Water and Steam from the IAPWS Formulations 2007. Available at the IAPWS website http://www.iapws.org
- [5] Kretzschmar, H.-J.: Mollier h-s Diagram. Springer-Verlag, Berlin (1998, 2008)
- [6] Release on the IAPWS Formulation 2011 for the Thermal Conductivity of Ordinary Water Substance. Available at the IAPWS website http://www.iapws.org
- [7] Release on the IAPWS Formulation 2008 for the Viscosity of Ordinary Water Substance. Available at the IAPWS website http://www.iapws.org
- [8] Release on Surface Tension of Ordinary Water Substance 1994. Available at the IAPWS website http://www.iapws.org
- [9] Supplementary Release on Backward Equations for Specific Volume as a Function of Pressure and Temperature v(p,T) for Region 3 of the IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam 2005. Available at the IAPWS website http://www.iapws.org
- [10] Supplementary Release on Backward Equations p(h,s) for Region 3, Equations as a Function of h and s for the Region Boundaries, and an Equation T_{sat}(h,s) for Region 4 of the IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam 2004. Available at the IAPWS website http://www.iapws.org

- [11] Release on the IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use. Available at the IAPWS website http://www.iapws.org
- [12] Grigull, U.: Properties of Water and Steam in SI Units. Springer-Verlag, Berlin (1989)
- [13] Kretzschmar, H.-J.:
 Zur Aufbereitung und Darbietung thermophysikalischer Stoffdaten für die Energietechnik.
 Habilitation, TU Dresden, Fakultät Maschinenwesen (1990)
- Baehr, H.D.; Diederichsen, Ch.:
 Berechnungsgleichungen für Enthalpie und Entropie der Komponenten von Luft und Verbrennungsgasen.
 BWK 40 (1988) No 1/2, pp. 30-33
- Brandt, F.:
 Wärmeübertragung in Dampferzeugern und Wärmetauschern.
 FDBR-Fachbuchreihe, 2nd edition, Vulkan Verlag Essen (1995)
- [16] VDI-Wärmeatlas, 7. Auflage. VDI-Verlag, Düsseldorf (1995)
- [17] Blanke, W.: Thermophysikalische Stoffgrößen. Springer-Verlag, Berlin (1989)
- [18] VDI-Richtlinie 4670
 Thermodynamische Stoffwerte von feuchter Luft und Verbrennungsgasen.
 VDI-Handbuch Energietechnik, VDI-Gesellschaft Energietechnik, Düsseldorf (2000)
- [19] Lemmon, E. W.; Jacobsen, R. T.; Penoncello, S. G.; Friend, D. G.: Thermodynamic Properties of Air and Mixtures of Nitrogen, Argon and Oxygen from 60 to 2000 K at Pressures to 2000 MPa.
 J. Phys. Chem. Ref. Data 29 (2000) No 2, pp. 331-385
- [20] Lemmon, E. W.; Jacobsen, R. T: Transport Properties of Air. National Institute of Standards and Technology, Boulder CO, (2000), private communication
- [21] Revised Supplementary Release on Saturation Properties of Ordinary Water Substance 1992. Available at the IAPWS website http://www.iapws.org
- Hyland, R. W.; Wexler, A.:
 Formulations for the Thermodynamic Properties of Saturated Phases of H₂O from 173.15 K to 473.15 K.
 Report No. 2793 (RP-216), National Bureau of Standards, Washington, D.C. (1983)

6. Satisfied Customers

Date: 12/2020

The following companies and institutions use the property libraries:

- FluidEXL^{Graphics} for Excel[®] incl. VBA
- FluidLAB for MATLAB[®] and Simulink
- FluidMAT for Mathcad®
- FluidPRIME for Mathcad Prime®
- FluidEES for Engineering Equation Solver[®] EES
- FluidDYM for Dymola[®] (Modelica) and SimulationX[®]
- FluidVIEW for LabVIEW[™]
- FluidPYT for Python
- DLLs for Windows[™] Applications
- Shared Objects for Linux[®].

2020

Drill Cool, Bakersfield CA,USA 12/2020 Manders. The Netherlands **RWE Essen** NEOWAT Lodz, Poland University of Duisburg-Essen, Duisburg 11/2020 Stellenbosch University, South Africa University De France-COMTe, France **RWE Essen** STEAG, Herne Isenmann Ingenierbüro University of Stuttgart, ITLR, Stuttgart Norsk Energi, Norway TGM Kanis, Nürnberg Stadtwerke Neuburg 10/2020 Smurfit Kappa, Roermond, The Netherlands **RWE Essen** Hochschule Zittau/Görlitz, Wirtschaftsingenieurwesen Stadtwerke Neuburg ILK, Dresden ATESTEO, Alsdorf Hochschule Zittau/Görlitz, Maschinenwesen TH Nürnberg, Verfahrenstechnik Drill Cool, Bakersfield CA,USA 09/2020 **RWE Essen** 2Meyers Ingenieurbüro, Nürnberg FELUWA, Mürlenbach Stadtwerke Neuburg Caverion, Wien, Austria

GMVA Niederrhein, Oberhausen	
INWAT Lodz, Poland	00/0000
Troche Ingenieurbüro, Hayingen	08/2020
CEA Saclay, France	07/2020
VPC, Vetschau	07/2020
FSK System-Kälte-Klima, Dortmund	
Exergie Etudes, Sarl, Switzerland	
AWG Wuppertal	
STEAG Energy Services, Zwingenberg	00/0000
Hochschule Braunschweig	06/2020
DBI, Leipzig	
GOHL-KTK, Dumersheim	
TU Dresden, Energieverfahrenstechnik	
BASF SE, ESI/EE, Ludwigshafen	
Wärme Hamburg	
Ruchti Ingenieurbüro, Uster, Switzerland	
IWB, Basel, Switzerland	
Midiplan, Bietingen-Bissingen	05/2020
Knieschke, Ingenieurbüro	
RWE, Essen	
Leser, Hamburg	
AGRANA, Gmünd, Austria	
EWT Wassertechnik, Celle	
Hochschule Darmstadt	04/2020
MTU München CCP	
HAW Hamburg	03/2020
Hanon, Novi Jicin, Czech Republic	
TU Dresden, Kältetechnik	
MAN, Copenhagen, Denmark	
EnerTech, Radebeul	02/2020
LEAG, Cottbus	
B+B Enginering Magdeburg	
Hochschule Offenburg	
WIB, Dennheritz	01/2020
Universität Duisburg-Essen, Strömungsmaschinen	
Kältetechnik Dresen-Bremen	
TH Ingolstadt	
Vattenfall AB, Jokkmokk, Sweden	
Fraunhofer UMSICHT	
2019	
PEU Leipzig, Rötha	12/2019
MB-Holding, Vestenbergsgreuth	
RWE, Essen	
Georg-Büchner-Hochschule, Darmstadt	11/2019
Costy Buomor Hoonoonalo, Bumotaat	172019

Georg-Büchner-Hochschule, Darmstadt EEB ENERKO, Aldenhoven Robert Benoufa Energietechnik, Wiesloch

Kehrein & Kubanek Klimatechnik, Moers	10/2019
Hanon Systems Autopal Services, Hluk, Czech Republic	
CEA Saclay, Gif Sur Yvette cedex, France	
Saudi Energy Efficiency Center SEEC, Riyadh, Saudi Arabia	
VPC, Vetschau	09/2019
jGanser PM + Engineering, Forchheim	
Endress+Hauser Flowtec AG, Reinach, Switzerland	
Ruchti IB, Uster, Switzerland	
ZWILAG Zwischenlager Würenlingen, Switzerland	08/2019
Hochschule Zittau/Görlitz, Faculty Maschinenwesen	
Stadtwerke Neubrandenburg	
Physikalisch Technische Bundesanstalt PTB, Braunschweig	
GMVA Oberhausen	07/2019
Endress+Hauser Flowtec AG, Reinach, Switzerland	
WARNICA, Waterloo, Canada	
MIBRAG, Zeitz	06/2019
Pöyry, Zürich, Switzerland	
RWTH Aachen, Institut für Strahlantriebe und Turbomaschinen	
Midiplan, Bietigheim-Bissingen	
GKS Schweinfurt	
HS Zittau/Görlitz, Wirtschaftswissenschaften und Wirtschaftsingenieurwesen	
ILK Dresden	
HZDR Helmholtz Zentrum Dresden-Rossendorf	
TH Köln, Technische Gebäudeausrüstung	05/2019
IB Knittel, Braunschweig	
Norsk Energi, Oslo, Norway	
STEAG, Essen	
Stora Enso, Eilenburg	
IB Lücke, Paderborn	
Haarslev, Sonderso, Denmark	
MAN Augsburg	
Wieland Werke, Ulm	04/2019
Fels-Werke, Elbingerode	
Univ. Luxembourg, Luxembourg	
BTU Cottbus, Power Engineering	03/2009
Eins-Energie Sachsen, Schwarzenberg	
TU Dresden, Kälte- und Kryotechnik	
ITER, St. Paul Lez Durance Cedex, France	
Fraunhofer UMSICHT, Oberhausen	
Comparex Leipzig for Spedition Thiele HEMMERSBACH	
Rückert NaturGas, Lauf/Pegnitz	
BASF, Basel, Switzerland	02/2019
Stadtwerke Leipzig	
Maerz Ofenbau Zürich, Switzerland	
Hanon Systems Germany, Kerpen	
, 5	01/2019
BSH Berlin	

2010	
Jaguar Energy, Guatemala	12/2018
WEBASTO, Gilching	
Smurfit Kappa, Oosterhout, Netherlands	
Univ. BW München	
RAIV, Liberec for VALEO, Prague, Czech Republic	11/2018
VPC Group Vetschau	
SEITZ, Wetzikon, Switzerland	
MVV, Mannheim	10/2018
IB Troche	
KANIS Turbinen, Nürnberg	
TH Ingolstadt, Institut für neue Energiesysteme	
IB Kristl & Seibt, Graz, Austria	09/2018
INEOS, Köln	00/2010
IB Lücke, Paderborn	
Südzucker, Ochsenfurt	08/2018
K&K Turbinenservice, Bielefeld	07/2018
OTH Regensburg, Elektrotechnik	0772010
Comparex Leipzig for LEAG, Berlin	06/2018
	05/2018
Münstermann, Telgte	05/2016
TH Nürnberg, Verfahrenstechnik	
Universität Madrid, Madrid, Spanien	
HS Zittau/Görlitz, Wirtschaftsingenieurwesen	
HS Niederrhein, Krefeld	00/0040
Wilhelm-Büchner HS, Pfungstadt	03/2018
GRS, Köln	
WIB, Dennheritz	00/00/0
RONAL AG, Härklingen, Schweiz	02/2018
Ingenieurbüro Leipert, Riegelsberg	
AIXPROCESS, Aachen	
KRONES, Neutraubling	
Doosan Lentjes, Ratingen	01/2018
0047	
2017	
Compact Kältetechnik, Dresden	12/2017
Endress + Hauser Messtechnik GmbH +Co. KG, Hannover	
TH Mittelhessen, Gießen	11/2017
Haarslev Industries, Søndersø, Denmark	
Hochschule Zittau/Görlitz, Fachgebiet Energiesystemtechnik	
ATESTEO, Alsdorf	10/2017
Wijbenga, PC Geldermalsen, Netherlands	
Fels-Werke GmbH, Elbingerode	
KIT Karlsruhe, Institute für Neutronenphysik und Reaktortechnik	09/2017
Air-Consult, Jena	
Papierfabrik Koehler, Oberkirch	
ZWILAG, Würenlingen, Switzerland	
TLK-Thermo Universität Braunschweig, Braunschweig	08/2017

Fichtner IT Consulting AG, Stuttgart	07/2017
Hochschule Ansbach, Ansbach	06/2017
RONAL, Härkingen, Switzerland	
BORSIG Service, Berlin	
BOGE Kompressoren, Bielefeld	
STEAG Energy Services, Zwingenberg	
CES clean energy solutions, Wien, Austria	04/2017
Princeton University, Princeton, USA	
B2P Bio-to-Power, Wadersloh	
TU Dresden, Institute for Energy Engineering, Dresden	
SAINT-GOBAIN, Vaujours, France	03/2017
TU Bergakademie Freiberg, Chair of Thermodynamics, Freiberg	
SCHMIDT + PARTNER, Therwil, Switzerland	
KAESER Kompressoren, Gera	
F&R, Praha, Czech Republic	
ULT Umwelt-Lufttechnik, Löbau	02/2017
JS Energie & Beratung, Erding	02/2011
Kelvion Brazed PHE, Nobitz-Wilchwitz	
MTU Aero Engines, München	
Hochschule Zittau/Görlitz, IPM	01/2017
CombTec ProCE, Zittau	01/2017
SHELL Deutschland Oil, Wesseling	
MARTEC Education Center, Frederikshaven, Denmark	
SynErgy Thermal Management, Krefeld	
2016	
	12/2016
BOGE Druckluftsysteme, Bielefeld	12/2016
BOGE Druckluftsysteme, Bielefeld BFT Planung, Aachen	12/2016 11/2016
BOGE Druckluftsysteme, Bielefeld BFT Planung, Aachen Midiplan, Bietigheim-Bissingen	
BOGE Druckluftsysteme, Bielefeld BFT Planung, Aachen Midiplan, Bietigheim-Bissingen BBE Barnich IB	
BOGE Druckluftsysteme, Bielefeld BFT Planung, Aachen Midiplan, Bietigheim-Bissingen BBE Barnich IB Wenisch IB,	
BOGE Druckluftsysteme, Bielefeld BFT Planung, Aachen Midiplan, Bietigheim-Bissingen BBE Barnich IB Wenisch IB, INL, Idaho Falls	
BOGE Druckluftsysteme, Bielefeld BFT Planung, Aachen Midiplan, Bietigheim-Bissingen BBE Barnich IB Wenisch IB, INL, Idaho Falls TU Kältetechnik, Dresden	
BOGE Druckluftsysteme, Bielefeld BFT Planung, Aachen Midiplan, Bietigheim-Bissingen BBE Barnich IB Wenisch IB, INL, Idaho Falls TU Kältetechnik, Dresden Kopf SynGas, Sulz	
BOGE Druckluftsysteme, Bielefeld BFT Planung, Aachen Midiplan, Bietigheim-Bissingen BBE Barnich IB Wenisch IB, INL, Idaho Falls TU Kältetechnik, Dresden Kopf SynGas, Sulz I INL Idaho National Laboratory, Idaho, USA	
BOGE Druckluftsysteme, Bielefeld BFT Planung, Aachen Midiplan, Bietigheim-Bissingen BBE Barnich IB Wenisch IB, INL, Idaho Falls TU Kältetechnik, Dresden Kopf SynGas, Sulz I INL Idaho National Laboratory, Idaho, USA NTVEN, Bellevne (USA)	11/2016
BOGE Druckluftsysteme, Bielefeld BFT Planung, Aachen Midiplan, Bietigheim-Bissingen BBE Barnich IB Wenisch IB, INL, Idaho Falls TU Kältetechnik, Dresden Kopf SynGas, Sulz I INL Idaho National Laboratory, Idaho, USA NTVEN, Bellevne (USA) DREWAG Dresden, Dresden	
BOGE Druckluftsysteme, Bielefeld BFT Planung, Aachen Midiplan, Bietigheim-Bissingen BBE Barnich IB Wenisch IB, INL, Idaho Falls TU Kältetechnik, Dresden Kopf SynGas, Sulz I INL Idaho National Laboratory, Idaho, USA NTVEN, Bellevne (USA) DREWAG Dresden, Dresden AGO AG Energie+Anlagen, Kulmbach	11/2016 10/2016
BOGE Druckluftsysteme, Bielefeld BFT Planung, Aachen Midiplan, Bietigheim-Bissingen BBE Barnich IB Wenisch IB, INL, Idaho Falls TU Kältetechnik, Dresden Kopf SynGas, Sulz I INL Idaho National Laboratory, Idaho, USA NTVEN, Bellevne (USA) DREWAG Dresden, Dresden AGO AG Energie+Anlagen, Kulmbach Universität Stuttgart, ITW, Stuttgart	11/2016
BOGE Druckluftsysteme, Bielefeld BFT Planung, Aachen Midiplan, Bietigheim-Bissingen BBE Barnich IB Wenisch IB, INL, Idaho Falls TU Kältetechnik, Dresden Kopf SynGas, Sulz I INL Idaho National Laboratory, Idaho, USA NTVEN, Bellevne (USA) DREWAG Dresden, Dresden AGO AG Energie+Anlagen, Kulmbach Universität Stuttgart, ITW, Stuttgart Pöyry Deutschland GmbH, Dresden	11/2016 10/2016
BOGE Druckluftsysteme, Bielefeld BFT Planung, Aachen Midiplan, Bietigheim-Bissingen BBE Barnich IB Wenisch IB, INL, Idaho Falls TU Kältetechnik, Dresden Kopf SynGas, Sulz I INL Idaho National Laboratory, Idaho, USA NTVEN, Bellevne (USA) DREWAG Dresden, Dresden AGO AG Energie+Anlagen, Kulmbach Universität Stuttgart, ITW, Stuttgart Pöyry Deutschland GmbH, Dresden Siemens AG, Erlangen	11/2016 10/2016
BOGE Druckluftsysteme, Bielefeld BFT Planung, Aachen Midiplan, Bietigheim-Bissingen BBE Barnich IB Wenisch IB, INL, Idaho Falls TU Kältetechnik, Dresden Kopf SynGas, Sulz I INL Idaho National Laboratory, Idaho, USA NTVEN, Bellevne (USA) DREWAG Dresden, Dresden AGO AG Energie+Anlagen, Kulmbach Universität Stuttgart, ITW, Stuttgart Pöyry Deutschland GmbH, Dresden Siemens AG, Erlangen BASF über Fichtner IT Consulting AG	11/2016 10/2016
BOGE Druckluftsysteme, Bielefeld BFT Planung, Aachen Midiplan, Bietigheim-Bissingen BBE Barnich IB Wenisch IB, INL, Idaho Falls TU Kältetechnik, Dresden Kopf SynGas, Sulz I INL Idaho National Laboratory, Idaho, USA NTVEN, Bellevne (USA) DREWAG Dresden, Dresden AGO AG Energie+Anlagen, Kulmbach Universität Stuttgart, ITW, Stuttgart Pöyry Deutschland GmbH, Dresden Siemens AG, Erlangen BASF über Fichtner IT Consulting AG B+B Engineering GmbH, Magdeburg	11/2016 10/2016 09/2016
BOGE Druckluftsysteme, Bielefeld BFT Planung, Aachen Midiplan, Bietigheim-Bissingen BBE Barnich IB Wenisch IB, INL, Idaho Falls TU Kältetechnik, Dresden Kopf SynGas, Sulz I INL Idaho National Laboratory, Idaho, USA NTVEN, Bellevne (USA) DREWAG Dresden, Dresden AGO AG Energie+Anlagen, Kulmbach Universität Stuttgart, ITW, Stuttgart Pöyry Deutschland GmbH, Dresden Siemens AG, Erlangen BASF über Fichtner IT Consulting AG B+B Engineering GmbH, Magdeburg Wilhelm Büchner Hochschule, Pfungstadt	11/2016 10/2016
BOGE Druckluftsysteme, Bielefeld BFT Planung, Aachen Midiplan, Bietigheim-Bissingen BBE Barnich IB Wenisch IB, INL, Idaho Falls TU Kältetechnik, Dresden Kopf SynGas, Sulz I INL Idaho National Laboratory, Idaho, USA NTVEN, Bellevne (USA) DREWAG Dresden, Dresden AGO AG Energie+Anlagen, Kulmbach Universität Stuttgart, ITW, Stuttgart Pöyry Deutschland GmbH, Dresden Siemens AG, Erlangen BASF über Fichtner IT Consulting AG B+B Engineering GmbH, Magdeburg Wilhelm Büchner Hochschule, Pfungstadt Webasto Thermo & Comfort SE, Gliching	11/2016 10/2016 09/2016
BOGE Druckluftsysteme, Bielefeld BFT Planung, Aachen Midiplan, Bietigheim-Bissingen BBE Barnich IB Wenisch IB, INL, Idaho Falls TU Kältetechnik, Dresden Kopf SynGas, Sulz I INL Idaho National Laboratory, Idaho, USA NTVEN, Bellevne (USA) DREWAG Dresden, Dresden AGO AG Energie+Anlagen, Kulmbach Universität Stuttgart, ITW, Stuttgart Pöyry Deutschland GmbH, Dresden Siemens AG, Erlangen BASF über Fichtner IT Consulting AG B+B Engineering GmbH, Magdeburg Wilhelm Büchner Hochschule, Pfungstadt Webasto Thermo & Comfort SE, Gliching TU Dresden, Dresden	11/2016 10/2016 09/2016
BOGE Druckluftsysteme, Bielefeld BFT Planung, Aachen Midiplan, Bietigheim-Bissingen BBE Barnich IB Wenisch IB, INL, Idaho Falls TU Kältetechnik, Dresden Kopf SynGas, Sulz I INL Idaho National Laboratory, Idaho, USA NTVEN, Bellevne (USA) DREWAG Dresden, Dresden AGO AG Energie+Anlagen, Kulmbach Universität Stuttgart, ITW, Stuttgart Pöyry Deutschland GmbH, Dresden Siemens AG, Erlangen BASF über Fichtner IT Consulting AG B+B Engineering GmbH, Magdeburg Wilhelm Büchner Hochschule, Pfungstadt Webasto Thermo & Comfort SE, Gliching TU Dresden, Dresden Endress+Hauser Messtechnik GmbH+Co. KG, Hannover	11/2016 10/2016 09/2016 08/2016
BOGE Druckluftsysteme, Bielefeld BFT Planung, Aachen Midiplan, Bietigheim-Bissingen BBE Barnich IB Wenisch IB, INL, Idaho Falls TU Kältetechnik, Dresden Kopf SynGas, Sulz I INL Idaho National Laboratory, Idaho, USA NTVEN, Bellevne (USA) DREWAG Dresden, Dresden AGO AG Energie+Anlagen, Kulmbach Universität Stuttgart, ITW, Stuttgart Pöyry Deutschland GmbH, Dresden Siemens AG, Erlangen BASF über Fichtner IT Consulting AG B+B Engineering GmbH, Magdeburg Wilhelm Büchner Hochschule, Pfungstadt Webasto Thermo & Comfort SE, Gliching TU Dresden, Dresden	11/2016 10/2016 09/2016

Fichtner IT Consulting AG, Stuttgart AB Electrolux, Krakow, Poland	
ENEXIO Germany GmbH, Herne	
VPC GmbH, Vetschau/Spreewald	
INWAT, Lodz, Poland	
E.ON SE, Düsseldorf	
Planungsbüro Waidhas GmbH, Chemnitz	
ILK Institut für Luft- und Kältetechnik GmbH, Dresden	
EEB Enerko, Aldershoven	
IHEBA Naturenergie GmbH & Co. KG, Pfaffenhofen	
SSP Kälteplaner AG, Wolfertschwenden	
EEB ENERKO Energiewirtschaftliche Beratung GmbH, Berlin	
BOGE Kompressoren Otto BOGE GmbH & Co KG, Bielefeld	06/2016
Institut für Luft- und Kältetechnik, Dresden	
Universidad Carlos III de Madrid, Madrid, Spain	04/2016
INWAT, Lodzi, Poland	
Planungsbüro WAIDHAS GmbH, Chemnitz	
STEAG Energy Services GmbH, Laszlo Küppers, Zwingenberg	03/2016
WULFF & UMAG Energy Solutions GmbH, Husum	
FH Bielefeld, Bielefeld	
EWT Eckert Wassertechnik GmbH, Celle	02/2016
ILK Institut für Luft- und Kältetechnik GmbH, Dresden	02/2016
IEV KEMA - DNV GV – Energie, Dresden Allborg University, Department of Energie, Aalborg, Denmark	
G.A.M. Heat GmbH, Gräfenhainichen	
Institut für Luft- und Kältetechnik, Dresden	
Bosch, Stuttgart	
INL Idaho National Laboratory, Idaho, USA	01/2016
Friedl ID, Wien, Austria	01/2010
Technical University of Dresden, Dresden	
······································	
2015	
EES Enerko, Aachen	12/2015
Ruldolf IB, Strau, Austria	
Allborg University, Department of Energie, Aalborg, Denmark	
University of Lyubljana, Slovenia	
Steinbrecht IB, Berlin	11/2015
Universidad Carlos III de Madrid, Madrid, Spain	
STEAK, Essen	
Bosch, Lohmar	10/2015
Team Turbo Machines, Rouen, France	09/2015
BTC – Business Technology Consulting AG, Oldenburg	07/2015
KIT Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen	
ILK, Dresden	
Schniewindt GmbH & Co. KG, Neuenwalde	08/2015
2014	

-			
	PROJEK	TPLAN,	Dohna

04/2014

Technical University of Vienna, Austria MTU Aero Engines AG, Munich GKS, Schweinfurt Technical University of Nuremberg EP-E, Niederstetten Rückert NatUrgas GmbH, Lauf YESS-World, South Korea	03/2014
ZAB, Dessau	02/2014
KIT-TVT, Karlsruhe	
Stadtwerke Neuburg	
RWE Essen	
Technical University of Prague, Czech Republic	
HS Augsburg	04/2044
Envi-con, Nuremberg	01/2014
DLR, Stuttgart Doosan Lentjes, Ratingen	
Technical University of Berlin	
Technical University of Munich	
Technical University of Braunschweig	
M&M Turbinentechnik, Bielefeld	
······································	
2013	
TRANTER-GmbH, Artern	12/2013
SATAKE, Shanghai, China	
STEAG, Herne	
SÜDSALZ, Bad Friedrichshall	
RWE, Essen	
OITH, Kunshan, China	
ULT, Löbau	11/22.12
MAN, Copenhagen, Dänemark	11/2013
DREWAG, Dresden	
Siemens, Frankenthal VGB, Essen	
Haarslev Industries, Herlev, Dänemark	
Fichtner IT, Stuttgart	
RWE, Essen	
STEAG, Herne	
Ingersoll-Rand, Oberhausen	
Wilhelm-Büchner HS, Darmstadt	10/2013
IAV, Chemnitz	
T Siemens, Frankenthal	
echnical University of Regensburg	
PD-Energy, Bitterfeld	09/2013
Thermofin, Heinsdorfergrund	
SHI, New Jersey, USA	
M&M Turbinentechnik, Bielefeld	08/2013
BEG-BHV, Bremerhaven	
ILK, Dresden	

	University of Maryland, USA	
	TIG-Group, Husum	
	RWE, Essen	
	University of Budapest, Hungary	
	Siemens, Frankenthal	
	VGB, Essen	07/2013
	Brunner Energieberatung, Zurich, Switzerland	01/2010
	Technical University of Deggendorf	
	University of Maryland, USA	
	University of Princeton, USA	
	NIST, Boulder, USA	06/2013
	IGUS GmbH, Dresden	00/2010
	BHR Bilfinger, Essen	
	SÜDSALZ, Bad Friedrichshall	
	Technician School of Berlin	05/2013
	KIER, Gajeong-ro, Südkorea	
	Schwing/Stetter GmbH, Memmingen	
	Vattenfall, Berlin	
	AUTARK, Kleinmachnow	
	STEAG, Zwingenberg	
	Hochtief, Düsseldorf	
	University of Stuttgart	04/2013
	Technical University -Bundeswehr, Munich	
	Rerum Cognitio Forschungszentrum, Frankfurt	
	Kältetechnik Dresen + Bremen, Alfhausen	
	University Auckland, New Zealand	
	MASDAR Institut, Abu Dhabi, United Arab Emirates	03/2013
	Simpelkamp, Dresden	02/2013
	VEO, Eisenhüttenstadt	
	ENTEC, Auerbach	
	Caterpillar, Kiel	
	Technical University of Wismar	
	Technical University of Dusseldorf	
	ILK, Dresden	01/2013
	Fichtner IT, Stuttgart	
	Schnepf Ingeniuerbüro, Nagold	
	Schütz Engineering, Wadgassen	
	Endress & Hauser, Reinach, Switzerland	
	Oschatz GmbH, Essen	
	frischli Milchwerke, Rehburg-Loccum	
20	012	
	Voith, Bayreuth	12/2012
	Technical University of Munich	,_,
	Dillinger Huette	
		11/0010

11/2012

University of Stuttgart

Siemens, Muehlheim Fichtner IT, Stuttgart

Sennheiser, Hannover	
Oschatz GmbH, Essen	10/2012
Fichtner IT, Stuttgart	
Helbling Technik AG, Zurich, Switzerland	
University of Duisburg	
Rerum Cognitio Forschungszentrum, Frankfurt	09/2012
Pöyry Deutschland GmbH, Dresden	08/2012
Extracciones, Guatemala	
RWE, Essen	
Weghaus Consulting Engineers, Wuerzburg	
GKS, Schweinfurt	07/2012
RWE Essen	
SEITZ, Wetzikon, Switzerland	
SPX Balcke-Dürr, Ratingen	
airinotec, Bayreuth	
GEA, Nobitz	
Meyer Werft, Papenburg	
STEAG, Herne	
GRS, Cologne	06/2012
Fichtner IT Consult, Chennai, India	
Siemens, Freiburg	
Nikon Research of America, Belmont, USA	
Niederrhein University of Applied Sciences, Krefeld	
STEAG, Zwingenberg	
Mainova, Frankfurt on Main	05/2012
Endress & Hauser	
Siemens, Erlangen	
PEU, Espenheim	
Luzern University of Applied Sciences, Switzerland	
BASF, Ludwigshafen (general license)	
SPX Balcke-Dürr, Ratingen	
Gruber-Schmidt, Wien, Austria	04/2012
Vattenfall, Berlin	
ALSTOM, Baden	
SKW, Piesteritz	
TERA Ingegneria, Trento, Italy	
Siemens, Erlangen	
LAWI Power, Dresden	
Stadtwerke Leipzig	
SEITZ, Wetzikon, Switzerland	03/2012
M & M, Bielefeld	
Sennheiser, Wedemark	
SPG, Montreuil Cedex, France	02/2012
German Destilation, Sprendlingen	
Lopez, Munguia, Spain	
Endress & Hauser, Hannover	
Palo Alto Research Center, USA	
WIPAK, Walsrode	

Freudenberg, Weinheim
Fichtner, Stuttgart
airinotec, Bayreuth
University Auckland, New Zealand
VPC, Vetschau
Franken Guss, Kitzingen

XRG-Simulation, Hamburg Smurfit Kappa PPT, AX Roermond, Netherlands AWTEC, Zurich, Switzerland	12/2011
eins-energie, Bad Elster	
BeNow, Rodenbach	11/2011
Luzern University of Applied Sciences, Switzerland	11/2011
GMVA, Oberhausen	
CCI, Karlsruhe	10/2011
WBüchner University of Applied Sciences, Pfungstadt	10/2011
PLANAIR, La Sagne, Switzerland	
Weihenstephan University of Applied Sciences	
LAWI, Dresden	
Lopez, Munguia, Spain	
University of KwaZulu-Natal, Westville, South Africa	
Voith, Heidenheim	09/2011
SpgBe Montreal, Canada	
Weihenstephan University of Applied Sciences	
SPG TECH, Montreuil Cedex, France	
Voith, Heidenheim-Mergelstetten	
MTU Aero Engines, Munich	08/2011
RWTH Aachen University	
F Technical University of Dresden	
ichtner IT Consulting, Stuttgart	,
MIBRAG, Zeitz	
RWE, Essen	07/2011
Fels, Elingerode	
Weihenstephan University of Applied Sciences	
Forschungszentrum Juelich	
RWTH Aachen University	
INNEO Solutions, Ellwangen	06/2011
Fichtner IT Consulting, Stuttgart	
University of Duisburg	
Technical University of Dresden	
Caliqua, Basel, Switzerland	
Technical University of Freiberg	
Fichtner IT Consulting, Stuttgart	05/2011
Technical University of Dresden	
Salzgitter Flachstahl, Salzgitter	
Helbling Beratung & Bauplanung, Zurich, Switzerland	04/004
INEOS, Cologne	04/2011

	Enseleit Consulting Engineers, Siebigerode	
	Witt Consulting Engineers, Stade	03/2011
	Helbling, Zurich, Switzerland	
	MAN Diesel, Copenhagen, Denmark	
	AGO, Kulmbach	
	University of Duisburg	
	CCP, Marburg	
	BASF, Ludwigshafen	02/2011
	ALSTOM Power, Baden, Switzerland	
	Universität der Bundeswehr, Munich	
	Calorifer, Elgg, Switzerland	01/2011
	STRABAG, Vienna, Austria	
	TUEV Sued, Munich	
	ILK Dresden	
	Technical University of Dresden	
20	010	
	Umweltinstitut Neumarkt	12/2010
	YIT Austria, Vienna, Austria	
	MCI Innsbruck, Austria	
	University of Stuttgart	
	HS Cooler, Wittenburg	
	MCE, Berlin	
	S ILK, Dresden	
	iemens Energy, Goerlitz	
	Visteon, Novi Jicin, Czech Republic	
	CompuWave, Brunntal	
	Stadtwerke Leipzig	
	MCI Innsbruck, Austria	
	EVONIK Energy Services, Zwingenberg	
	Caliqua, Basel, Switzerland	11/2010
	Shanghai New Energy Resources Science & Technology, China	
	Energieversorgung Halle	
	Hochschule für Technik Stuttgart, University of Applied Sciences	
	Steinmueller, Berlin	
	Amberg-Weiden University of Applied Sciences	
	AREVA NP, Erlangen	10/2010
	MAN Diesel, Augsburg	
	KRONES, Neutraubling	
	Glen Dimplex, Kulmbach	
	Vaillant, Remscheid	
	PC Ware, Leipzig	
	Schubert Consulting Engineers, Weißenberg	
	Fraunhofer Institut UMSICHT, Oberhausen	
	Behringer Consulting Engineers, Tagmersheim	09/2010
	Saacke, Bremen	
	WEBASTO, Neubrandenburg	
	Concordia University, Montreal, Canada	

Compañía Eléctrica de Sochagota, Bogota, Colombia	08/2010
Hannover University of Applied Sciences	
ERGION, Mannheim	07/2010
Glen Dimplex, Kulmbach	
Fichtner IT Consulting, Stuttgart	
TF Design, Matieland, South Africa	
MCE, Berlin	
IPM, Zittau/Goerlitz University of Applied Sciences	06/2010
TUEV Sued, Dresden	
RWE IT, Essen	
Glen Dimplex, Kulmbach	05/2010
Hot Rock, Karlsruhe	00,2010
D ALSTOM Power, Baden, Switzerland	
armstadt University of Applied Sciences	
Voith, Heidenheim	04/2010
CombTec, Zittau	04/2010
University of Glasgow, Great Britain	
Universitaet der Bundeswehr, Munich	
Technical University of Hamburg-Harburg	
Vattenfall Europe, Berlin	
HUBER Consulting Engineers, Berching	
VER, Dresden	
	03/2010
CCP, Marburg	03/2010
Offenburg University of Applied Sciences	
Technical University of Berlin	
NIST Boulder CO, USA	00/0040
Technical University of Dresden	02/2010
Siemens Energy, Nuremberg	
Augsburg University of Applied Sciences	
ALSTOM Power, Baden, Switzerland	
MIT Massachusetts Institute of Technology Cambridge MA, USA	
Wieland Werke, Ulm	01/2010
Siemens Energy, Goerlitz	
Technical University of Freiberg	
ILK, Dresden	
Fischer-Uhrig Consulting Engineers, Berlin	
2009	
ALSTOM Power, Baden, Schweiz	01/2009
Nordostschweizerische Kraftwerke AG, Doettingen, Switzerland	02/2009
RWE, Neurath	
Brandenburg University of Technology, Cottbus	
Hamburg University of Applied Sciences	
Kehrein, Moers	03/2009
EPP Software, Marburg	50,2000
ALSTOM Power, Baden, Schweiz	
Bernd Münstermann, Telgte	
Suedzucker, Zeitz	

CPP, Marburg	
Gelsenkirchen University of Applied Sciences	04/2009
Regensburg University of Applied Sciences	05/2009
ALSTOM Power, Baden, Schweiz	
Gatley & Associates, Atlanta, USA	
BOSCH, Stuttgart	06/2009
Dr. Nickolay, Consulting Engineers, Gommersheim	00/2003
Ferrostal Power, Saarlouis	
BHR Bilfinger, Essen	
Intraserv, Wiesbaden	
Lausitz University of Applied Sciences, Senftenberg	
Nuernberg University of Applied Sciences	
Technical University of Berlin	
Fraunhofer Institut UMSICHT, Oberhausen	07/2009
	07/2009
BOSCH, Stuttgart	
Bischoff, Aurich	
Fichtner IT Consulting, Stuttgart	00/0000
Techsoft, Linz, Austria	08/2009
DLR, Stuttgart	
Wienstrom, Vienna, Austria	20/2020
RWTH Aachen University	09/2009
Vattenfall, Hamburg	10/2009
AIC, Chemnitz	
Midiplan, Bietigheim-Bissingen	11/2009
Institute of Air Handling and Refrigeration ILK, Dresden	
FZD, Rossendorf	
Techgroup, Ratingen	
Robert Sack, Heidelberg	
EC, Heidelberg	
MCI, Innsbruck, Austria	12/2009
Saacke, Bremen	12/2009
ENERKO, Aldenhoven	12/2009
2008	
	01/2000
Pink, Langenwang	01/2008
Fischer-Uhrig, Berlin	
University of Karlsruhe	02/2008
MAAG, Kuesnacht, Switzerland	02/2008
M&M Turbine Technology, Bielefeld	02/2008
Lentjes, Ratingen	03/2008
Siemens Power Generation, Goerlitz	04/2008
Evonik, Zwingenberg (general EBSILON program license)	
WEBASTO, Neubrandenburg	
CFC Solutions, Munich	04/0000
RWE IT, Essen	04/2008
Rerum Cognitio, Zwickau	05/0000
ARUP, Berlin	05/2008
Rerum Cognitio, Zwickau	

	Research Center, Karlsruhe	07/2008
	AWECO, Neukirch	
-	Technical University of Dresden,	
	Professorship of Building Services	
	Technical University of Cottbus,	
	Ingersoll-Rand, Unicov, Czech Republic	08/2008
	Technip Benelux BV, Zoetermeer, Netherlands	
	Fennovoima Oy, Helsinki, Finland	
	Fichtner Consulting & IT, Stuttgart	09/2008
	PEU, Espenhain	
	Poyry, Dresden	
	WINGAS, Kassel	
	TUEV Sued, Dresden	10/2008
	Technical University of Cottbus,	
	Technical University of Dresden,	
	AWTEC, Zurich, Switzerland	11/2008
	Technical University of Dresden,	
	Siemens Power Generation, Erlangen	12/2008
200	07	
	Audi, Ingolstadt	02/2007
	ANO Abfallbehandlung Nord, Bremen	
	TUEV NORD SysTec, Hamburg	
,	VER, Dresden	
-	Technical University of Dresden, Chair in Jet Propulsion Systems	
	Redacom, Nidau, Switzerland	
	Universität der Bundeswehr, Munich	
	Maxxtec, Sinsheim	03/2007
	University of Rostock, Chair in Technical Thermodynamics	
4	AGO, Kulmbach	
	University of Stuttgart, Chair in Aviation Propulsions	
	Siemens Power Generation, Duisburg	
	ENTHAL Haustechnik, Rees	05/2007
	AWECO, Neukirch	
4	ALSTOM, Rugby, Great Britain	06/2007
	SAAS, Possendorf	
	Grenzebach BSH, Bad Hersfeld	06/2007
	Reichel Engineering, Haan	
-	Technical University of Cottbus,	
,	Voith Paper Air Systems, Bayreuth	
	Egger Holzwerkstoffe, Wismar	
-	Tissue Europe Technologie, Mannheim	
	Dometic, Siegen	07/2007
	RWTH Aachen University, Institute for Electrophysics	09/2007
	National Energy Technology Laboratory, Pittsburg, USA	10/2007
	Energieversorgung Halle	
	AL-KO, Jettingen	
	Grenzebach BSH, Bad Hersfeld	

	Wiesbaden University of Applied Sciences, Endress+Hauser Messtechnik, Hannover	11/2007
	University of Rostock, Chair in Technical Thermodynamics	
	Siemens Power Generation, Erlangen	
	Munich University of Applied Sciences,	
	Rerum Cognitio, Zwickau	12/2007
	University of Rostock, Chair in Technical Thermodynamics	
20	06	
	STORA ENSO Sachsen, Eilenburg	01/2006
	Technical University of Munich, Chair in Energy Systems	
	NUTEC Engineering, Bisikon, Switzerland	
	Conwel eco, Bochov, Czech Republic	
	Offenburg University of Applied Sciences	
	KOCH Transporttechnik, Wadgassen	
	BEG Bremerhavener Entsorgungsgesellschaft	02/2006
	Deggendorf University of Applied Sciences, University of Stuttgart,	
	Siemens Power Generation, Erlangen	
	Technical University of Munich,	
	Chair in Apparatus and Plant Engineering	
	Energietechnik Leipzig (company license),	
	Siemens Power Generation, Erlangen	03/2006
	RWE Power, Essen	
	WAETAS, Pobershau	04/2006
	NUTEC Engineering, Bisikon, Switzerland	
	Siemens Power Generation, Goerlitz	
	Technical University of Braunschweig,	
	EnviCon & Plant Engineering, Nuremberg	
	Brassel Engineering, Dresden	05/2006
	University of Halle-Merseburg,	
	Technical University of Dresden,	
	Fichtner Consulting & IT Stuttgart (company licenses and distribution)	
	Suedzucker, Ochsenfurt	06/2006
	M&M Turbine Technology, Bielefeld	
	Feistel Engineering, Volkach	07/2006
	ThyssenKrupp Marine Systems, Kiel	
	Caliqua, Basel, Switzerland (company license)	09/2006
	Atlas-Stord, Rodovre, Denmark	
	Konstanz University of Applied Sciences,	10/2006
	Siemens Power Generation, Duisburg	
	Hannover University of Applied Sciences,	
	Department of Mechanical Engineering	
	Siemens Power Generation, Berlin	11/2006
	Zikesch Armaturentechnik, Essen	
	Wismar University of Applied Sciences, Seafaring Department	
	BASF, Schwarzheide	12/2006
	Enertech Energie und Technik, Radebeul	

TUEV Nord, Hannover	01/2005
J.H.K Plant Engineering and Service, Bremerhaven	
Electrowatt-EKONO, Zurich, Switzerland	
FCIT, Stuttgart	
Energietechnik Leipzig (company license)	
eta Energieberatung, Pfaffenhofen	02/2005
FZR Forschungszentrum, Rossendorf/Dresden	04/2005
University of Saarbruecken	
Technical University of Dresden	
Energietechnik Leipzig (company license)	
Grenzebach BSH, Bad Hersfeld	
TUEV Nord, Hamburg	
Technical University of Dresden, Waste Management	05/2005
Siemens Power Generation, Goerlitz	00,2000
Duesseldorf University of Applied Sciences,	
Redacom, Nidau, Switzerland	06/2005
Dumas Verfahrenstechnik, Hofheim	00/2000
Alensys Engineering, Erkner	07/2005
Energietechnik Leipzig (company license)	0172003
Stadtwerke Leipzig	
SaarEnergie, Saarbruecken	
ALSTOM ITC, Rugby, Great Britain	08/2005
Technical University of Cottbus, Chair in Power Plant Engineering	00/2003
Vattenfall Europe, Berlin (group license)	
Technical University of Berlin	10/2005
Basel University of Applied Sciences,	10/2003
Midiplan, Bietigheim-Bissingen	11/2005
Technical University of Freiberg, Chair in Hydrogeology	11/2003
STORA ENSO Sachsen, Eilenburg	12/2005
Energieversorgung Halle (company license)	12/2003
KEMA IEV, Dresden	
2004	
Vattenfall Europe (group license)	01/2004
TUEV Nord, Hamburg	01/2004
University of Stuttgart, Institute of Thermodynamics and Heat Engineering	02/2004
MAN B&W Diesel A/S, Copenhagen, Denmark	02/2004
Siemens AG Power Generation, Erlangen	
	03/2004
Ulm University of Applied Sciences	03/2004
Visteon, Kerpen	
Technical University of Dresden,	04/2004
Professorship of Thermic Energy Machines and Plants	04/2004
Rerum Cognitio, Zwickau	
University of Saarbruecken	4
Grenzebach BSH, Bad Hersfeld	
SOFBID Zwingenberg (general EBSILON program license)	05/0001
EnBW Energy Solutions, Stuttgart	05/2004

HEW-Kraftwerk, Tiefstack h s energieanlagen, Freising FCIT, Stuttgart Physikalisch Technische Bundesanstalt (PTB), Braunschweig Mainova Frankfurt Rietschle Energieplaner, Winterthur, Switzerland	06/2004 07/2004 08/2004
MAN Turbo Machines, Oberhausen TUEV Sued, Dresden STEAG Kraftwerk, Herne University of Weimar Visteon, Kerpen	09/2004 10/2004
energeticals (e-concept), Munich SorTech, Halle Enertech EUT, Radebeul (company license)	11/2004
Munich University of Applied Sciences STORA ENSO Sachsen, Eilenburg Technical University of Cottbus, Chair in Power Plant Engineering STEAG Kraftwerk, Herne Freudenberg Service, Weinheim	12/2004
2003	
Paper Factory, Utzenstorf, Switzerland MAB Plant Engineering, Vienna, Austria Wulff Energy Systems, Husum Technip Benelux BV, Zoetermeer, Netherlands ALSTOM Power, Baden, Switzerland	01/2003
VER, Dresden Rietschle Energieplaner, Winterthur, Switzerland	02/2003
DLR, Leupholdhausen	04/2003
Emden University of Applied Sciences, Department of Technology Petterssson+Ahrends, Ober-Moerlen SOFBID ,Zwingenberg (general EBSILON program license) Ingenieurbuero Ostendorf, Gummersbach	05/2003
TUEV Nord, Hamburg Muenstermann GmbH, Telgte-Westbevern	06/2003
University of Cali, Colombia ALSTOM Power, Baden, Switzerland	07/2003
Atlas-Stord, Rodovre, Denmark ENERKO, Aldenhoven STEAG RKB, Leuna eta Energieberatung, Pfaffenhofen	08/2003
exergie, Dresden AWTEC, Zurich, Switzerland Energie, Timelkam, Austria	09/2003
Electrowatt-EKONO, Zurich, Switzerland LG, Annaberg-Buchholz FZR Forschungszentrum, Rossendorf/Dresden	10/2003
EnviCon & Plant Engineering, Nuremberg	11/2003

Visteon, Kerpen	
VEO Vulkan Energiewirtschaft Oderbruecke, Eisenhuettenstadt	
Stadtwerke Hannover	
SaarEnergie, Saarbruecken	
Fraunhofer-Gesellschaft, Munich	12/2003
Erfurt University of Applied Sciences,	
SorTech, Freiburg	
Mainova, Frankfurt	
Energieversorgung Halle	

Hamilton Medical AG, Rhaezuens, Switzerland	01/2002
Bochum University of Applied Sciences,	
SAAS, Possendorf/Dresden	02/2002
Siemens, Karlsruhe	
FZR Forschungszentrum, Rossendorf/Dresden	03/2002
CompAir, Simmern	
GKS Gemeinschaftskraftwerk, Schweinfurt	04/2002
ALSTOM Power Baden, Switzerland (group licenses)	05/2002
InfraServ, Gendorf	
SoftSolutions, Muehlhausen (company license)	
DREWAG, Dresden (company license)	
SOFBID, Zwingenberg (general EBSILON program license)	06/2002
Kleemann Engineering, Dresden	
Caliqua, Basel, Switzerland (company license)	07/2002
PCK Raffinerie, Schwedt (group license)	
Fischer-Uhrig Engineering, Berlin	08/2002
Fichtner Consulting & IT, Stuttgart (company licenses and distribution)	
Stadtwerke Duisburg	
Stadtwerke Hannover	09/2002
Siemens Power Generation, Goerlitz	10/2002
Energieversorgung Halle (company license)	
Bayer, Leverkusen	11/2002
Dillinger Huette, Dillingen	
G.U.N.T. Geraetebau, Barsbuettel (general license and training test benches)	12/2002
VEAG, Berlin	
001	

ALSTOM Power, Baden, Switzerland	01/2001
KW2 B. V., Amersfoot, Netherlands	
Eco Design, Saitamaken, Japan	
M&M Turbine Technology, Bielefeld	
MVV Energie, Mannheim	02/2001
Technical University of Dresden	
PREUSSAG NOELL, Wuerzburg	03/2001
Fichtner Consulting & IT Stuttgart (company licenses and distribution)	04/2001
Muenstermann GmbH, Telgte-Westbevern	05/2001
SaarEnergie, Saarbruecken	

ALSTOM Power, Baden, Switzerland	06/2001			
Siemens, Karlsruhegeneral license for the WinIS information system)	08/2001			
Neusiedler AG, Ulmerfeld, Austria	09/2001			
h s energieanlagen, Freising				
M&M Turbine Technology, Bielefeld				
Electrowatt-EKONO, Zurich, Switzerland				
IPM Zittau/Goerlitz University of Applied Sciences (general license)	10/2001			
eta Energieberatung, Pfaffenhofen	11/2001			
KW2 B. V., Amersfoot, Netherlands	11/2001			
ALSTOM Power Baden, Switzerland	12/2001			
	12/2001			
VEAG, Berlin (group license)				
2000				
SOFBID, Zwingenberg (general EBSILON program license)	01/2000			
AG KKK - PGW Turbo, Leipzig				
PREUSSAG NOELL, Wuerzburg				
M&M Turbine Technology, Bielefeld				
IBR Engineering Reis, Nittendorf-Undorf	02/2000			
GK, Hannover	03/2000			
KRUPP-UHDE, Dortmund (company license)				
UMAG W. UDE, Husum				
VEAG, Berlin (group license)				
Thinius Engineering, Erkrath	04/2000			
SaarEnergie, Saarbruecken	05/2000			
DVO Data Processing Service, Oberhausen	00/2000			
RWTH Aachen University	06/2000			
VAUP Process Automation, Landau	08/2000			
SaarEnergie, Saarbruecken	00/2000			
Knuerr-Lommatec, Lommatzsch	09/2000			
AVACON, Helmstedt	10/2000			
Compania Electrica, Bogota, Colombia	10/2000			
G.U.N.T. Geraetebau, Barsbuettel (general license for training test benches)	11/2000			
Steinhaus Informationssysteme, Dattelngeneral license for process data software)	12/2000			
Steimads mormationssysteme, Datteingeneral itense for process data software	12/2000			
1999				
Bayernwerk, Munich	01/1999			
DREWAG, Dresden (company license)	02/1999			
KEMA IEV, Dresden	03/1999			
Regensburg University of Applied Sciences	04/1999			
Fichtner Consulting & IT, Stuttgart (company licenses and distribution)	07/1999			
Technical University of Cottbus, Chair in Power Plant Engineering				
Technical University of Graz, Department of Thermal Engineering, Austria	11/1999			
Ostendorf Engineering, Gummersbach	12/1999			
1998				
	05/4000			
Technical University of Cottbus, Chair in Power Plant Engineering	05/1998			
Fichtner Consulting & IT (CADIS information systems) Stuttgart	00/4000			
M&M Turbine Technology Bielefeld	06/1998			

	B+H Software Engineering Stuttgart	08/1998	
	Alfa Engineering, Switzerland	09/1998	
	VEAG Berlin		
	NUTEC Engineering, Bisikon, Switzerland	10/1998	
	SCA Hygiene Products, Munich		
	RWE Energie, Neurath		
	Wilhelmshaven University of Applied Sciences		
	BASF, Ludwigshafen (group license)	11/1998	
	Energieversorgung, Offenbach		
1	1997		
	Gerb Dresden	06/1997	

Gerb, Dresden	06/1997
Siemens Power Generation, Goerlitz	07/1997