

Property Library for the Industrial Formulation IAPWS-IF97 for Water and Steam

FluidMAT with LibIF97 for Mathcad®

> Prof. Hans-Joachim Kretzschmar Dr. Sebastian Herrmann Dr. Matthias Kunick

Software for the Calculation of the Properties of Industrial Formulation IAPWS-IF97 for Water and Steam FluidMAT LibIF97

Contents

- 0. Package Contents
 - 0.1 Zip-files for 32-bit Office[®]
 - 0.2 Zip-files for 64-bit Office[®]
- 1. Property Functions
- 2. Application of FluidMAT in Mathcad®
 - 2.1 Installing FluidMAT
 - 2.2 Registering FluidMAT as Add-In in Mathcad®
 - 2.3 The FluidMAT Help System
 - 2.4 Licensing the LibIF97 Property Library
 - 2.5 Example: Calculation of h = f(p,t,x)
 - 2.6 Removing FluidMAT
- 3. Program Documentation
- 4. Property Libraries for Calculating Heat Cycles, Boilers, Turbines, and Refrigerators
- 5. References
- 6. Satisfied Customers
- KCE-ThermoFluidProperties UG (with limited liability) & Co. KG Professor Hans-Joachim Kretzschmar
 Wallotstr. 3, 01307 Dresden, Germany
 Phone: +49-351-27597860
 Mobile: +49-172-7914607
 Fax: +49-3222-1095810
 Email: info@thermofluidprop.com
 Internet: www.thermofluidprop.com

0 Package Contents

Zip-file "CD_FluidMAT_LibIF97.zip" includes the following files:

FluidMAT_LibIF97_Setup.exe LibIF97.dll

- Self-extracting and self-installing program
- DLL with functions of the LibIF97 library

FluidMAT_LibIF97_Docu.pdf

- User's Guide

1. Program Functions

1.1 Range of Validity

The International Association for the Properties of Water and Steam IAPWS issued the

"Release on the IAPWS Industrial Formulation 1997

for the Thermodynamic Properties of Water and Steam IAPWS-IF97"

in September 1997 [1], [2], [3]. It will be abbreviated as IAPWS-IF97. This new industrial standard must be applied worldwide in acceptance and guarantees calculations of facilities and plants working with water or steam. The IAPWS-IF97 Formulation replaces the former Industrial Formulation IFC-67 [12].

Figure 1.1 shows the entire range of validity for the equation set of the new Industrial Formulation IAPWS-IF97. It includes temperatures from 0 °C to 800 °C at pressures from 0.00611 bar to 1000 bar and temperatures to 2000 °C for pressures to 500 bar.

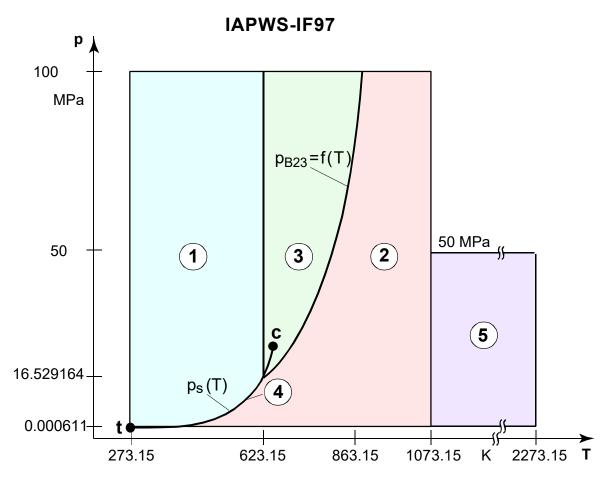


Figure 1.1 Entire Range of Validity of the IF97

The range of validity is divided into five calculation regions. Each of the calculation regions contains its own equations of state. They are described in detail in the official Release of the IAPWS [1] and in the publications by *Wagner et al.* [2] and [3].

The sub-programs of the LibIF97 DLL and the functions of the Add-On FluidPRIME for Mathcad Prime are listed in the following section.

All sub-programs and functions can be applied in the entire range of validity of the IF97. The call of the necessary equation of state for each calculation region will be realized within the program.

1.2 Functions

Functional Dependence	Function Name	Call as Function from DLL LibIF97	Call from DLL LiblF97, Result as Parameter	Property or Function	Unit of the Result
a = f(p,t,x)	a_ptx_97	= APTX97(P,T,X)	= C_APTX97(A,P,T,X)	Thermal diffusivity	m²/s
$\alpha_p = f(p,t,x)$	alphap_ptx_97	= ALPHAPPTX97(P,T,X)	=C_ALPHAPPTX97 (ALPHAP,P,T,X)	Relative pressure coefficient	K ⁻¹
$\alpha_v = f(p,t,x)$	alphav_ptx_97	= ALPHAVPTX97(P,T,X)	=C_ALPHAVPTX97 (ALPHAV,P,T,X)	Isobaric cubic expansion coefficient	K ⁻¹
b = f(p)	b_p_97	= BP97(P)	=C_BP97 (B,P)	Laplace coefficient	m
b = f(t)	b_t_97	= BT97(T)	=C_BT97 (B,T)	Laplace coefficient	m
$\beta_p = f(p,t,x)$	betap_ptx_97	= BETAPPTX97(P,T,X)	= C_BETAPPTX97 (BETAP,P,T,X)	Isothermal stress coefficient	kg/m³
$c_p = f(p,t,x)$	cp_ptx_97	= CPPTX97(P,T,X)	= C_CPPTX97(CP,P,T,X)	Specific isobaric heat capacity	kJ/(kg·K)
$c_v = f(p,t,x)$	cv_ptx_97	= CVPTX97(P,T,X)	= C_CVPTX97(CV,P,T,X)	Specific isochoric heat capacity	kJ/(kg · K)
$\delta_T = f(p,t,x)$	deltat_ptx_97	= DELTATPTX97 (P,T,X)	= C_DELTATPTX97 (DELTAT,P,T,X)	Isothermal throttling coefficient	kJ/(kg ⋅ kPa⁻¹)
$\left(\frac{\partial \mathbf{v}}{\partial \mathbf{p}}\right)_{T} = \mathbf{f}(\mathbf{p}, t, \mathbf{x})$	dv_dp_T_ptx_97	= DVDPT97(P,T,X)	= C_DVDPT97(DVP,P,T,X)	Differential quotient $\left(\frac{\partial \mathbf{v}}{\partial \mathbf{p}}\right)_{\mathrm{T}}(\mathbf{p}, t, \mathbf{x})$	m ³ /(kg · kPa)
$\left(\frac{\partial \mathbf{v}}{\partial T}\right)_{p} = \mathbf{f}(p, t, x)$	dv_dT_p_ptx_97	= DVDTP97(P,T,X)	= C_DVDTP97(DVT,P,T,X)	Differential quotient $\left(\frac{\partial \mathbf{v}}{\partial T}\right)_{\mathbf{p}}(\mathbf{p}, t, \mathbf{x})$	m ³ /(kg · K)
$e = f(p,t,x,t_U)$	e_ptx_tu_97	= EPTXTU97(P,T,X,TU)	= C_EPTXTU97(E;P,T,X,TU)	Specific exergy	kJ/kg
$\mathcal{E} = f(p, t, x)$	epsilon_ptx_97	= EPSPTX97 (P,T,X)	= C_EPSPTX97(EPS,P,T,X)	Dielectric constant	-
$\eta = f(p,t,x)$	eta_ptx_97	= ETAPTX97(P,T,X)	= C_ETAPTX97(ETA,P,T,X)	Dynamic viscosity	Pa ⋅ s = kg/(m ⋅ s)
f = f(p,t,x)	f_ptx_97	= FPTX97 (P,T,X)	= C_FPTX97(F,P,T,X)	Specific Helmholtz energy	kJ/kg
$f^* = f(p, t, x)$	fug_ptx_97	= FUGPTX97 (P,T,X)	= C_FUGPTX97(FUG,P,T,X)	Fugacity	bar
g = f(p,t,x)	g_ptx_97	= GPTX97 (P,T,X)	= C_GPTX97(G,P,T,X)	Specific Gibbs energy	kJ/kg
h = f(p,s)	h_ps_97	= HPS97(P,S)	= C_HPS97(HPS,P,S)	Backward function: Specific enthalpy from pressure and entropy	kJ/kg
h = f(p,t,x)	h_ptx_97	= HPTX97(P,T,X)	= C_HPTX97(H,P,T,X)	Specific enthalpy	kJ/kg

1/3

KCE Kretzschmar Consulting Engineers

Functional Dependence	Function Name	Call as Function from DLL LibIF97	Call from DLL LibIF97, Result as Parameter	Property or Function	Unit of the Result
$\kappa = f(p,t,x)$	kappa_ptx_97	= KAPPTX97(P,T,X)	= C_KAPPTX97(KAP,P,T,X)	Isentropic exponent	-
$\kappa_T = f(p,t,x)$	kappat_ptx_97	= KAPPATPTX97(P,T,X)	= C_KAPPATPTX97 (KAPPAT,P,T,X)	Isothermal compressibility	kPa ⁻¹
$\lambda = f(p,t,x)$	lambda_ptx_97	= LAMPTX97(P,T,X)	= C_LAMPTX97(LAM,P,T,X)	Heat conductivity	W/(m·K)
$\mu = f(p,t,x)$	my_ptx_97	= MYPTX97(P,T,X)	= C_ MYPTX97(MY,P,T,X)	Joule-Thomson coefficient	K kPa ⁻¹
n = f(p,t,x,wl)	n_ptxwl_97	= NPTXWL97(P,T,X,WL)	= C_NPTXWL97(N,P,T,X,WL)	Refractive index	-
v = f(p,t,x)	ny_ptx_97	= NYPTX97(P,T,X)	= C_NYPTX97(NUE,P,T,X)	Kinematic viscosity	m²/s
p = f(h,s)	p_hs_97	= PHS97(H,S)	= C_PHS97(PHS,H,S)	Backward function: Pressure from enthalpy and entropy	bar
p = f(v,h)	p_vh_97	= PVH97(H,S)	= C_PVH97(PHS,H,S)	Backward function: Pressure from volume and enthalpy	bar
p = f(v,u)	p_vu_97	= PVU97(H,S)	= C_PVU97(PHS,H,S)	Backward function: Pressure from volume and internal energy	bar
Pr = f(p,t,x)	Pr_ptx_97	= PRPTX97(P,T,X)	= C_PRPTX97(PR,P,T,X)	<i>Prandtl</i> -number	-
$p_{\rm s} = f(t)$	ps_t_97	= PST97(T)	= C_PST97(PS,T)	Vapor pressure	bar
$\rho = f(\rho, t, x)$	rho_ptx_97	= RHOPTX97(P,T,X)	= C_RHOPTX97(RHO,P,T,X)	Density	kg/m³
s = f(p,h)	s_ph_97	= SPH97(P,H)	= C_SPH97(SPH,P,H)	Backward function: Specific entropy from pressure and enthalpy	kJ/(kg · K)
s = f(p,t,x)	s_ptx_97	= SPTX97(P,T,X)	= C_SPTX97(S,P,T,X)	Specific entropy	kJ/(kg · K)
$\sigma = f(p)$	sigma_p_97	= SIGMAP97(P)	= C_SIGMAP97(SIG,P)	Surface tension from pressure	mN/m = mPa · m
$\sigma = f(t)$	sigma_t_97	= SIGMAT97(T)	= C_SIGMAT97(SIG,T)	Surface tension from temperature	mN/m = mPa · m
t = f(h,s)	t_hs_97	= THS97(H,S)	= C_THS97(THS,H,S)	Backward function: Temperature from enthalpy and entropy	°C
t = f(p,h)	t_ph_97	= TPH97(P,H)	= C_TPH97(TPH,P,H)	Backward function: Temperature from pressure and enthalpy	°C
t = f(p,s)	t_ps_97	= TPS97(P,S)	= C_TPS97(TPS,P,S)	Backward function: Temperature from pressure and entropy	°C

Functional Dependence	Function Name	Call as Function from DLL LibIF97	Call from DLL LibIF97, Result as Parameter	Property or Function	Unit of the Result
t = f(v,h)	t_vh_97	= TVH97(P,H)	= C_TVH97(TPH,P,H)	Backward function: Temperature from volume and enthalpy	°C
t = f(v, u)	t_vu_97	= TVU97(P,H)	= C_TVU97(TPH,P,H)	Backward function: Temperature from volume and internal energy	°C
$t_{\rm s} = f(p)$	ts_p_97	= TSP97(P)	= C_TSP97(TS,P)	Saturation temperature	°C
u = f(p,t,x)	u_ptx_97	= UPTX97(P,T,X)	= C_UPTX97(U,P,T,X)	Specific internal energy	kJ/kg
v = f(p,h)	v_ph_97	= VPH97(P,S)	= C_VPH97(VPS,P,S)	Backward function: Specific volume from pressure and enthalpy	m ³ /kg
v = f(p,s)	v_ps_97	= VPS97(P,S)	= C_VPS97(VPS,P,S)	Backward function: Specific volume from pressure and entropy	m ³ /kg
v = f(p,t,x)	v_ptx_97	= VPTX97(P,T,X)	= C_VPTX97(V,P,T,X)	Specific volume	m ³ /kg
w = f(p,t,x)	w_ptx_97	= WPTX97(P,T,X)	= C_WPTX97(W,P,T,X)	Isentropic speed of sound	m/s
x = f(h,s)	x_hs_97	= XHS97(H,S)	= C_XHS97(XHS,H,S)	Backward function: Vapor fraction from enthalpy and entropy	kg/kg
x = f(p,h)	x_ph_97	= XPH97(P,H)	= C_XPH97(XPH,P,H)	Backward function: Vapor fraction from pressure and enthalpy	kg/kg
x = f(p,s)	x_ps_97	= XPS97(P,S)	= C_XPS97(XPS,P,S)	Backward function: Vapor fraction from pressure and entropy	kg/kg
x = f(v,h)	x_vh_97	= XVH97(P,H)	= C_XVH97(XPH,P,H)	Backward function: Vapor fraction from volume and enthalpy	kg/kg
x = f(v, u)	x_vu_97	= XVU97(P,H)	= C_XVU97(XPH,P,H)	Backward function: Vapor fraction from volume and internal energy	kg/kg
z = f(p,t,x)	z_ptx_97	= ZPTX97(P,T,X)	= C_ZPTX97(Z,P,T,X)	Compression factor	-

Units: t in °C

p in bar

x in kg saturated steam/kg wet steam

Range of validity of IAPWS-IF97

Temperature:	from 0 °C to 800 °C
Pressure:	from 0.00611 bar to 1000 bar
High temperature region:	to 2000 °C for pressures less than 500 bar
	Exception to 900°C for the functions for a , η , λ , v , Pr

Details on the vapor fraction x and on the calculation of wet steam

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction *x* are to be considered:

Single-phase region

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

Wet-steam region

If the state point to be calculated is located in the wet steam region, a value for x between 0 and 1 (x = 0 for saturated liquid, x = 1 for saturated steam) must be entered. In this case, the backward functions result in the appropriate value between 0 and 1 for x. When calculating wet steam either the given value for t and p = -1 or the given value for p and t = -1 and in both cases the value for x between 0 and 1 must be entered.

If *p* and *t* and *x* are entered as given values, the program considers *p* and *t* to be appropriate to represent the vapor pressure curve. If this is not the case the calculation for the property of the chosen function results in –1.

(Wet steam region of the IAPWS-IF97:	$t_{\rm t} = 0 ^{\circ}{\rm C} \dots t_{\rm c} = 373.946 ^{\circ}{\rm C}$
	$p_{\rm t}$ = 0.00611 bar $p_{\rm c}$ = 220.64 bar (c – critical point))

Note.

If the calculation results in –1, the values entered represent a state point beyond the range of validity of IAPWS-IF97. For further information on each function and its range of validity see Chapter 4. The same information may also be accessed via the online help pages.

2 Application of FluidMAT in Mathcad®

FluidMAT has been developed to calculate thermodynamic properties in Mathcad[®] more conveniently. Within Mathcad, it enables the direct call of functions relating to water and steam from the LibIF97 property library.

2.1 Installing FluidMAT

In this section, the installation of FluidMAT LibIF97 is described.

Before you begin, it is best to close any Windows[®] applications, since Windows may need to be rebooted during the installation process.

After you have downloaded and extracted the zip-file

"CD_FluidMAT_LibIF97_Eng.zip"

"CD_FluidMAT_LibIF97.zip"

you will see the folder

CD_FluidMAT_LibIF97_Eng CD_FluidMAT_LibIF97 (for English version of Windows)

(for German version of Windows)

in your Windows Explorer, Norton Commander etc.

Now, open this folder by double-clicking on it.

Within this folder you will see the following files:

FluidMAT_LibIF97_Docu_Eng.pdf FluidMAT_LibIF97_Setup.exe LibIF97.dll.

In order to run the installation of FluidMAT including the LibIF97 property library double-click the file

FluidMAT_LibIF97_Setup.exe.

Installation may start with a window noting that all Windows programs should be closed.

When this is the case, the installation can be continued. Click the "Next >" button.

Now, you will be informed on the FluidMAT product in the "ReadMe-File" window. Click "Next >" to leave this window.

In the following dialog box, "Choose Destination Location" (see following figure), the default path where Mathcad has been installed will be shown

C:\Program Files\Mathcad\Mathcad 14\ (for English version of Windows)

C:\Programme\Mathcad\Mathcad 14\ (for German version of Windows).

By clicking the "Browse..." button, you can change the installation directory before installation.

(for Englisch version of Windows) (for German version of Windows),

🔏 Choose Destination Loc	cation 💌
	Setup will install FluidMAT LibIF97 for Mathcad Professional in the following folder.
	To install into a different folder, click Browse, and select another folder.
	You can choose not to install FluidMAT LibIF97 for Mathcad Professional by clicking Cancel to exit Setup.
	Destination Folder C:\Program Files\Mathcad\Mathcad 14 <u>Br</u> owse
	< <u>B</u> ack <u>N</u> ext > Cancel

Figure 2.1: "Choose Destination Location" dialog window

The path will be displayed in the window.

Click on "Next >" in the window "Choose Destination Location".

Click on the "Next >" button in the "Start Installation" window.

After FluidMAT LibIF97 has been installed, the sentence "FluidMAT LibIF97 for Mathcad Professional has been successfully installed" will be shown.

Confirm this by clicking the "Finish >" button.

During the installation process the following files have been copied into the chosen destination folder (which is the folder, where Mathcad was installed):

advapi32.dll	Dynamic link library for use in Windows [®] programs
Dforrt.dll	Dynamic link library for use in Windows programs
Dformd.dll	Dynamic link library for use in Windows programs
LC.dll	Dynamic link library for use in Windows programs
LibIF97.dll	Property library for water and steam
msvcp60.dll	Dynamic link library for use in Windows programs
Msvcrt.dll	Dynamic link library for use in Windows programs
Readme.txt	ReadMe file
INSTALL_MAT_LibIF97.LOG	Installation log-file

The following files were installed into your Mathcad subdirectory \userEFI:

MAT_LibIF97.dll

Function definition of LibIF97

The following files were installed into your Mathcad subdirectory \doc\funcdoc:

MAT_LibIF97_DE.xml	Function registration in the dialog window "Insert Function" for LibIF97 (German Mathcad version 12 or higher)
MAT_LibIF97_EN.xml	Function registration in the dialog window "Insert Function" for LibIF97 (English Mathcad version 12 or higher)
MAT_LibIF97.xml	Function registration in the dialog window "Insert Function" for LibIF97 (Mathcad version 11 or lower)

Now, you have to overwrite the file "LibIF97.dll" in your Mathcad directory with the file of the same name provided on your CD with FluidMAT.

To do this, open the CD in "My Computer" and click on the file "LibIF97.dll" in order to highlight it. Then click on the "Edit" menu in your Explorer and select "Copy". Now, open your Mathcad directory (the standard being

C:\Program Files\Mathcad\Mathcad 14 (for English version of Windows)

C:\Programme\Mathcad\Mathcad 14 (for German version of Windows))

and insert the file "LibIF97.dll" by clicking the "Edit" menu in your Explorer and then select "Paste". Answer the question whether you want to replace the file by clicking the "Yes" button.

You have overwritten the file "LibIF97.dll" successfully.

From within Mathcad you can now select the FluidMAT LibIF97 property functions.

Licensing the LibIF97 Property Library

The licensing procedure has to be carried out when you are calculating a function with LibIF97 in Mathcad[®] and a FluidMAT prompt message appears. In this case, you will see the "License Information" window for LibIF97 (see figure below).

License Information	×
LibIF97	
Please type in your license key!	?
<u>(ОК</u>)	Cancel

Figure 2.2: "License Information" window

Here you will have to type in the license key which you have obtained from the Zittau/Goerlitz University of Applied Sciences. You can find contact information on the "Content" page of this User's Guide or by clicking the yellow question mark in the "License Information" window. Then the following window will appear:

👬 Help		×
Product:	In order to obtain a license for this product please contact us. LibIE97	
Floadet.		
Contact:	Zittau/Goerlitz University of Applied Sciences Faculty of Mechanical Engineering Department of Technical Thermodynamics Prof. Hans-Joachim Kretzschmar, Dr. Ines Stoecker Theodor-Koerner-Allee 16 02763 Zittau, Germany	
Phone: Fax: Email: www:	+49-3583-61-1846 +49-3583-61-1846 hj.kretzschmar@hs-zigr.de www.thermodynamics-zittau.de	
	(<u> </u>	.)

Figure 2.3: "Help" window

If you do not enter a valid license it is still possible to use Mathcad by clicking "Cancel". In this case, the LibIF97 property library will display the result "–11111111" for every calculation.

The "License Information" window will appear every time you use the LibIF97 property library in Mathcad unless you uninstall FluidMAT according to the description in section 2.3 of this User's Guide.

Should you not wish to license the LibIF97 property library, you have to delete the files

LibIF97.dll MAT_LibIF97.dll MAT_LibIF97.xml MAT_LibIF97_DE.xml MAT_LibIF97_EN.xml

in the installation folder of FluidMAT (the standard being

C:\Program Files\Mathcad\Mathcad 14 C:\Programme\Mathcad\Mathcad 14 (for English version of Windows) (for German version of Windows) using an appropriate program such as Explorer® or Norton Commander.

2.2 Example: Calculation of the Enthalpy *h* = f(*p*,*t*,*x*) for Water and Steam

Now we will calculate, step by step, the specific enthalpy h as a function of pressure p, temperature t and vapor fraction x for water and steam from the Industrial Formulation IAPWS-IF97, using FluidMAT.

2.2.1 Calculating the Example in Mathcad Version 15 or Lower

Please carry out the following instructions:

- Start Mathcad.
- Type "p:" and enter the value for the pressure *p* in bar. (Range of validity of the IF97: *p* = 0.00611 ... 1000 bar)
 e. g.: Enter "p:100" for the first operand
- Type "t:" and enter the value for the temperature *t* in °C.
 (Range of validity of the IF97: 0 °C ... 2000.00 °C for *p* ≤ 100 bar
 0 °C ... 800.00 °C for 100 bar < *p* ≤ 1000 bar)

e. g.: Enter "t:400" for the second operand

- Type "x:" and enter the value for the vapor fraction *x* in kg_{sat. steam} / kg_{wet steam}. Since the wet steam region is calculated automatically by the subprograms, the following fixed details on the vapor fraction *x* are to be considered when the value for *x* is entered:

Single-phase region

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

Wet-steam region

If the state point to be calculated is located in the wet steam region, a value for x between 0 and 1 (x = 0 for saturated liquid, x = 1 for saturated steam) must be entered.

When calculating wet steam either the given value for t and p = -1 or the given value for p and t = -1 and in both cases the value for x between 0 and 1 must be entered.

If *p* and *t* and *x* are entered as given values, the program considers *p* and *t* to be appropriate to represent the vapor pressure curve. If it is not the case the calculation for the property of the chosen function to be calculated results in -1.

Wet steam region of the IAPWS-IF97: $t_{t} = 0 \text{ °C} \dots t_{c} = 373.946 \text{ K}$ $p_{t} = 0.00611 \text{ bar} \dots p_{c} = 220.64 \text{ bar}$

e. g.: Enter "x:-1" for the third operand

- Confirm your entry by pressing the "ENTER" key.
- Your Mathcad calculation window should like Figure 2.4:

Mathcad - [Untitled:1]				
File Edit View Insert Format				
🗅 🗕 🚔 🔚 🎒 🖪 🖤 🕹 🖻 🛙				
Normal				
🗐 A+ [:::] x= ∫⅔ <ᢓ 🖏 αβ 🖘				
My Site 🔹 🇬 Go				
p := 100				
t := 400				
x := -1				

Figure 2.4: Example Mathcad[®] sheet after input of the given parameters

- Now, type "h:" in the Mathcad window. Now, you will see $h := \blacksquare$.
- Click on "Insert" in the upper menu bar and then click "Function...". Now, the "Insert function" window appears (see next figure).

File Ec	lit <u>V</u> iew Insert F <u>o</u> rmat <u>T</u> ools <u>S</u> ym	bolics <u>W</u> ind	ow <u>H</u> elp	
🗅 🕶 🗃	🖬 🖨 🖪 🚏 🐰 🖻 💼 🗠 🗠	"I = 1	100	0% ▼
Variablen	▼ Times New Roman ▼	10 • B		$\equiv \mathbf{x}^2 \mathbf{x}_2 $
🗖 🕂 🕅	x= ∫∰ <≝ ₿□ αβ €			
My Site	▼ (¢G0			
p := 100 t := 400	Insert Function			×
1 400	Function Category		Function Name	
x := -1 h := •	Fourier Transform Graphing Hyperbolic Image Processing Interpolation and Prediction	▲ E	dv_dT_p_ptx_97 e_ptxtu_97 eta_ptx_97 h_ps_97 h_ptx_97	
	LibIF97 Log and Exponential Lookup Number Theony/Combinatorics	Ŧ	kappa_ptx_97 lambda_ptx_97 nue_ptx_97	*
	h_ptx_97(p, t, x)			
	Specific enthalpy h in kJ/kg from pre fraction x in kg/kg	ssure p in bar	, temperature t in °C and vapo	or A
		ОК	Insert	Cancel

- Figure 2.5: Choice of library and function name
- Search and click the "LibIF97" library under "Function Category" in the left part of the window.
- Now, search and click the "h_ptx_97" function under "Function Name" on the right hand side of the window.

The function category and the function name will be inverted, highlighted and furthermore the description of the function and the measuring units of the variables are shown.

Now, click "OK" and you will see h := h_ptx_97 (■ , ■ , ■) in the Mathcad window (see next figure).

Mathcad - [Untitled:1]	
🙀 <u>F</u> ile <u>E</u> dit <u>V</u> iew <u>I</u> nsert F <u>o</u> rmat	
🗅 🕶 🖨 日 🚑 💁 🖤 🐰 🖻)
Variablen Times New Roma	3
] 🗐 A⊬ [:::] ×= ∫ଝ଼ <ἔ 🖏 αβ 🖘	
My Site 🔹 🕏	•
p := 100	
t := 400	
x := -1	
$h := h_ptx_97(\underline{I}, I, I)$	

Figure 2.6: Example Mathcad® sheet with formula and placeholders

- The cursor is now situated on the first operand. You can now enter the value for *p* either by entering the value directly or by entering the name of the variable where the value was saved.

```
\Rightarrow e.g.: Enter "p".
```

- Situate the cursor on the next placeholder. You can now enter the value for the temperature *t* either by entering the value for *t* directly or by typing the name of the variable in which the value of the temperature has been saved.

```
\Rightarrow e.g.: Enter "t".
```

- Situate the cursor on the next placeholder. You can now enter the value for the humidity ratio *x* either by entering the value for *x* directly or by typing the name of the variable in which the value of the humidity ratio has been saved.

```
\Rightarrow e.g.: Enter "x".
```

- Close the input formula by pressing the "Enter"-Key.
- Your Mathcad calculation window should like the following figure:

📊 <u>F</u> ile <u>E</u> dit <u>V</u> iew <u>I</u> nsert F <u>o</u> r
] 🗅 🕶 🚔 🔚 🚑 💁 🖤 🐰
Normal
□□ ≁ [:::] x= ∫∰ <≣ ∑⊓ αβ
p := 100
t := 400
x := -1
$\mathbf{h} := \mathbf{h}_{97}(\mathbf{p}, \mathbf{t}, \mathbf{x})$

Figure 2.7: Example Mathcad[®] sheet with formula and variables

- You can now go on working with the variable *h* which we have just calculated.
- If you wish to see the result, you have to type the following command on the next line in the Mathcad window:

```
"h =".
```

You will now see the result $h=3.097 \times 10^3$.

The representation of the result depends on the amount of places and decimal places which you have set before. In the next figure you can see that we have chosen the amount of three decimal places and an exponential threshold of four.

📊 <u>F</u> ile <u>E</u> dit <u>V</u> iew	<u>I</u> nsert	F <u>o</u> rmat
🗅 🗅 🕶 🖼 🛛 🖨	🗟 💙	🐰 🖻
Variablen	▼ Times	New Roma
📾 🕂 [!!!] ×= ∫🎎	2 🕏	α β 🎭
p := 100		
t := 400		
x := -1		
$h := h_ptx_97(p,t,x)$)	
<u>h</u> = 3097.375∎		

Figure 2.8: Example Mathcad[®] sheet with finished calculation

2.2.2 Calculating the Example in Mathcad Prime Version 3.0 or Higher

- Start Mathcad Prime.
- Type "p:" and enter the value for the pressure *p* in bar. (Range of validity of the IF97: *p* = 0.00611 ... 1000 bar)
 e. g.: Enter "p:100" for the first operand
- Type "t:" and enter the value for the temperature *t* in °C. (Range of validity of the IF97: 0 °C ... 2000.00 °C for *p* ≤ 100 bar 0 °C ... 800.00 °C for 100 bar < *p* ≤ 1000 bar)

e. g.: Enter "t:400" for the second operand

Type "x:" and enter the value for the vapor fraction x in kg_{sat. steam} / kg_{wet steam}.
 Since the wet steam region is calculated automatically by the subprograms, the following fixed details on the vapor fraction x are to be considered when the value for x is entered: Single-phase region

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

Wet-steam region

If the state point to be calculated is located in the wet steam region, a value for x between 0 and 1 (x = 0 for saturated liquid, x = 1 for saturated steam) must be entered.

When calculating wet steam either the given value for t and p = -1 or the given value for p and t = -1 and in both cases the value for x between 0 and 1 must be entered.

If *p* and *t* and *x* are entered as given values, the program considers *p* and *t* to be appropriate to represent the vapor pressure curve. If it is not the case the calculation for the property of the chosen function to be calculated results in -1.

Wet steam region of the IAPWS-IF97: $t_{t} = 0 \text{ °C} \dots t_{c} = 373.946 \text{ K}$ $p_{t} = 0.00611 \text{ bar} \dots p_{c} = 220.64 \text{ bar}$

e. g.: Enter "x:-1" for the third operand

- Confirm your entry by pressing the "ENTER" key.
- Your Mathcad calculation window should like Figure 2.8:

	1 🖻		(Dational of the	-	PTC Mat	hcad Prime 3.1
	4	Input/	Fun	Matrice:	F	Math Fo
x+y Math	5) Solve Block	A	Text Block Text Box Image ns	Delete Region	Operato	β ors and Symbols
Untitled	1					
		t:	= 100 = 400 = -1			

Figure 2.8: Example Mathcad[®] sheet with formula and variables

- Now type **h** := **h_ptx_97** (**p**,**t**,**x**) in the Mathcad window and confirm your entry by pressing the "ENTER" key (see next figure).

	12 E S	(6)	-	PTC Math	ncad Prime 3.1
	Input/	Fun	Matrice:	Ł	Math Fo
x+y Math	> } A	Text Block Text Box Image ns	Delete Region	Operato	β Irs and Symbols
Untitled					
	t:	= 100 = 400 = -1			
	h	≔h_pt	x_97(p	(,t,x)	

Figure 2.9: Example Mathcad® sheet with formula

- You can now go on working with the variable *h* which we have just calculated.
- If you wish to see the result, you have to type the following command on the next line in the Mathcad window:

"h =".

You will now see the result $h=3.097 \times 10^3$.

The representation of the result depends on the amount of places and decimal places which you have set before. In the next figure you can see that we have chosen the amount of three decimal places and an exponential threshold of four.

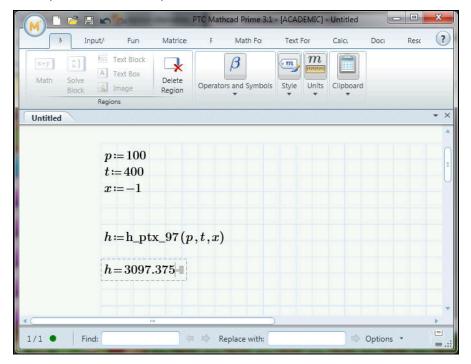


Figure 2.10: Example Mathcad® sheet with finished calculation

2.3 Removing FluidMAT

To remove FluidMAT from Mathcad[®] and from your hard drive, carry out the following steps:

- Click "Start" in the lower task bar of your desktop, then "Settings" and then "Control Panel".
- Now, double click on "Add or Remove Programs".
- In the list box of the "Add or Remove Programs" window that appears select "FluidMAT LibIF97 for Mathcad Professional" by clicking on it and click the "Add/Remove..." button.
- In the following dialog box click "Automatic" and thereafter "Next >".
- Click "Finish" in the "Perform Uninstall" window.
- Finally, close the "Add or Remove Programs" and "Control Panel" windows.

Now FluidMAT has been removed.

3. Program Documentation

Thermal Diffusivity *a* = f(*p*,*t*,*x*)

Function Name:	a_ptx_97
Sub-program with function value:	REAL*8 FUNCTION APTX97(P,T,X)
for call from Fortran	REAL*8 P,T,X
Sub-program with parameter:	INTEGER*4 FUNCTION C_APTX97(A,P,T,X)
for call from DLL	REAL*8 A,P,T,X

Input values

- **P** Pressure *p* in bar
- T Temperature t in °C
- **X** Vapor fraction *x* in (kg saturated steam)/(kg wet steam)

Result

APTX97, **A** or **a_ptx_97** - Thermal diffusivity $\boldsymbol{a} = \frac{\lambda}{\rho \cdot \boldsymbol{c}_p} = \frac{\lambda \cdot \boldsymbol{v}}{\boldsymbol{c}_p}$ in m²/s

Range of validity

Temperature range:	from 0 °C to 900 °C
Pressure range:	from 0.00611 bar to 1000 bar

Details on the vapor fraction *x* and on the calculation of saturated liquid and saturated steam

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction *x* are to be considered:

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

If the state point to be calculated is located on the saturated liquid line, x = 0 must be entered. When calculating saturated steam (saturated vapor line) x = 1 must be entered. The calculation for *x*-values between 0 and 1 is not possible.

When calculating saturated liquid or saturated steam, it is adequate to enter either the given value for t and p = -1, or the given value for p and t = -1, plus the value for x (x = 0 or x = 1). If p and t and x are entered as given values, the program will consider p and t to be appropriate to represent the vapor pressure curve.

(Saturated liquid and saturated vapor line:

Temperature ranges from	$t_{\rm t}$ = 0 °C to $t_{\rm c}$ = 373.946 °C
Pressure ranges from	$p_{\rm t}$ = 0.00611 bar to $p_{\rm c}$ = 220.64 bar)

Results for wrong input values

Result APTX97, A = - 1	l or a_ptx_97 = –1 for input values:
Single phase region: (<i>x</i> = −1)	<i>p</i> > 1000 bar or <i>p</i> < 0.00611 bar or <i>t</i> > 900 °C or <i>t</i> < 0 °C
Saturation lines:	at $p = -1$ and $t > 373.946$ °C or $t < 0$ °C or
(<i>x</i> = 0 or <i>x</i> = 1)	at <i>t</i> = -1 and <i>p</i> > 220.64 bar or <i>p</i> < 0.00611 bar or at <i>p</i> > 220.64 bar or <i>p</i> < 0.00611 bar and <i>t</i> > 373.946 °C or <i>t</i> < 0 °C or <i>t</i> - <i>t</i> _s (<i>p</i>) > 0.1 K

References:

Internal calculation from ρ or v and c_p [1], [2], [3] and λ [6]

Relative Pressure Coefficient $\alpha_p = f(p,t,x)$

Function Name:

alphap_ptx_97

REAL*8 ALPHAP, P, T, X

Sub-program with function value: for call from Fortran

REAL*8 FUNCTION ALPHAPPTX97(P,T,X) REAL*8 P,T,X INTEGER*4 FUNCTION C_ALPHAPPTX97 (ALPHAP,P,T,X)

Sub-program with parameter: for call from DLL

Input values

- P Pressure p in bar
- T Temperature t in °C
- **X** Vapor fraction *x* in (kg saturated steam)/(kg wet steam)

Result

ALPHAPPTX97, ALPHAP or alphap_ptx_97 - Relative pressure coefficient α_p in K⁻¹

Range of validity

Temperature range:from 0 °C to 800 °CPressure range:from 0.00611 bar to 1000 bar

Details on the vapor fraction *x* and on the calculation of saturated liquid and saturated steam

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction *x* are to be considered:

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

If the state point to be calculated is located on the saturated liquid line, x = 0 must be entered. When calculating saturated steam (saturated vapor line) x = 1 must be entered. The calculation for *x*-values between 0 and 1 is not possible.

When calculating saturated liquid or saturated steam, it is adequate to enter either the given value for t and p = -1, or the given value for p and t = -1, plus the value for x (x = 0 or x = 1). If p and t and x are entered as given values, the program will consider p and t to be appropriate to represent the vapor pressure curve.

(Saturated liquid and saturated vapor line:

Temperature ranges from	$t_{\rm t}$ = 0 °C to $t_{\rm c}$ = 373.946 °C
Pressure ranges from	$p_{\rm t}$ = 0.00611 bar to $p_{\rm c}$ = 220.64 bar)

Results for wrong input values

Result ALPHAPPTX97, ALPHAP = -1 or alphap_ptx_97 = -1 for input values:

Single phase region: $(x = -1)$	<i>p</i> > 1000 bar or <i>p</i> < 0.00611 bar or <i>t</i> > 800 °C or <i>t</i> < 0 °C
Saturation lines:	at <i>p</i> = −1 and <i>t</i> > 373.946 °C or <i>t</i> < 0 °C or
(<i>x</i> = 0 or <i>x</i> = 1)	at <i>t</i> = -1 and <i>p</i> > 220.64 bar or <i>p</i> < 0.00611 bar or at <i>p</i> > 220.64 bar or <i>p</i> < 0.00611 bar and <i>t</i> > 373.946 °C or <i>t</i> < 0 °C or <i>t</i> - <i>t</i> _s (<i>p</i>) > 0.1 K

References:

Internal calculation from ρ or v and \textit{c}_{p} [1], [2], [3] and λ [6]

Isobaric Cubic Expansion Coefficient $\alpha_v = f(p,t,x)$

Function Name:

alphav_ptx_97

Sub-program with function value: for call from Fortran

REAL*8 FUNCTION ALPHAVPTX97(P,T,X) REAL*8 P,T,X INTEGER*4 FUNCTION C_ ALPHAVPTX97 (ALPHAV,P,T,X)

Sub-program with parameter: for call from DLL

Input values

- **P** Pressure *p* in bar
- **T** Temperature *t* in °C
- **X** Vapor fraction *x* in (kg saturated steam)/(kg wet steam)

Result

ALPHAVPTX97, **ALPHAV** or **alphav_ptx_97** - Isobaric cubic expansioncoefficient α_V in K⁻¹

REAL*8 ALPHAV, P, T, X

Range of validity

Temperature range:	from 0 °C to 800 °C
Pressure range:	from 0.00611 bar to 1000 bar
High temperature region:	to 2000 °C at pressures to 500 bar

Details on the vapor fraction *x* and on the calculation of saturated liquid and saturated steam

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction *x* are to be considered:

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

If the state point to be calculated is located on the saturated liquid line, x = 0 must be entered. When calculating saturated steam (saturated vapor line) x = 1 must be entered. The calculation for *x*-values between 0 and 1 is not possible.

When calculating saturated liquid or saturated steam, it is adequate to enter either the given value for t and p = -1, or the given value for p and t = -1, plus the value for x (x = 0 or x = 1). If p and t and x are entered as given values, the program will consider p and t to be appropriate to represent the vapor pressure curve.

(Saturated liquid and saturated vapor line:

Temperature ranges from	$t_{\rm t}$ = 0 °C to $t_{\rm c}$ = 373.946 °C
Pressure ranges from	$p_{\rm t}$ = 0.00611 bar to $p_{\rm c}$ = 220.64 bar)

Results for wrong input values

Result ALPHAVPTX97, ALPHAV = -1 or alphav_ptx_97 = -1 for input values:

Single phase region: (<i>x</i> = –1)	<i>p</i> > 1000 bar or <i>p</i> < 0.00611 bar or <i>t</i> > 2000 °C or <i>t</i> < 0 °C or <i>t</i> > 800 °C at <i>p</i> > 500 bar
Saturation lines: ($x = 0$ or $x = 1$)	at $p = -1$ and $t > 373.946$ °C or $t < 0$ °C or at $t = -1$ and $p > 220.64$ bar or $p < 0.00611$ bar or at $p > 220.64$ bar or $p < 0.00611$ bar and $t > 373.946$ °C or $t < 0$ °C at $ t-t_s(p) > 0.1$ K

Laplace Coefficient b = f(p)

Function Name:	b_p_97
Sub-program with function value: for call from Fortran	REAL*8 FUNCTION BP97(P) REAL*8 P
Sub-program with parameter: for call from DLL	INTEGER*4 FUNCTION C_ BP97 (B,P) REAL*8 B,P
Input values	

P - Pressure *p* in bar

Result

BPTX97, B or b_pt_97 - Laplace coefficient b in m

Range of validity

Pressure ranges from $p_{\rm t}$ = 0.00611 bar to $p_{\rm c}$ = 220.64 bar

Results for wrong input values

Result **BP97**, **B** = **-1** or **b_p_97** = **-1** for input values:

Saturation lines: at p > 220.64 bar or p < 0.00611 bar

Laplace Coefficient b = f(t)

Function Name:	b_t_97
Sub-program with function value:	REAL*8 FUNCTION BT97(T)
for call from Fortran	REAL*8 T
Sub-program with parameter:	INTEGER*4 FUNCTION C_ BT97 (B,T)
for call from DLL	REAL*8 B,T

Input values

T - Temperature *t* in °C

Result

BPTX97, B or b_pt_97 - Laplace coefficient b in m

Range of validity

Temperature ranges from $t_{\rm t}$ = 0 °C to $t_{\rm c}$ = 373.946 °C

Results for wrong input values

Result **BT97**, **B** = -1 or **b_t_97** = -1 for input values:

Saturation lines: t > 373.946 °C or t < 0 °C

Isothermal Stress Coefficient $\beta_p = f(p,t,x)$

Function Name:

betap_ptx_97

Sub-program with function value: for call from Fortran

REAL*8 FUNCTION BETAPPTX97(P,T,X) REAL*8 P,T,X INTEGER*4 FUNCTION C_ BETAPPTX97 (BETAP,P,T,X) REAL*8 BETAP.P,T,X

Sub-program with parameter: for call from DLL

Input values

- P Pressure p in bar
- T Temperature t in °C
- **X** Vapor fraction *x* in (kg saturated steam)/(kg wet steam)

Result

BETAPPTX97, BETAP or betap_ptx_97 - Isothermal stress coefficient β_p in kg/m³

Range of validity

Temperature range:	from 0 °C to 800 °C
Pressure range:	from 0.00611 bar to 1000 bar
High temperature region:	to 2000 °C at pressures to 500 bar

Details on the vapor fraction x and on the calculation of saturated liquid and saturated steam

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction *x* are to be considered:

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

If the state point to be calculated is located on the saturated liquid line, x = 0 must be entered. When calculating saturated steam (saturated vapor line) x = 1 must be entered. The calculation for *x*-values between 0 and 1 is not possible.

When calculating saturated liquid or saturated steam, it is adequate to enter either the given value for t and p = -1, or the given value for p and t = -1, plus the value for x (x = 0 or x = 1). If p and t and x are entered as given values, the program will consider p and t to be appropriate to represent the vapor pressure curve.

(Saturated liquid and saturated vapor line:

Temperature ranges from	$t_{\rm t}$ = 0 °C to $t_{\rm c}$ = 373.946 °C
Pressure ranges from	$p_{\rm t}$ = 0.00611 bar to $p_{\rm c}$ = 220.64 bar)

Results for wrong input values

Result **BETAPPTX97**, **BETAP = -1** or **betap_ptx_97 = -1** for input values:

Single phase region: $(x = -1)$	<i>p</i> > 1000 bar or <i>p</i> < 0.00611 bar or <i>t</i> > 2000 °C or <i>t</i> < 0 °C or <i>t</i> > 800 °C at <i>p</i> > 500 bar
Saturation lines: ($x = 0$ or $x = 1$)	at $p = -1$ and $t > 373.946$ °C or $t < 0$ °C or at $t = -1$ and $p > 220.64$ bar or $p < 0.00611$ bar or at $p > 220.64$ bar or $p < 0.00611$ bar and $t > 373.946$ °C or $t < 0$ °C at $ t-t_s(p) > 0.1$ K

Specific Isobaric Heat Capacity $c_p = f(p,t,x)$

Function Name:

cp_ptx_97

REAL*8 CP,P,T,X

Sub-program with function value: for call from Fortran

REAL*8 FUNCTION CPPTX97(P,T,X) REAL*8 P,T,X INTEGER*4 FUNCTION C_CPPTX97(CP,P,T,X)

Sub-program with parameter: for call from DLL

Input values

- **P** Pressure *p* in bar
- T Temperature t in °C
- **X** Vapor fraction *x* in (kg saturated steam)/(kg wet steam)

Result

CPPTX97, CP or cp_ptx_97 - Specific isobaric heat capacity c_p in kJ/kg K

Range of validity

Temperature range:	from 0 °C to 800 °C
Pressure range:	from 0.00611 bar to 1000 bar
High temperature region:	to 2000 °C at pressures to 500 bar

Details on the vapor fraction *x* and on the calculation of saturated liquid and saturated steam

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction *x* are to be considered:

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

If the state point to be calculated is located on the saturated liquid line, x = 0 must be entered. When calculating saturated steam (saturated vapor line) x = 1 must be entered. The calculation for *x*-values between 0 and 1 is not possible.

When calculating saturated liquid or saturated steam, it is adequate to enter either the given value for t and p = -1, or the given value for p and t = -1, plus the value for x (x = 0 or x = 1). If p and t and x are entered as given values, the program will consider p and t to be appropriate to represent the vapor pressure curve.

(Saturated liquid and saturated vapor line:

Temperature ranges from	$t_{\rm t}$ = 0 °C to $t_{\rm c}$ = 373.946 °C
Pressure ranges from	$p_{\rm t}$ = 0.00611 bar to $p_{\rm c}$ = 220.64 bar)

Results for wrong input values

Result CPPTX97, CP = -1 or cp_ptx_97 = -1 for input values:

Single phase region: (<i>x</i> = –1)	<i>p</i> > 1000 bar or <i>p</i> < 0.00611 bar or <i>t</i> > 2000 °C or <i>t</i> < 0 °C or <i>t</i> > 800 °C at <i>p</i> > 500 bar
Saturation lines: ($x = 0$ or $x = 1$)	at $p = -1$ and $t > 373.946$ °C or $t < 0$ °C or at $t = -1$ and $p > 220.64$ bar or $p < 0.00611$ bar or at $p > 220.64$ bar or $p < 0.00611$ bar and $t > 373.946$ °C or $t < 0$ °C at $ t-t_s(p) > 0.1$ K

Specific Isochoric Heat Capacity $c_v = f(p,t,x)$

Function Name:

cv_ptx_97

REAL*8 CV,P,T,X

Sub-program with function value: for call from Fortran

REAL*8 FUNCTION CVPTX97(P,T,X) REAL*8 P,T,X INTEGER*4 FUNCTION C_CVPTX97(CV,P,T,X)

Sub-program with parameter: for call from DLL

Input values

- P Pressure p in bar
- T Temperature t in °C
- X Vapor fraction x in (kg saturated steam)/(kg wet steam)

Result

CVPTX97, CV or cv_ptx_97 - Specific isochoric heat capacity c_v in kJ/kg K

Range of validity

Temperature range:	from 0 °C to 800 °C
Pressure range:	from 0.00611 bar to 1000 bar
High temperature region:	to 2000 °C at pressures to 500 bar

Details on the vapor fraction x and on the calculation of saturated liquid and saturated steam

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction *x* are to be considered:

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

If the state point to be calculated is located on the saturated liquid line, x = 0 must be entered. When calculating saturated steam (saturated vapor line) x = 1 must be entered. The calculation for *x*-values between 0 and 1 is not possible.

When calculating saturated liquid or saturated steam, it is adequate to enter either the given value for t and p = -1, or the given value for p and t = -1, plus the value for x (x = 0 or x = 1). If p and t and x are entered as given values, the program will consider p and t to be appropriate to represent the vapor pressure curve.

(Saturated liquid and saturated vapor line:

Temperature ranges from	$t_{\rm t}$ = 0 °C to $t_{\rm c}$ = 373.946 °C
Pressure ranges from	$p_{\rm t}$ = 0.00611 bar to $p_{\rm c}$ = 220.64 bar)

Results for wrong input values

Result CVPTX97, CV = -1 or cv_ptx_97 = -1 for input values:

Single phase region: (<i>x</i> = –1)	<i>p</i> > 1000 bar or <i>p</i> < 0.00611 bar or <i>t</i> > 2000 °C or <i>t</i> < 0 °C or <i>t</i> > 800 °C at <i>p</i> > 500 bar
Saturation lines: ($x = 0$ or $x = 1$)	at $p = -1$ and $t > 373.946$ °C or $t < 0$ °C or at $t = -1$ and $p > 220.64$ bar or $p < 0.00611$ bar or at $p > 220.64$ bar or $p < 0.00611$ bar and $t > 373.946$ °C or $t < 0$ °C at $ t-t_s(p) > 0.1$ K

Isothermal Throttling Coefficient $\delta_{T} = f(p, t, x)$

Function Name:

deltat_ptx_97

Sub-program with function value: for call from Fortran

REAL*8 P,T,X INTEGER*4 FUNCTION C_DELTATPTX97 (DELTAT,P,T,X)

REAL*8 FUNCTION DELTATPTX97(P,T,X)

Sub-program with parameter: for call from DLL

Input values

- P Pressure p in bar
- T Temperature t in °C
- **X** Vapor fraction *x* in (kg saturated steam)/(kg wet steam)

Result

DELTATPTX97, **DELTAT** or **deltat_ptx_97** - Isothermal throttling coefficient δ_T in kJ kg⁻¹ kPa⁻¹

REAL*8 DELTAT, P, T, X

Range of validity

Temperature range:	from 0 °C to 800 °C
Pressure range:	from 0.00611 bar to 1000 bar
High temperature region:	to 2000 °C at pressures to 500 bar

Details on the vapor fraction *x* and on the calculation of saturated liquid and saturated steam

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction *x* are to be considered:

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

If the state point to be calculated is located on the saturated liquid line, x = 0 must be entered. When calculating saturated steam (saturated vapor line) x = 1 must be entered. The calculation for *x*-values between 0 and 1 is not possible.

When calculating saturated liquid or saturated steam, it is adequate to enter either the given value for t and p = -1, or the given value for p and t = -1, plus the value for x (x = 0 or x = 1). If p and t and x are entered as given values, the program will consider p and t to be appropriate to represent the vapor pressure curve.

(Saturated liquid and saturated vapor line:

Temperature ranges from	$t_{\rm t}$ = 0 °C to $t_{\rm c}$ = 373.946 °C
Pressure ranges from	$p_{\rm t}$ = 0.00611 bar to $p_{\rm c}$ = 220.64 bar)

Results for wrong input values

Result **DELTATPTX97**, **DELTAT = -1** or **deltat_ptx_97 = -1** for input values:

Single phase region: $(x = -1)$	<i>p</i> > 1000 bar or <i>p</i> < 0.00611 bar or <i>t</i> > 2000 °C or <i>t</i> < 0 °C or <i>t</i> > 800 °C at <i>p</i> > 500 bar
Saturation lines: ($x = 0$ or $x = 1$)	at $p = -1$ and $t > 373.946$ °C or $t < 0$ °C or at $t = -1$ and $p > 220.64$ bar or $p < 0.00611$ bar or at $p > 220.64$ bar or $p < 0.00611$ bar and $t > 373.946$ °C or $t < 0$ °C at $ t-t_s(p) > 0.1$ K

Differential Quotient

$$\left(\frac{\partial \boldsymbol{v}}{\partial \boldsymbol{\rho}}\right)_{\boldsymbol{T}} = \mathbf{f}(\boldsymbol{\rho}, \boldsymbol{t}, \boldsymbol{x})$$

Function Name:

dv_dp_T_ptx_97

REAL*8 DVDPT,P,T,X

REAL*8 P,T,X

REAL*8 FUNCTION DVDPT97(P,T,X)

INTEGER*4 FUNCTION C_DVDPT97(DVDPT,P,T,X)

Sub-program with function value: for call from Fortran

Sub-program with parameter: for call from DLL

Input values

P - Pressure *p* in bar

- T Temperature t in °C
- **X** Vapor fraction *x* in (kg saturated steam)/(kg wet steam)

Result

DVDPT97	Differential quotient	$\left(\frac{\partial v}{\partial p}\right)_{T} \text{ in } m^{3} \cdot kg^{-1} \cdot kPa^{-1}$
---------	-----------------------	---

Range of validity

Temperature range:	from 0 °C to 800 °C
Pressure range:	from 0.00611 bar to 1000 bar
High temperature region:	to 2000 °C at pressures to 500 bar

Details on the vapor fraction *x* and on the calculation of saturated liquid and saturated steam

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction *x* are to be considered:

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

If the state point to be calculated is located on the saturated liquid line, x = 0 must be entered. When calculating saturated steam (saturated vapor line) x = 1 must be entered. The calculation for *x*-values between 0 and 1 is not possible.

When calculating saturated liquid or saturated steam, it is adequate to enter either the given value for t and p = -1, or the given value for p and t = -1, plus the value for x (x = 0 or x = 1). If p and t and x are entered as given values, the program will consider p and t to be appropriate to represent the vapor pressure curve.

(Saturated liquid and saturated vapor line:

Temperature ranges from	$t_{\rm t} = 0 ^{\circ}{\rm C}$ to $t_{\rm c} = 373.946 ^{\circ}{\rm C}$
Pressure ranges from	$p_{\rm t}$ = 0.00611 bar to $p_{\rm c}$ = 220.64 bar)

Results for wrong input values

Result dv_dp_T_ptx_97 or DVDPT97 = -1 for input values:

Single phase region: (<i>x</i> = –1)	<i>p</i> > 1000 bar or <i>p</i> < 0.00611 bar or <i>t</i> > 2000 °C or <i>t</i> < 0 °C or <i>t</i> > 800 °C at <i>p</i> > 500 bar
Saturation lines: ($x = 0$ or $x = 1$)	at $p = -1$ and $t > 373.946$ °C or $t < 0$ °C or at $t = -1$ and $p > 220.64$ bar or $p < 0.00611$ bar or at $p > 220.64$ bar or $p < 0.00611$ bar and $t > 373.946$ °C or $t < 0$ °C at $ t-t_s(p) > 0.1$ K

$$\left(\frac{v}{T}\right)_{\rho} = f(\rho, t, x)$$

Function Name:

dv_dT_p_ptx_97

REAL*8 P.T.X

REAL*8 DVDTP,P,T,X

REAL*8 FUNCTION DVDTP97(P,T,X)

INTEGER*4 FUNCTION C_DVDTP97(DVDTP,P,T,X)

Sub-program with function value: for call from Fortran

Sub-program with parameter: for call from DLL

Input values

- **P** Pressure *p* in bar
- T Temperature t in °C
- **X** Vapor fraction *x* in (kg saturated steam)/(kg wet steam)

Result

DVDTP97 - Different	tial quotient $\left(\frac{\partial \mathbf{v}}{\partial T}\right)_{\mathbf{p}}$ in m ³ · kg ⁻¹ · K ⁻¹
---------------------	---

Range of validity

Temperature range:	from 0 °C to 800 °C
Pressure range:	from 0.00611 bar to 1000 bar
High temperature region:	to 2000 °C at pressures to 500 bar

Details on the vapor fraction *x* and on the calculation of saturated liquid and saturated steam

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction *x* are to be considered:

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

If the state point to be calculated is located on the saturated liquid line, x = 0 must be entered. When calculating saturated steam (saturated vapor line) x = 1 must be entered. The calculation for *x*-values between 0 and 1 is not possible.

When calculating saturated liquid or saturated steam, it is adequate to enter either the given value for t and p = -1, or the given value for p and t = -1, plus the value for x (x = 0 or x = 1). If p and t and x are entered as given values, the program will consider p and t to be appropriate to represent the vapor pressure curve.

(Saturated liquid and saturated vapor line:

Temperature ranges from	$t_{\rm t}$ = 0 °C to $t_{\rm c}$ = 373.946 °C
Pressure ranges from	$p_{\rm t}$ = 0.00611 bar to $p_{\rm c}$ = 220.64 bar)

Results for wrong input values

Result dv_dT_p_ptx_97 or DVDTP97 = -1 for input values:

Single phase region: (<i>x</i> = –1)	<i>p</i> > 1000 bar or <i>p</i> < 0.00611 bar or <i>t</i> > 2000 °C or <i>t</i> < 0 °C or <i>t</i> > 800 °C at <i>p</i> > 500 bar
Saturation lines: ($x = 0$ or $x = 1$)	at $p = -1$ and $t > 373.946$ °C or $t < 0$ °C or at $t = -1$ and $p > 220.64$ bar or $p < 0.00611$ bar or at $p > 220.64$ bar or $p < 0.00611$ bar and $t > 373.946$ °C or $t < 0$ °C at $ t-t_s(p) > 0.1$ K

Specific Exergy $e = f(p, t, x, t_u)$

Function Name:	e_ptx_tu_97
Sub-program with function value: for call from Fortran	REAL*8 FUNCTION EPTXTU97(P,T,X,TU) REAL*8 P,T,X,TU
Sub-program with parameter: for call from DLL	INTEGER*4 FUNCTION C_EPTXTU97(E,P,T,X,TU) REAL*8 E,P,T,X,TU
Input values	
P - Pressure <i>p</i> in bar	
T - Temperature <i>t</i> in °C	

X - Vapor fraction *x* in (kg saturated steam)/(kg wet steam)

TU - Environment temperature t_U in °C

Result

EPTXTU97, E or e_ptx_tu_97 - Specific exergy (of the enthalpy) e in kJ/kg

Range of validity

Temperature range:	from 0 °C to 800 °C
Pressure range:	from 0.00611 bar to 1000 bar
High temperature region:	to 2000 °C at pressures to 500 bar

Details on the vapor fraction x and on the calculation of wet steam

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction *x* are to be considered:

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

If the state point to be calculated is located in the wet steam region, a value for x between 0 and 1 (x = 0 for saturated liquid, x = 1 for saturated steam) must be entered.

When calculating wet steam either the given value for t and p = -1 or the given value for p and t = -1 and in both cases the value for x between 0 and 1 must be entered.

If *p* and *t* and *x* are entered as given values, the program considers *p* and *t* to be appropriate to represent the vapor pressure curve.

(Wet steam region of the IAPWS-IF97: $t_{\rm t}$ = 0 °C ... $t_{\rm c}$ = 373.946 °C $p_{\rm t}$ = 0.00611 bar ... $p_{\rm c}$ = 220.64 bar)

Results for wrong input values

Result **EPTXTU97**, **E** = -1 or **e_ptx_tu_97** = -1 for input values:

Single phase region: (<i>x</i> = –1)	<i>p</i> > 1000 bar or <i>p</i> < 0.00611 bar or <i>t</i> > 2000 °C or <i>t</i> < 0 °C or <i>t</i> > 800 °C at <i>p</i> > 500 bar
Wet steam region: $(0 \le x \le 1)$	at $p = -1$ and $t > 373.946$ °C or $t < 0$ °C or at $t = -1$ and $p > 220.64$ bar or $p < 0.00611$ bar or at $p > 220.64$ bar or $p < 0.00611$ bar and $t > 373.946$ °C or $t < 0$ °C at $ t-t_s(p) > 0.1$ K

Dielectric Constant $\varepsilon = f(p, t, x)$

Function Name:

epsilon_ptx_97

REAL*8 EPS,P,T,X

Sub-program with function value: for call from Fortran

REAL*8 FUNCTION EPSPTX97(P,T,X) REAL*8 P,T,X INTEGER*4 FUNCTION C_ EPSPTX97 (BETAP,P,T,X)

Sub-program with parameter: for call from DLL

Input values

- P Pressure p in bar
- T Temperature t in °C
- X Vapor fraction x in (kg saturated steam)/(kg wet steam)

Result

EPSPTX97, EPS or epsilon_ptx_97 - Dielectric constant ε

Range of validity

Temperature range:	from 0 °C to 800 °C
Pressure range:	from 0.00611 bar to 1000 bar
High temperature region:	to 2000 °C at pressures to 500 bar

Details on the vapor fraction *x* and on the calculation of saturated liquid and saturated steam

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction *x* are to be considered:

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

If the state point to be calculated is located on the saturated liquid line, x = 0 must be entered. When calculating saturated steam (saturated vapor line) x = 1 must be entered. The calculation for *x*-values between 0 and 1 is not possible.

When calculating saturated liquid or saturated steam, it is adequate to enter either the given value for t and p = -1, or the given value for p and t = -1, plus the value for x (x = 0 or x = 1). If p and t and x are entered as given values, the program will consider p and t to be appropriate to represent the vapor pressure curve.

(Saturated liquid and saturated vapor line:

Temperature ranges from	$t_{\rm t}$ = 0 °C to $t_{\rm c}$ = 373.946 °C
Pressure ranges from	$p_{\rm t}$ = 0.00611 bar to $p_{\rm c}$ = 220.64 bar)

Results for wrong input values

Result EPSPTX97, EPS = -1 or epsilon_ptx_97 = -1 for input values:

Single phase region: (<i>x</i> = –1)	<i>p</i> > 1000 bar or <i>p</i> < 0.00611 bar or <i>t</i> > 2000 °C or <i>t</i> < 0 °C or <i>t</i> > 800 °C at <i>p</i> > 500 bar
Saturation lines: ($x = 0$ or $x = 1$)	at $p = -1$ and $t > 373.946$ °C or $t < 0$ °C or at $t = -1$ and $p > 220.64$ bar or $p < 0.00611$ bar or at $p > 220.64$ bar or $p < 0.00611$ bar and $t > 373.946$ °C or $t < 0$ °C at $ t-t_s(p) > 0.1$ K

Specific Helmholtz Energy f = f(p,t,x)

Function Name:

f_ptx_97

REAL*8 F,P,T,X

Sub-program with function value: for call from Fortran

REAL*8 FUNCTION FPTX97(P,T,X) REAL*8 P,T,X INTEGER*4 FUNCTION C_ FPTX97 (F,P,T,X)

Sub-program with parameter: for call from DLL

Input values

- **P** Pressure *p* in bar
- T Temperature t in °C
- **X** Vapor fraction *x* in (kg saturated steam)/(kg wet steam)

Result

FPTX97, F or f_ptx_97 - Specific Helmholtz energy f in kJ/kg

Range of validity

Temperature range:	from 0 °C to 800 °C
Pressure range:	from 0.00611 bar to 1000 bar
High temperature region:	to 2000 °C at pressures to 500 bar

Details on the vapor fraction *x* and on the calculation of saturated liquid and saturated steam

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction *x* are to be considered:

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

If the state point to be calculated is located on the saturated liquid line, x = 0 must be entered. When calculating saturated steam (saturated vapor line) x = 1 must be entered. The calculation for *x*-values between 0 and 1 is not possible.

When calculating saturated liquid or saturated steam, it is adequate to enter either the given value for t and p = -1, or the given value for p and t = -1, plus the value for x (x = 0 or x = 1). If p and t and x are entered as given values, the program will consider p and t to be appropriate to represent the vapor pressure curve.

(Saturated liquid and saturated vapor line:

Temperature ranges from	$t_{\rm t}$ = 0 °C to $t_{\rm c}$ = 373.946 °C
Pressure ranges from	$p_{\rm t}$ = 0.00611 bar to $p_{\rm c}$ = 220.64 bar)

Results for wrong input values

Result FPTX97, F = -1 or f_ptx_97 = -1 for input values:

Single phase region: (<i>x</i> = –1)	<i>p</i> > 1000 bar or <i>p</i> < 0.00611 bar or <i>t</i> > 2000 °C or <i>t</i> < 0 °C or <i>t</i> > 800 °C at <i>p</i> > 500 bar
Saturation lines: $(0 \le x \le 1)$	at $p = -1$ and $t > 373.946$ °C or $t < 0$ °C or at $t = -1$ and $p > 220.64$ bar or $p < 0.00611$ bar or at $p > 220.64$ bar or $p < 0.00611$ bar and $t > 373.946$ °C or $t < 0$ °C at $ t-t_s(p) > 0.1$ K

Fugacity $f^* = f(p,t,x)$

Function Name:	fug_ptx_97
Sub-program with function value: for call from Fortran	REAL*8 FUNCTION FUGPTX97(P,T,X) REAL*8 P,T,X
Sub-program with parameter: for call from DLL	INTEGER*4 FUNCTION C_ FUGPTX97 (FUG,P,T,X) REAL*8 DELTAT,P,T,X
Input values	
B B	

- **P** Pressure *p* in bar
- **T** Temperature *t* in °C
- **X** Vapor fraction *x* in (kg saturated steam)/(kg wet steam)

Result

FUGPTX97, **FUG** or **fug_ptx_97** - Fugacity f^* in bar

Range of validity

Temperature range:	from 0 °C to 800 °C
Pressure range:	from 0.00611 bar to 1000 bar
High temperature region:	to 2000 °C at pressures to 500 bar

Details on the vapor fraction *x* and on the calculation of saturated liquid and saturated steam

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction *x* are to be considered:

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

If the state point to be calculated is located on the saturated liquid line, x = 0 must be entered. When calculating saturated steam (saturated vapor line) x = 1 must be entered. The calculation for *x*-values between 0 and 1 is not possible.

When calculating saturated liquid or saturated steam, it is adequate to enter either the given value for t and p = -1, or the given value for p and t = -1, plus the value for x (x = 0 or x = 1). If p and t and x are entered as given values, the program will consider p and t to be appropriate to represent the vapor pressure curve.

(Saturated liquid and saturated vapor line:

Temperature ranges from	$t_{\rm t}$ = 0 °C to $t_{\rm c}$ = 373.946 °C
Pressure ranges from	$p_{\rm t}$ = 0.00611 bar to $p_{\rm c}$ = 220.64 bar)

Results for wrong input values

Result **FUGPTX97**, **FUG = -1** or **fug_ptx_97 = -1** for input values:

Single phase region: (x = -1)	<i>p</i> > 1000 bar or <i>p</i> < 0.00611 bar or <i>t</i> > 2000 °C or <i>t</i> < 0 °C or <i>t</i> > 800 °C at <i>p</i> > 500 bar
Saturation lines: $(0 \le x \le 1)$	at $p = -1$ and $t > 373.946$ °C or $t < 0$ °C or at $t = -1$ and $p > 220.64$ bar or $p < 0.00611$ bar or at $p > 220.64$ bar or $p < 0.00611$ bar and $t > 373.946$ °C or $t < 0$ °C at $ t-t_s(p) > 0.1$ K

Specific Gibbs Energy g = f(p,t,x)

Function Name:	g_ptx_97
Sub-program with function value: for call from Fortran	REAL*8 FUNCTION GPTX97(P,T,X) REAL*8 P,T,X
Sub-program with parameter: for call from DLL	INTEGER*4 FUNCTION C_ GPTX97 (G,P,T,X) REAL*8 G,P,T,X
Input values	
P - Pressure <i>p</i> in bar	

T - Temperature *t* in °C

X - Vapor fraction *x* in (kg saturated steam)/(kg wet steam)

Result

GPTX97, G or g_ptx_97 - Specific Gibbs energy g in kJ/kg

Range of validity

Temperature range:	from 0 °C to 800 °C
Pressure range:	from 0.00611 bar to 1000 bar
High temperature region:	to 2000 °C at pressures to 500 bar

Details on the vapor fraction *x* and on the calculation of saturated liquid and saturated steam

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction *x* are to be considered:

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

If the state point to be calculated is located on the saturated liquid line, x = 0 must be entered. When calculating saturated steam (saturated vapor line) x = 1 must be entered. The calculation for *x*-values between 0 and 1 is not possible.

When calculating saturated liquid or saturated steam, it is adequate to enter either the given value for t and p = -1, or the given value for p and t = -1, plus the value for x (x = 0 or x = 1). If p and t and x are entered as given values, the program will consider p and t to be appropriate to represent the vapor pressure curve.

(Saturated liquid and saturated vapor line:

Temperature ranges from	$t_{\rm t}$ = 0 °C to $t_{\rm c}$ = 373.946 °C
Pressure ranges from	$p_{\rm t}$ = 0.00611 bar to $p_{\rm c}$ = 220.64 bar)

Results for wrong input values

Result **GPTX97**, **G** = -1 or **g_ptx_97** = -1 for input values:

Single phase region: (<i>x</i> = –1)	<i>p</i> > 1000 bar or <i>p</i> < 0.00611 bar or <i>t</i> > 2000 °C or <i>t</i> < 0 °C or <i>t</i> > 800 °C at <i>p</i> > 500 bar
Saturation lines: $(0 \le x \le 1)$	at $p = -1$ and $t > 373.946$ °C or $t < 0$ °C or at $t = -1$ and $p > 220.64$ bar or $p < 0.00611$ bar or at $p > 220.64$ bar or $p < 0.00611$ bar and $t > 373.946$ °C or $t < 0$ °C at $ t-t_s(p) > 0.1$ K

Dynamic Viscosity $\eta = f(p,t,x)$

Eta_ptx_97

REAL*8 ETA,P,T,X

Sub-program with function value: for call from Fortran

REAL*8 FUNCTION ETAPTX97(P,T,X) REAL*8 P,T,X

INTEGER*4 FUNCTION C_ETAPTX97(ETA,P,T,X)

Sub-program with parameter: for call from DLL

Input values

- **P** Pressure *p* in bar
- **T** Temperature *t* in °C
- **X** Vapor fraction *x* in (kg saturated steam)/(kg wet steam)

Result

ETAPTX97, **ETA** or **eta_ptx_97** - Dynamic viscosity η in Pa s

Range of validity

Temperature range:	from 0 °C to 900 °C
Pressure range:	from 0.00611 bar to 1000 bar

Details on the vapor fraction *x* and on the calculation of saturated liquid and saturated steam

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction *x* are to be considered:

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

If the state point to be calculated is located on the saturated liquid line, x = 0 must be entered. When calculating saturated steam (saturated vapor line) x = 1 must be entered. The calculation for *x*-values between 0 and 1 is not possible.

When calculating saturated liquid or saturated steam, it is adequate to enter either the given value for t and p = -1, or the given value for p and t = -1, plus the value for x (x = 0 or x = 1). If p and t and x are entered as given values, the program will consider p and t to be appropriate to represent the vapor pressure curve.

(Saturated liquid and saturated vapor line:

Temperature ranges from	$t_{\rm t}$ = 0 °C to $t_{\rm c}$ = 373.946 °C
Pressure ranges from	$p_{\rm t}$ = 0.00611 bar to $p_{\rm c}$ = 220.64 bar)

Results for wrong input values

Result ETAPTX97, ETA = -1 or eta_ptx_97 = -1 for input values:

Single phase region:	<i>p</i> > 1000 bar or <i>p</i> < 0.00611 bar or
(<i>x</i> = –1)	<i>t</i> > 900 °C or <i>t</i> < 0 °C
Saturation lines: ($x = 0$ or $x = 1$)	at $p = -1$ and $t > 373.946$ °C or $t < 0$ °C or at $t = -1$ and $p > 220.64$ bar or $p < 0.00611$ bar or at $p > 220.64$ bar or $p < 0.00611$ bar and $t > 373.946$ °C or $t < 0$ °C at $ t-t_s(p) > 0.1$ K

References:

[7], internal calculation from ρ or v [1], [2], [3]

Backward Function: Specific Enthalpy h = f(p,s)

h_ps_97

REAL*8 H,P,S

Sub-program with function value: for call from Fortran

REAL*8 FUNCTION HPS97(P,S) REAL*8 P,S INTEGER*4 FUNCTION C_HPS97(H,P,S)

Sub-program with parameter: for call from DLL

Input values

P - Pressure *p* in bar

S - Specific entropy s in kJ/kg K

Result

HPS97, H or h_ps_97 - Specific enthalpy h in kJ/kg

Range of validity

Pressure range:	from 0.00611 bar to 1000 bar
Entropy range:	according to temperatures from 0 °C to 800 °C
High temperature region:	to 500 bar and to entropy regarding 2000 °C

Details on the calculation of wet steam

The wet steam region is calculated automatically. This means that from the given values of p and s the function will determine whether the state point to be calculated is located within the single-phase region (liquid or steam) or the wet steam region. Afterwards the calculation of h in the appropriate region will be carried out.

Pressure ranges from $p_{\rm t}$ = 0.00611 bar to $p_{\rm c}$ = 220.64 bar Wet steam region:

Results for wrong input values

Result HPS97, H = –1 or h_ps_97 = –1 for input values:	
Single phase region:	p > 1000 bar or $p < 0.00611$ bar or at internal calculation result $t > 2000$ °C or $t < 0$ °C or t > 800 °C at $p > 500$ bar
Wet steam region:	p > 220.64 bar or $p < 0.00611$ bar or at internal calculation result $t > 373.946$ °C or $t < 0$ °C

Specific Enthalpy *h* = f(*p*,*t*,*x*)

Function Name:	h_ptx_97
Sub-program with function value: for call from Fortran	REAL*8 FUNCTION HPTX97(P,T,X) REAL*8 P,T,X
Sub-program with parameter: for call from DLL	INTEGER*4 FUNCTION C_HPTX97(H,P,T,X) REAL*8 H,P,T,X
Input values	
P - Pressure <i>p</i> in bar	
T - Temperature <i>t</i> in °C	

X - Vapor fraction x in (kg saturated steam)/(kg wet steam)

Result

HPTX97, H or h_ptx_97 - Specific enthalpy h in kJ/kg

Range of validity

Temperature range:	from 0 °C to 800 °C
Pressure range:	from 0.00611 bar to 1000 bar
High temperature region:	to 2000 °C at pressures to 500 bar

Details on the vapor fraction x and on the calculation of wet steam

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction *x* are to be considered:

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

If the state point to be calculated is located in the wet steam region, a value for x between 0 and 1 (x = 0 for saturated liquid, x = 1 for saturated steam) must be entered.

When calculating wet steam either the given value for t and p = -1 or the given value for p and t = -1 and in both cases the value for x between 0 and 1 must be entered.

If p and t and x are entered as given values, the program considers p and t to be appropriate to represent the vapor pressure curve.

(Wet steam region of the IAPWS-IF97: $t_t = 0 \degree C \dots t_c = 373.946 \degree C$

 $p_{\rm t}$ = 0.00611 bar ... $p_{\rm c}$ = 220.64 bar)

Results for wrong input values

Result HPTX97, H = -1 or h_ptx_97 = -1 for input values:

Single phase region: (<i>x</i> = –1)	<i>p</i> > 1000 bar or <i>p</i> < 0.00611 bar or <i>t</i> > 2000 °C or <i>t</i> < 0 °C or <i>t</i> > 800 °C at <i>p</i> > 500 bar
Wet steam region: $(0 \le x \le 1)$	at $p = -1$ and $t > 373.946$ °C or $t < 0$ °C or at $t = -1$ and $p > 220.64$ bar or $p < 0.00611$ bar or at $p > 220.64$ bar or $p < 0.00611$ bar and $t > 373.946$ °C or $t < 0$ °C at $ t-t_s(p) > 0.1$ K

Isentropic Exponent $\kappa = f(p,t,x)$

Function Name:

Kappa_ptx_97

REAL*8 KAPPA, P, T, X

Sub-program with function value: for call from Fortran

REAL*8 FUNCTION KAPPTX97(P,T,X) REAL*8 P,T,X INTEGER*4 FUNCTION C_KAPPTX97(KAPPA,P,T,X)

Sub-program with parameter: for call from DLL

Input values

- **P** Pressure *p* in bar
- T Temperature t in °C
- **X** Vapor fraction *x* in (kg saturated steam)/(kg wet steam)

Result

KAPPTX97, **KAPPA** or **kappa_ptx_97** - Isentropic exponent $\kappa = -\frac{v}{p} \left(\frac{\partial p}{\partial v} \right)_s = \frac{w^2}{p \cdot v}$

Range of validity

Temperature range:	from 0 °C to 800 °C
Pressure range:	from 0.00611 bar to 1000 bar
High temperature region:	to 2000 °C at pressures to 500 bar

Details on the vapor fraction *x* and on the calculation of saturated liquid and saturated steam

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction *x* are to be considered:

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

If the state point to be calculated is located on the saturated liquid line, x = 0 must be entered. When calculating saturated steam (saturated vapor line) x = 1 must be entered. The calculation for *x*-values between 0 and 1 is not possible.

When calculating saturated liquid or saturated steam, it is adequate to enter either the given value for t and p = -1, or the given value for p and t = -1, plus the value for x (x = 0 or x = 1). If p and t and x are entered as given values, the program will consider p and t to be appropriate to represent the vapor pressure curve.

(Saturated liquid and saturated vapor line:

Temperature ranges from	$t_{\rm t}$ = 0 °C to $t_{\rm c}$ = 373.946 °C
Pressure ranges from	$p_{\rm t}$ = 0.00611 bar to $p_{\rm c}$ = 220.64 bar)

Results for wrong input values

Result **KAPPTX97**, **KAPPA = -1** or **kappa_ptx_97 = -1** for input values:

Single phase region: (<i>x</i> = –1)	<i>p</i> > 1000 bar or <i>p</i> < 0.00611 bar or <i>t</i> > 2000 °C or <i>t</i> < 0 °C or <i>t</i> > 800 °C at <i>p</i> > 500 bar
Saturation lines: ($x = 0$ or $x = 1$)	at $p = -1$ and $t > 373.946$ °C or $t < 0$ °C or at $t = -1$ and $p > 220.64$ bar or $p < 0.00611$ bar or at $p > 220.64$ bar or $p < 0.00611$ bar and $t > 373.946$ °C or $t < 0$ °C at $ t-t_s(p) > 0.1$ K

Isothermal Compressibility $\kappa_T = f(p, t, x)$

Function Name:

kappat_ptx_97

REAL*8 KAPPAT, P, T, X

Sub-program with function value: for call from Fortran

REAL*8 FUNCTION KAPPATPTX97(P,T,X) REAL*8 P,T,X INTEGER*4 FUNCTION C_ KAPPATPTX97 (KAPPAT,P,T,X)

Sub-program with parameter: for call from DLL

Input values

- **P** Pressure *p* in bar
- T Temperature t in °C
- X Vapor fraction x in (kg saturated steam)/(kg wet steam)

Result

KAPPATPTX97, KAPPAT or kappat_ptx_97 - Isothermal compressibility κ_T in kPa⁻¹

Range of validity

Temperature range:	from 0 °C to 800 °C
Pressure range:	from 0.00611 bar to 1000 bar
High temperature region:	to 2000 °C at pressures to 500 bar

Details on the vapor fraction *x* and on the calculation of saturated liquid and saturated steam

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction *x* are to be considered:

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

If the state point to be calculated is located on the saturated liquid line, x = 0 must be entered. When calculating saturated steam (saturated vapor line) x = 1 must be entered. The calculation for *x*-values between 0 and 1 is not possible.

When calculating saturated liquid or saturated steam, it is adequate to enter either the given value for t and p = -1, or the given value for p and t = -1, plus the value for x (x = 0 or x = 1). If p and t and x are entered as given values, the program will consider p and t to be appropriate to represent the vapor pressure curve.

(Saturated liquid and saturated vapor line:

Temperature ranges from	$t_{\rm t}$ = 0 °C to $t_{\rm c}$ = 373.946 °C
Pressure ranges from	$p_{\rm t}$ = 0.00611 bar to $p_{\rm c}$ = 220.64 bar)

Results for wrong input values

Result **KAPPATPTX97**, **KAPPAT = -1** or **kappat_ptx_97 = -1** for input values:

Single phase region: (x = –1)	<i>p</i> > 1000 bar or <i>p</i> < 0.00611 bar or <i>t</i> > 2000 °C or <i>t</i> < 0 °C or <i>t</i> > 800 °C at <i>p</i> > 500 bar
Saturation lines: ($x = 0$ or $x = 1$)	at $p = -1$ and $t > 373.946$ °C or $t < 0$ °C or at $t = -1$ and $p > 220.64$ bar or $p < 0.00611$ bar or at $p > 220.64$ bar or $p < 0.00611$ bar and $t > 373.946$ °C or $t < 0$ °C at $ t-t_s(p) > 0.1$ K

Thermal Conductivity $\lambda = f(p,t,x)$

Function Name:

Lambda_ptx_97

REAL*8 LAM, P, T, X

Sub-program with function value: for call from Fortran

REAL*8 FUNCTION LAMPTX97(P,T,X) REAL*8 P,T,X

INTEGER*4 FUNCTION C_LAMPTX97(LAM,P,T,X)

Sub-program with parameter: for call from DLL

Input values

- **P** Pressure *p* in bar
- **T** Temperature *t* in °C
- **X** Vapor fraction *x* in (kg saturated steam)/(kg wet steam)

Result

LAMPTX97, LAM or lambda_ptx_97 - Thermal conductivity λ in W/m·K

Range of validity

Temperature range:	from 0 °C to 900 °C
Pressure range:	from 0.00611 bar to 1000 bar

Details on the vapor fraction *x* and on the calculation of saturated liquid and saturated steam

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction *x* are to be considered:

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

If the state point to be calculated is located on the saturated liquid line, x = 0 must be entered. When calculating saturated steam (saturated vapor line) x = 1 must be entered. The calculation for *x*-values between 0 and 1 is not possible.

When calculating saturated liquid or saturated steam, it is adequate to enter either the given value for t and p = -1, or the given value for p and t = -1, plus the value for x (x = 0 or x = 1). If p and t and x are entered as given values, the program will consider p and t to be appropriate to represent the vapor pressure curve.

(Saturated liquid and saturated vapor line:

Temperature ranges from	$t_{\rm t}$ = 0 °C to $t_{\rm c}$ = 373.946 °C
Pressure ranges from	$p_{\rm t}$ = 0.00611 bar to $p_{\rm c}$ = 220.64 bar)

Results for wrong input values

Result LAMPTX97, LAM = -1 or lambda_ptx_97 = -1 for input values:

Single phase region:	<i>p</i> > 1000 bar or <i>p</i> < 0.00611 bar or
(<i>x</i> = –1)	<i>t</i> > 900 °C or <i>t</i> < 0 °C
Saturation lines: ($x = 0$ or $x = 1$)	at $p = -1$ and $t > 373.946$ °C or $t < 0$ °C or at $t = -1$ and $p > 220.64$ bar or $p < 0.00611$ bar or at $p > 220.64$ bar or $p < 0.00611$ bar and $t > 373.946$ °C or $t < 0$ °C at $ t-t_s(p) > 0.1$ K

References:

[6], Internal calculation from ρ or v [1], [2], [3]

Joule-Thomson Coefficient $\mu = f(p, t, x)$

Function Name:

my_ptx_97

REAL*8 MY, P, T, X

Sub-program with function value: for call from Fortran

REAL*8 FUNCTION MYPTX97(P,T,X) REAL*8 P,T,X

INTEGER*4 FUNCTION C_MYPTX97 (MY,P,T,X)

Sub-program with parameter: for call from DLL

Input values

- **P** Pressure *p* in bar
- T Temperature t in °C
- **X** Vapor fraction *x* in (kg saturated steam)/(kg wet steam)

Result

MYPTX97, **MY** or **my_ptx_97** - Joule-Thomson coefficient μ in K kPa⁻¹

Range of validity

Temperature range:	from 0 °C to 800 °C
Pressure range:	from 0.00611 bar to 1000 bar
High temperature region:	to 2000 °C at pressures to 500 bar

Details on the vapor fraction *x* and on the calculation of saturated liquid and saturated steam

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction *x* are to be considered:

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

If the state point to be calculated is located on the saturated liquid line, x = 0 must be entered. When calculating saturated steam (saturated vapor line) x = 1 must be entered. The calculation for *x*-values between 0 and 1 is not possible.

When calculating saturated liquid or saturated steam, it is adequate to enter either the given value for t and p = -1, or the given value for p and t = -1, plus the value for x (x = 0 or x = 1). If p and t and x are entered as given values, the program will consider p and t to be appropriate to represent the vapor pressure curve.

(Saturated liquid and saturated vapor line:

Temperature ranges from	$t_{\rm t}$ = 0 °C to $t_{\rm c}$ = 373.946 °C
Pressure ranges from	$p_{\rm t}$ = 0.00611 bar to $p_{\rm c}$ = 220.64 bar)

Results for wrong input values

Result **MYPTX97**, **MY = -1** or **my_ptx_97 = -1** for input values:

Single phase region: (x = -1)	<i>p</i> > 1000 bar or <i>p</i> < 0.00611 bar or <i>t</i> > 2000 °C or <i>t</i> < 0 °C or <i>t</i> > 800 °C at <i>p</i> > 500 bar
Saturation lines: ($x = 0$ or $x = 1$)	at $p = -1$ and $t > 373.946$ °C or $t < 0$ °C or at $t = -1$ and $p > 220.64$ bar or $p < 0.00611$ bar or at $p > 220.64$ bar or $p < 0.00611$ bar and $t > 373.946$ °C or $t < 0$ °C at $ t-t_s(p) > 0.1$ K

Refractive Index *n* = f(*p*,*t*,*x*,*wl*)

Function Name:	n_ptxwl_97
Sub-program with function value: for call from Fortran	REAL*8 FUNCTION NPTXWL97(P,T,X,WL) REAL*8 P,T,X,WL
Sub-program with parameter: for call from DLL	INTEGER*4 FUNCTION C_ NPTXWL97 (N,P,T,X,WL) REAL*8 N,P,T,X,WL
Input values	
P - Pressure <i>p</i> in bar	

T - Temperature t in °C

X - Vapor fraction *x* in (kg saturated steam)/(kg wet steam)

Result

NPTXWL97, N or n_ptxwl_97 - Refractive index n

Range of validity

Temperature range:	from 0 °C to 800 °C
Pressure range:	from 0.00611 bar to 1000 bar
High temperature region:	to 2000 °C at pressures to 500 bar
Wavelength region:	from 0.2 μm to 1.1 μm

Details on the vapor fraction *x* and on the calculation of saturated liquid and saturated steam

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction x are to be considered:

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

If the state point to be calculated is located on the saturated liquid line, x = 0 must be entered. When calculating saturated steam (saturated vapor line) x = 1 must be entered. The calculation for *x*-values between 0 and 1 is not possible.

When calculating saturated liquid or saturated steam, it is adequate to enter either the given value for t and p = -1, or the given value for p and t = -1, plus the value for x (x = 0 or x = 1). If p and t and x are entered as given values, the program will consider p and t to be appropriate to represent the vapor pressure curve.

(Saturated liquid and saturated vapor line:

Temperature ranges from	$t_{\rm t}$ = 0 °C to $t_{\rm c}$ = 373.946 °C
Pressure ranges from	$p_{\rm t}$ = 0.00611 bar to $p_{\rm c}$ = 220.64 bar)

Results for wrong input values

Result **NPTXWL97**, **N** = **-1** or **n_ptxwl_97** = **-1** for input values:

Single phase region: (x = −1)	<i>p</i> > 1000 bar or <i>p</i> < 0.00611 bar or <i>t</i> > 2000 °C or <i>t</i> < 0 °C or <i>t</i> > 800 °C at <i>p</i> > 500 bar
Saturation lines: ($x = 0$ or $x = 1$)	at $p = -1$ and $t > 373.946$ °C or $t < 0$ °C or at $t = -1$ and $p > 220.64$ bar or $p < 0.00611$ bar or at $p > 220.64$ bar or $p < 0.00611$ bar and $t > 373.946$ °C or $t < 0$ °C at $ t-t_s(p) > 0.1$ K

Kinematic Viscosity v = f(p,t,x)

Function Name:	Ny_ptx_97
Sub-program with function value: for call from Fortran	REAL*8 FUNCTION NYPTX97(P,T,X) REAL*8 P,T,X
Sub-program with parameter: for call from DLL	INTEGER*4 FUNCTION C_NYPTX97(NY,P,T,X) REAL*8 NY,P,T,X
Input values	
P - Pressure <i>p</i> in bar	

T - Temperature t in °C

X - Vapor fraction x in (kg saturated steam)/(kg wet steam)

Result

NYPTX97, **NY** or **ny_ptx_97** - Kinematic viscosity $v = \frac{\eta}{2} = \eta \cdot v$ in m² / s

Range of validity

Temperature range:	from 0 °C to 900 °C
Pressure range:	from 0.00611 bar to 1000 bar

Details on the vapor fraction x and on the calculation of saturated liquid and saturated steam

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction x are to be considered:

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1must be entered as a pro-forma value.

If the state point to be calculated is located on the saturated liquid line, x = 0 must be entered. When calculating saturated steam (saturated vapor line) x = 1 must be entered. The calculation for x-values between 0 and 1 is not possible.

When calculating saturated liquid or saturated steam, it is adequate to enter either the given value for t and p = -1, or the given value for p and t = -1, plus the value for x (x = 0 or x = 1). If p and t and x are entered as given values, the program will consider p and t to be appropriate to represent the vapor pressure curve.

(Saturated liquid and saturated vapor line:

Temperature ranges from	$t_{\rm t}$ = 0 °C to $t_{\rm c}$ = 373.946 °C
Pressure ranges from	$p_{\rm t}$ = 0.00611 bar to $p_{\rm c}$ = 220.64 bar)

Results for wrong input values

Result NYPTX97, NY = -1 or ny_ptx_97 = -1 for input values:

Single phase region: $(x = -1)$	<i>p</i> > 1000 bar or <i>p</i> < 0.00611 bar or <i>t</i> > 900 °C or <i>t</i> < 0 °C
Saturation lines: (<i>x</i> = 0 or <i>x</i> = 1)	at $p = -1$ and $t > 373.946$ °C or $t < 0$ °C or at $t = -1$ and $p > 220.64$ bar or $p < 0.00611$ bar or at $p > 220.64$ bar or $p < 0.00611$ bar and $t > 373.946$ °C or $t < 0$ °C at $ t-t_s(p) > 0.1$ K

References:

Internal calculation from η [7] and ρ or v [1], [2], [3]

Backward Function: Pressure *p* = f(*h*,*s*)

Function Name:	p_hs_97
Sub-program with function value: for call from Fortran	REAL*8 FUNCTION PHS97(H,S) REAL*8 H,S
Sub-program with parameter: for call from DLL	INTEGER*4 FUNCTION C_PHS97(P,H,S) REAL*8 P,H,S
Input values	

-

H - Specific enthalpy h in kJ/kg

S - Specific entropy *s* in kJ/kg K

Result

PHS97, p or p_hs_97 - Pressure p in bar

Range of validity

Enthalpy range and entropy range according to pressures from 0.00611 bar to 1000 bar and Temperatures from 0 $^\circ C$ to 800 $^\circ C$

High temperature region: according to pressures to 500 bar and temperatures to 2000 °C

Details on the calculation of wet steam

The wet steam region is calculated automatically. This means that from the given values of h and s the function will determine whether the state point to be calculated is located within the single-phase region (liquid or steam) or the wet steam region. Afterwards the calculation of p in the appropriate region will be carried out.

Results for wrong input values

Result PHS97, P = -1 or p_hs_97 = -1 for input values:

s < - 0.009 kJ/kg K *h* < *h*(0.00611 bar, *x*) at *h*′(0.00611 bar) < *h* < *h*″(0.00611 bar)

Backward Function: Pressure p = f(v,h)

Function Name:	p_vh_97
Sub-program with function value: for call from Fortran	REAL*8 FUNCTION PVH97(V,H) REAL*8 V,H
Sub-program with parameter: for call from DLL	INTEGER*4 FUNCTION C_PVH97(P,H) REAL*8 P,V,H
Input values	

V - Specific volume v in m³/kg

H - Specific enthalpy h in kJ/kg

Result

PVH97, p or p_vh_97 - Pressure p in bar

Range of validity

Enthalpy range and entropy range: according to pressures from 0.00611 bar to 1000 bar and Temperatures from 0 $^\circ$ C to 800 $^\circ$ C

High temperature region: according to pressures to 500 bar and temperatures to 2000 °C

Details on the calculation of wet steam

The wet steam region is calculated automatically. This means that from the given values of v and h the function will determine whether the state point to be calculated is located within the single-phase region (liquid or steam) or the wet steam region. Afterwards the calculation of p in the appropriate region will be carried out.

Results for wrong input values

Result **PVH97**, **P** = **-1** or **p_vh_97** = **-1** for input values:

 $v < 0.0009 \text{ m}^3/\text{kg}$ h < h(0.00611 bar, x) at h'(0.00611 bar) < h < h''(0.00611 bar)

Backward Function: Pressure p = f(v, u)

Function Name:

p_vu_97

Sub-program with function value: for call from Fortran

REAL*8 FUNCTION PVU97(V,U) REAL*8 V,U Sub-program with parameter: INTEGER*4 FUNCTION C_VU97(P,V,U) REAL*8 P,V,U

for call from DLL Input values

V - Specific volume h in kJ/kg

U - Specific internal energy u in kJ/kg

Result

PVU97, p or p_vu_97 - Pressure p in bar

Range of validity

Enthalpy range and entropy range: according to pressures from 0.00611 bar to 1000 bar and temperatures from 0 °C to 800 °C

High temperature region: according to pressures to 500 bar and temperatures to 2000 °C

Details on the calculation of wet steam

The wet steam region is calculated automatically. This means that from the given values of v and u the function will determine whether the state point to be calculated is located within the single-phase region (liquid or steam) or the wet steam region. Afterwards the calculation of p in the appropriate region will be carried out.

Results for wrong input values

Result **PVU97**, **P** = **-1** or **p_vu_97** = **-1** for input values:

 $v < 0.0009 \text{ m}^3/\text{kg}$ u < u(0.00611 bar, x) at u'(0.00611 bar) < u < u''(0.00611 bar)

Prandtl-Number Pr = f(p, t, x)

Function Name:

Pr_ptx_97

Sub-program with function value: for call from Fortran

REAL*8 FUNCTION PRPTX97(P,T,X) REAL*8 P,T,X INTEGER*4 FUNCTION C_PRPTX97(PR,P,T,X) REAL*8 PR,P,T,X

Sub-program with parameter: for call from DLL

Input values

P - Pressure *p* in bar

T - Temperature t in °C

X - Vapor fraction *x* in (kg saturated steam)/(kg wet steam)

Result

PRPTX97, **Pr** or **Pr_ptx_97** - Prandtl-number $Pr = \frac{v}{a} = \frac{\eta \cdot c_p}{\lambda}$

Range of validity

Temperature range:	from 0 °C to 900 °C
Pressure range:	from 0.00611 bar to 1000 bar

Details on the vapor fraction x and on the calculation of saturated liquid and saturated steam

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction *x* are to be considered:

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

If the state point to be calculated is located on the saturated liquid line, x = 0 must be entered. When calculating saturated steam (saturated vapor line) x = 1 must be entered. The calculation for *x*-values between 0 and 1 is not possible.

When calculating saturated liquid or saturated steam, it is adequate to enter either the given value for t and p = -1, or the given value for p and t = -1, plus the value for x (x = 0 or x = 1). If p and t and x are entered as given values, the program will consider p and t to be appropriate to represent the vapor pressure curve.

(Saturated liquid and saturated vapor line:

Temperature ranges from	$t_{\rm t} = 0 ^{\circ}{\rm C}$ to $t_{\rm c} = 373.946 ^{\circ}{\rm C}$
Pressure ranges from	$p_{\rm t}$ = 0.00611 bar to $p_{\rm c}$ = 220.64 bar)

Results for wrong input values

Result **PRPTX97**, **Pr = -1** or **Pr_ptx_97 = -1** for input values:

Single phase region:p > 1000 bar or p < 0.00611 bar or(x = -1) $t > 900 \,^{\circ}\text{C}$ or $t < 0 \,^{\circ}\text{C}$ Saturation lines:at p = -1 and $t > 373.946 \,^{\circ}\text{C}$ or $t < 0 \,^{\circ}\text{C}$ or(x = 0 or x = 1)at t = -1 and p > 220.64 bar or p < 0.00611 bar orat p > 220.64 bar or p < 0.00611 barand $t > 373.946 \,^{\circ}\text{C}$ or $t < 0 \,^{\circ}\text{C}$ at $|t-t_s(p)| > 0.1 \,^{\circ}\text{K}$

References:

Internal calculation of η [7], [6], and ρ or v and c_p [1], [2], [3]

Vapor Pressure $p_s = f(t)$

Function Name:

ps_t_97

REAL*8 PS,T

Sub-program with function value: for call from Fortran

REAL*8 FUNCTION PST97(T) REAL*8 T INTEGER*4 FUNCTION C_PST97(PS,T)

Sub-program with parameter: for call from DLL

Input values

T - Temperature t in °C

Result

PST97, **PS** or **ps_t_97** - Vapor pressure p_s in bar

Range of validity

from $t_t = 0$ °C to $t_c = 373.946$ °C

Results for wrong input values

Result **PST97**, **PS = -1** or **ps_t_97 = -1** for input values: *t* < 0 °C or *t* > 373.946 °C

Density $\rho = f(p,t,x)$

Rho_ptx_97

Sub-program with function value: for call from Fortran

REAL*8 FUNCTION RHOPTX97(P,T,X) REAL*8 P,T,X

INTEGER*4 FUNCTION C_RHOPTX97(RHO,P,T,X) REAL*8 RHO,P,T,X

Sub-program with parameter: for call from DLL

Input values

- **P** Pressure *p* in bar
- T Temperature t in °C
- **X** Vapor fraction x in (kg saturated steam)/(kg wet steam)

Result

RHOPTX97, **RHO** or **rho_ptx_97** - Density $\rho = \frac{1}{2}$ in kg/m³

Range of validity

Temperature range:	from 0 °C to 800 °C
Pressure range:	from 0.00611 bar to 1000 bar
High temperature region:	to 2000 °C at pressures to 500 bar

Details on the vapor fraction x and on the calculation of wet steam

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction x are to be considered:

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1must be entered as a pro-forma value.

If the state point to be calculated is located in the wet steam region, a value for x between 0 and 1 (x = 0 for saturated liquid, x = 1 for saturated steam) must be entered.

When calculating wet steam either the given value for t and p = -1 or the given value for p and t = -1 and in both cases the value for x between 0 and 1 must be entered.

If p and t and x are entered as given values, the program considers p and t to be appropriate to represent the vapor pressure curve.

(Wet steam region of the IAPWS-IF97: $t_{\rm t}$ = 0 °C ... $t_{\rm c}$ = 373.946 °C $p_{\rm t} = 0.00611 \, {\rm bar} \dots p_{\rm c} = 220.64 \, {\rm bar})$

Results for wrong input values

Result RHOPTX97, RHO = -1 or rho_ptx_97 = -1 for input values:

Single phase region: (<i>x</i> = –1)	<i>p</i> > 1000 bar or <i>p</i> < 0.00611 bar or <i>t</i> > 2000 °C or <i>t</i> < 0 °C or <i>t</i> > 800 °C at <i>p</i> > 500 bar
Wet steam region: $(0 \le x \le 1)$	at $p = -1$ and $t > 373.946$ °C or $t < 0$ °C or at $t = -1$ and $p > 220.64$ bar or $p < 0.00611$ bar or at $p > 220.64$ bar or $p < 0.00611$ bar and $t > 373.946$ °C or $t < 0$ °C at $ t-t_s(p) > 0.1$ K

Backward Function: Specific Entropy *s* = f(*p*,*h*)

Sub-program with function value: for call from Fortran s_ph_97 REAL*8 FUNCTION SPH97(P,H) REAL*8 P,H INTEGER*4 FUNCTION C_SPH97(S,P,H)

REAL*8 S,P,H

Sub-program with parameter: for call from DLL

Input values

P - Pressure *p* in bar

H - Specific enthalpy h in kJ/kg

Result

SPH97, S or s_ph_97 - Specific entropy s in kJ/kg K

Range of validity

Pressure range:	from 0.00611 bar to 1000 bar
Enthalpy range:	according temperatures from 0 °C to 800 °C
High temperature region:	to 500 bar and to enthalpy regarding 2000 $^\circ\mathrm{C}$

Details on the calculation of wet steam

The wet steam region is calculated automatically. This means that from the given values of p and h the function will determine whether the state point to be calculated is located within the single-phase region (liquid or steam) or the wet steam region. Afterwards the calculation of s in the appropriate region will be carried out.

Wet steam region: Pressure ranges from $p_t = 0.00611$ bar to $p_c = 220.64$ bar

Results for wrong input values

Result SPH97, S = -1 or s_ph_97 = -1 for input values:

Single phase region:	p > 1000 bar or $p < 0.00611$ bar or at internal calculation result $t > 2000$ °C or $t < 0$ °C or t > 800 °C at $p > 500$ bar
Wet steam region:	p > 220.64 bar or $p < 0.00611$ bar or at internal calculation result $t > 373.946$ °C or $t < 0$ °C

Specific Entropy *s* = f(*p*,*t*,*x*)

Function Name:	s_ptx_97
Sub-program with function value: for call from Fortran	REAL*8 FUNCTION SPTX97(P,T,X) REAL*8 P,T,X
Sub-program with parameter: for call from DLL	INTEGER*4 FUNCTION C_SPTX97(S,P,T,X) REAL*8 S,P,T,X
Input values	
P - Pressure <i>p</i> in bar	
T - Temperature <i>t</i> in °C	

X - Vapor fraction *x* in (kg saturated steam)/(kg wet steam)

Result

SPTX97, S or s_ptx_97 - Specific entropy s in kJ/kg K

Range of validity

Temperature range:	from 0 °C to 800 °C
Pressure range:	from 0.00611 bar to 1000 bar
High temperature region:	to 2000 °C at pressures to 500 bar

Details on the vapor fraction x and on the calculation of wet steam

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction *x* are to be considered:

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

If the state point to be calculated is located in the wet steam region, a value for x between 0 and 1 (x = 0 for saturated liquid, x = 1 for saturated steam) must be entered.

When calculating wet steam either the given value for t and p = -1 or the given value for p and t = -1 and in both cases the value for x between 0 and 1 must be entered.

If *p* and *t* and *x* are entered as given values, the program considers *p* and *t* to be appropriate to represent the vapor pressure curve.

(Wet steam region of the IAPWS-IF97: $t_t = 0 \degree C \dots t_c = 373.946 \degree C$

 $p_{\rm t}$ = 0.00611 bar ... $p_{\rm c}$ = 220.64 bar)

Results for wrong input values

Result SPTX97, S = -1 or s_ptx_97 = -1 for input values:

Single phase region: (<i>x</i> = –1)	<i>p</i> > 1000 bar or <i>p</i> < 0.00611 bar or <i>t</i> > 2000 °C or <i>t</i> < 0 °C or <i>t</i> > 800 °C at <i>p</i> > 500 bar
Wet steam region: $(0 \le x \le 1)$	at $p = -1$ and $t > 373.946$ °C or $t < 0$ °C or at $t = -1$ and $p > 220.64$ bar or $p < 0.00611$ bar or at $p > 220.64$ bar or $p < 0.00611$ bar and $t > 373.946$ °C or $t < 0$ °C at $ t-t_s(p) > 0.1$ K

Function Name:

Sigma_p_97

Sub-program with function value: for call from Fortran

REAL*8 FUNCTION SIGMAP97(P) REAL*8 P INTEGER*4 FUNCTION C_SIGMAP97(SIGMA,P) REAL*8 SIGMA,P

Sub-program with parameter: for call from DLL

Input values

P - Pressure *p* in bar

Result

SIGMAP97, SIGMA or sigma_p_97 - Surface tension σ in mN/m = mPa · m

Range of validity

from $p_{\rm t}$ = 0.00611 bar to $p_{\rm c}$ = 220.64 bar

Results for wrong input values

Result SIGMAP97, SIGMA = -1 or sigma_p_97 = -1 for input values:

p < 0.00611 bar or *p* > 220.64 bar

References:

[8], internal calculation with $t_s = f(p)$ [1], [2], [3]

Surface Tension $\sigma = f(t)$

Function Name:

Sub-program with function value: for call from Fortran

Sigma_t_97

REAL*8 T INTEGER*4 FUNCTION C_SIGMAT97(SIGMA,T) REAL*8 SIGMA,T

REAL*8 FUNCTION SIGMAT97(T)

Sub-program with parameter: for call from DLL

Input values

T - Temperature t in °C

Result

SIGMAT97, SIGMA or sigma_t_97 - Surface tension σ in mN/m = mPa · m

Range of validity

from $t_{\rm t}$ = 0 °C to $t_{\rm c}$ = 373.946 °C

Results for wrong input values

Result SIGMAT97, SIGMA = -1 or sigma_t_97 = -1 for input values:

t < 0 °C or *t* > 373.946 °C

References: [8]

Backward Function: Temperature *t* = f(*h*,*s*)

Function Name:	t_hs_97
Sub-program with function value: for call from Fortran	REAL*8 FUNCTION THS97(H,S) REAL*8 H,S
Sub-program with parameter: for call from DLL	INTEGER*4 FUNCTION C_THS97(T,H,S) REAL*8 T,H,S
Input values	

input values

H - Specific enthalpy h in kJ/kg

S - Specific entropy s in kJ/kg K

Result

THS97, T or t_hs_97 - Temperature t in °C

Range of validity

Enthalpy range and entropy range: according to pressures from 0.00611 bar to 1000 bar and temperatures from 0 $^\circ\text{C}$ to 800 $^\circ\text{C}$

High temperature region: according to pressures to 500 bar and temperatures to 2000 °C

Details on the calculation of wet steam

The wet steam region is calculated automatically. This means that from the given values of h and s the function will determine whether the state point to be calculated is located within the single-phase region (liquid or steam) or the wet steam region. Afterwards the calculation of t in the appropriate region will be carried out.

Results for wrong input values

Result **THS97**, **T** = -1 or **t_hs_97** = -1 for input values: s < -0.009 kJ/kg Kh < h(0.00611 bar, x) at h'(0.00611 bar) < h < h''(0.00611 bar)

#KS+ Backward Function: Temperature *t* = f(*p*,*h*)

t_ph_97 **REAL*8 FUNCTION TPH97(P,H)** REAL*8 P,H

for call from Fortran

Sub-program with function value:

INTEGER*4 FUNCTION C_TPH97(T,P,H) REAL*8 T,P,H

Sub-program with parameter: for call from DLL

Input values

P - Pressure *p* in bar

H - Specific enthalpy h in kJ/kg

Result

TPH97, T or t_ph_97 - Temperature t in °C

Range of validity

Pressure range:	from 0.00611 bar to 1000 bar
Enthalpy range:	according temperatures from 0 °C to 800 °C
High temperature region:	to 500 bar and to enthalpy regarding 2000 $^\circ\mathrm{C}$

Details on the calculation of wet steam

The wet steam region is calculated automatically. This means that from the given values of p and h the function will determine whether the state point to be calculated is located within the single-phase region (liquid or steam) or the wet steam region. Afterwards the calculation of t in the appropriate region will be carried out.

t < 0 °C or

Pressure ranges from $p_{\rm t}$ = 0.00611 bar to $p_{\rm c}$ = 220.64 bar Wet steam region:

Results for wrong input values

Result TPH97, T = -1 or t_ph_97 = -1 for input values:	
Single phase region:	p > 1000 bar or $p < 0.00611$ bar or at internal calculation result $t > 2000$ °C or t > 800 °C at $p > 500$ bar

Wet steam region:	<i>p</i> > 220.64 bar or <i>p</i> < 0.00611 bar or
	at internal calculation result $t > 373.946$ °C or $t < 0$ °C

References: [1], [2], [3]

[#] FUNC_97_200

^K Backward function: Temperature t = f(p,h)

[§] Backward function: Temperature, t = f(p,h)

⁺ SUCH:200

Backward Function: Temperature *t* = f(*p*,*s*)

t_ps_97

REAL*8 T,P,S

Sub-program with function value: for call from Fortran

REAL*8 FUNCTION TPS97(P,S) REAL*8 P,S INTEGER*4 FUNCTION C_TPS97(T,P,S)

Sub-program with parameter: for call from DLL

Input values

P - Pressure *p* in bar

S - Specific entropy s in kJ/kg K

Result

TPS97, T or t_ps_97 - Temperature t in °C

Range of validity

Pressure range:	from 0.00611 bar to 1000 bar
Entropy range:	according temperatures from 0 °C to 800 °C
High temperature region:	to 500 bar and to entropy regarding 2000 °C

Details on the calculation of wet steam

The wet steam region is calculated automatically. This means that from the given values of p and s the function will determine whether the state point to be calculated is located within the single-phase region (liquid or steam) or the wet steam region. Afterwards the calculation of t in the appropriate region will be carried out.

Wet steam region: Pressure ranges from $p_t = 0.00611$ bar to $p_c = 220.64$ bar

Results for wrong input values

Result TPS97, T = -1 or t_ps_97 = -1 for input values:

Single phase region:	p > 1000 bar or $p < 0.00611$ bar or at internal calculation result $t > 2000$ °C or $t < 0$ °C or t > 800 °C at $p > 500$ bar
Wet steam region:	p > 220.64 bar or $p < 0.00611$ bar or at internal calculation result $t > 373.946$ °C or $t < 0$ °C

#KS+ Backward Function: Temperature t = f(v,h)

Function Name:

t_vh_97

REAL*8 T,V,H

Sub-program with function value: for call from Fortran

REAL*8 FUNCTION TVH97(V,H) REAL*8 V,H INTEGER*4 FUNCTION C_TVH97(T,V,H)

Sub-program with parameter: for call from DLL

Input values

V - Specific volume v in m³/kg

H - Specific enthalpy h in kJ/kg

Result

TVH97, T or t_vh_97 - Temperature t in °C

Range of validity

Pressure range:	from 0.00611 bar to 1000 bar
Enthalpy range:	according temperatures from 0 °C to 800 °C
High temperature region:	to 500 bar and to enthalpy regarding 2000 °C

Details on the calculation of wet steam

The wet steam region is calculated automatically. This means that from the given values of v and h the function will determine whether the state point to be calculated is located within the single-phase region (liquid or steam) or the wet steam region. Afterwards the calculation of t in the appropriate region will be carried out.

Wet steam region: Pressure ranges from $p_t = 0.00611$ bar to $p_c = 220.64$ bar

Results for wrong input values

Result TVH97, T = -1 or t_vh_97 = -1 for input values:

 $v < 0.0009 \text{ m}^3/\text{kg}$ h < h(0.00611 bar, x) at h'(0.00611 bar) < h < h''(0.00611 bar)

[#] FUNC_97_212

^K Backward function: Temperature t = f(v,h)

[§] Backward function: Temperature, t = f(v,h)

⁺ SUCH:212

#KS+ Backward Function: Temperature t = f(v, u)

Function Name:

t_vu_97

REAL*8 T,V,U

Sub-program with function value: for call from Fortran

REAL*8 FUNCTION TVU97(V,U) REAL*8 V,U INTEGER*4 FUNCTION C_TVU97(T,V,U)

Sub-program with parameter: for call from DLL

Input values

V - Specific volume v in m³/kg

U - Specific internal energy u in kJ/kg

Result

TVU97, T or t_vu_97 - Temperature t in °C

Range of validity

Pressure range:	from 0.00611 bar to 1000 bar
Enthalpy range:	according temperatures from 0 °C to 800 °C
High temperature region:	to 500 bar and to enthalpy regarding 2000 °C

Details on the calculation of wet steam

The wet steam region is calculated automatically. This means that from the given values of v and u the function will determine whether the state point to be calculated is located within the single-phase region (liquid or steam) or the wet steam region. Afterwards the calculation of t in the appropriate region will be carried out.

Wet steam region: Pressure ranges from $p_t = 0.00611$ bar to $p_c = 220.64$ bar

Results for wrong input values

Result TVU97, T = -1 or t_vu_97 = -1 for input values:

 $v < 0.0009 \text{ m}^3/\text{kg}$ u < u(0.00611 bar, x) at u'(0.00611 bar) < u < u''(0.00611 bar)

[#] FUNC_97_214

^K Backward function: Temperature t = f(v,u)

[§] Backward function: Temperature, t = f(v,u)

⁺ SUCH:214

Saturation Temperature *t*_s = f(*p*)

Function Name:	ts_p_97
Sub-program with function value: for call from Fortran	REAL*8 FUNCTION TSP97(P) REAL*8 P
Sub-program with parameter: for call from DLL	INTEGER*4 FUNCTION C_TSP97(TS,P) REAL*8 TS,P
Input values	
P - Pressure <i>p</i> in bar	

Result

TSP97, **T** or **ts_p_97** - Saturation temperature t_s in °C

Range of validity

from $p_{\rm t}$ = 0.00611 bar to $p_{\rm c}$ = 220.64 bar

Results for wrong input values

Result **TSP97**, **T** = **-1** or **ts_p_97** = **-1** for input values: p < 0.00611 bar or p > 220.64 bar

Specific Internal Energy *u* = f(*p*,*t*,*x*)

Function Name:

u_ptx_97

REAL*8 U,P,T,X

Sub-program with function value: for call from Fortran

REAL*8 FUNCTION UPTX97(P,T,X) REAL*8 P,T,X INTEGER*4 FUNCTION C_UPTX97(U,P,T,X)

Sub-program with parameter: for call from DLL

Input values

P - Pressure *p* in bar

T - Temperature *t* in °C

X - Vapor fraction *x* in (kg saturated steam)/(kg wet steam)

Result

UPTX97, U or u_ptx_97 - Specific internal energy u in kJ/kg

Range of validity

Temperature range:	from 0 °C to 800 °C
Pressure range:	from 0.00611 bar to 1000 bar
High temperature region:	to 2000 °C at pressures to 500 bar

Details on the vapor fraction x and on the calculation of wet steam

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction *x* are to be considered:

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

If the state point to be calculated is located in the wet steam region, a value for x between 0 and 1 (x = 0 for saturated liquid, x = 1 for saturated steam) must be entered.

When calculating wet steam either the given value for t and p = -1 or the given value for p and t = -1 and in both cases the value for x between 0 and 1 must be entered.

If *p* and *t* and *x* are entered as given values, the program considers *p* and *t* to be appropriate to represent the vapor pressure curve.

(Wet steam region of the IAPWS-IF97: $t_t = 0 \degree C \dots t_c = 373.946 \degree C$

 $p_{\rm t}$ = 0.00611 bar ... $p_{\rm c}$ = 220.64 bar)

Results for wrong input values

Result **UPTX97**, **U** = -1 or **u_ptx_97** = -1 for input values:

Single phase region: (<i>x</i> = –1)	<i>p</i> > 1000 bar or <i>p</i> < 0.00611 bar or <i>t</i> > 2000 °C or <i>t</i> < 0 °C or <i>t</i> > 800 °C at <i>p</i> > 500 bar
Wet steam region: $(0 \le x \le 1)$	at $p = -1$ and $t > 373.946$ °C or $t < 0$ °C or at $t = -1$ and $p > 220.64$ bar or $p < 0.00611$ bar or at $p > 220.64$ bar or $p < 0.00611$ bar and $t > 373.946$ °C or $t < 0$ °C at $ t-t_s(p) > 0.1$ K

Backward Function: Specific Volume v = f(p,h)

Function Name:

Sub-program with function value: for call from Fortran

v_ph_97 REAL*8 FUNCTION VPH97(P,H) REAL*8 P,H INTEGER*4 FUNCTION C_VPH97(V,P,H)

REAL*8 V,P,H

Sub-program with parameter: for call from DLL

Input values

P - Pressure *p* in bar

H - Specific enthalpy h in kJ/kg

Result

VPH97, **V** or **v_ph_97** - Specific volume v in m³/kg

Range of validity

Pressure range:	from 0.00611 bar to 1000 bar
Enthalpy range:	according to temperatures from 0 $^\circ\text{C}$ to 800 $^\circ\text{C}$
High temperature region:	to 500 bar and to enthalpy regarding 2000 °C

Details on the calculation of wet steam

The wet steam region is calculated automatically. This means that from the given values of p and h the function will determine whether the state point to be calculated is located within the single-phase region (liquid or steam) or the wet steam region. Afterwards the calculation of v in the appropriate region will be carried out.

Wet steam region: Pressure ranges from $p_t = 0.00611$ bar to $p_c = 220.64$ bar

Results for wrong input values

Result VPH97, V = -1 or v_ph_97 = -1 for input values:

Single phase region:	p > 1000 bar or $p < 0.00611$ bar or at internal calculation result $t > 2000$ °C or $t < 0$ °C or t > 800 °C at $p > 500$ bar
Wet steam region:	p > 220.64 bar or $p < 0.00611$ bar or at internal calculation result $t > 373.946$ °C or $t < 0$ °C

Backward Function: Specific Volume v = f(p,s)

Function Name:

v_ps_97 **REAL*8 FUNCTION VPS97(P,S)** REAL*8 P,S

for call from Fortran Sub-program with parameter:

Sub-program with function value:

INTEGER*4 FUNCTION C_VPS97(V,P,S) REAL*8 V,P,S

for call from DLL

Input values

P - Pressure p in bar

S - Specific entropy s in kJ/kg K

Result

VPS97, **V** or **v_ps_97** - Specific volume v in m³/kg

Range of validity

Pressure range:	from 0.00611 bar to 1000 bar
Entropy range:	according to temperatures from 0 °C to 800 °C
High temperature region:	to 500 bar and to entropy regarding 2000 °C

Details on the calculation of wet steam

The wet steam region is calculated automatically. This means that from the given values of p and s the function will determine whether the state point to be calculated is located within the single-phase region (liquid or steam) or the wet steam region. Afterwards the calculation of v in the appropriate region will be carried out.

Wet steam region: Pressure ranges from $p_{\rm t}$ = 0.00611 bar to $p_{\rm c}$ = 220.64 bar

Results for wrong input values

Result **VPS97**, **V** = -1 or **v_ps_97** = -1 for input values:

Single phase region:	p > 1000 bar or $p < 0.00611$ bar or at internal calculation result $t > 2000$ °C or $t < 0$ °C or t > 800 °C at $p > 500$ bar
Wet steam region:	p > 220.64 bar or $p < 0.00611$ bar or at internal calculation result $t > 373.946$ °C or $t < 0$ °C

Specific Volume v = f(p,t,x)

Function Name:	v_ptx_97
Sub-program with function value: for call from Fortran	REAL*8 FUNCTION VPTX97(P,T,X) REAL*8 P,T,X
Sub-program with parameter: for call from DLL	INTEGER*4 FUNCTION C_VPTX97(V,P,T,X) REAL*8 V,P,T,X
Input values	
P - Pressure <i>p</i> in bar	
T - Temperature <i>t</i> in °C	

X - Vapor fraction x in (kg saturated steam)/(kg wet steam)

Result

VPTX97, **V** or **v_ptx_97** - Specific volume *v* in m³/kg

Range of validity

Temperature range:	from 0 °C to 800 °C
Pressure range:	from 0.00611 bar to 1000 bar
High temperature region:	to 2000 °C at pressures to 500 bar

Details on the vapor fraction x and on the calculation of wet steam

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction *x* are to be considered:

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

If the state point to be calculated is located in the wet steam region, a value for x between 0 and 1 (x = 0 for saturated liquid, x = 1 for saturated steam) must be entered.

When calculating wet steam either the given value for t and p = -1 or the given value for p and t = -1 and in both cases the value for x between 0 and 1 must be entered.

If *p* and *t* and *x* are entered as given values, the program considers *p* and *t* to be appropriate to represent the vapor pressure curve.

(Wet steam region of the IAPWS-IF97: $t_{t} = 0 \text{ °C} \dots t_{c} = 373.946 \text{ °C}$ $p_{t} = 0.00611 \text{ bar} \dots p_{c} = 220.64 \text{ bar}$)

Results for wrong input values

Result VPTX97, V = -1 or v_ptx_97 = -1 for input values:

Single phase region: (x = -1)	<i>p</i> > 1000 bar or <i>p</i> < 0.00611 bar or <i>t</i> > 2000 °C or <i>t</i> < 0 °C or <i>t</i> > 800 °C at <i>p</i> > 500 bar
Wet steam region: $(0 \le x \le 1)$	at $p = -1$ and $t > 373.946$ °C or $t < 0$ °C or at $t = -1$ and $p > 220.64$ bar or $p < 0.00611$ bar or at $p > 220.64$ bar or $p < 0.00611$ bar and $t > 373.946$ °C or $t < 0$ °C at $ t-t_s(p) > 0.1$ K

Isentropic Speed of Sound w = f(p,t,x)

Sub-program with function value:	
for call from Fortran	

w_ptx_97 **REAL*8 FUNCTION WPTX97(P,T,X)**

REAL*8 P,T,X INTEGER*4 FUNCTION C_WPTX97(W,P,T,X) REAL*8 W,P,T,X

for call from DLL Input values

Function Name:

P - Pressure *p* in bar

Sub-program with parameter:

- T Temperature t in °C
- **X** Vapor fraction x in (kg saturated steam)/(kg wet steam)

Result

WPTX97, W or w_ptx_97 - Isentropic speed of sound w in m/s

Range of validity

Temperature range:	from 0 °C to 800 °C
Pressure range:	from 0.00611 bar to 1000 bar
High temperature region:	to 2000 °C at pressures to 500 bar

Details on the vapor fraction x and on the calculation of saturated liquid and saturated steam

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction x are to be considered:

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1must be entered as a pro-forma value.

If the state point to be calculated is located on the saturated liquid line, x = 0 must be entered. When calculating saturated steam (saturated vapor line) x = 1 must be entered. The calculation for x-values between 0 and 1 is not possible.

When calculating saturated liquid or saturated steam, it is adequate to enter either the given value for tand p = -1, or the given value for p and t = -1, plus the value for x (x = 0 or x = 1). If p and t and x are entered as given values, the program will consider p and t to be appropriate to represent the vapor pressure curve.

(Saturated liquid and saturated vapor line:

Temperature ranges from	$t_{\rm t}$ = 0 °C to $t_{\rm c}$ = 373.946 °C
Pressure ranges from	$p_{\rm t}$ = 0.00611 bar to $p_{\rm c}$ = 220.64 bar)

Results for wrong input values

Result WPTX97, W = -1 or w_ptx_97 = -1 for input values:

Single phase region: (x = -1)	<i>p</i> > 1000 bar or <i>p</i> < 0.00611 bar or <i>t</i> > 2000 °C or <i>t</i> < 0 °C or <i>t</i> > 800 °C at <i>p</i> > 500 bar
Saturation lines: ($x = 0$ or $x = 1$)	at $p = -1$ and $t > 373.946$ °C or $t < 0$ °C or at $t = -1$ and $p > 220.64$ bar or $p < 0.00611$ bar or at $p > 220.64$ bar or $p < 0.00611$ bar and $t > 373.946$ °C or $t < 0$ °C at $ t-t_s(p) > 0.1$ K

Backward Function: Vapor Fraction *x* = f(*h*,*s*)

Function Name:	x_hs_97
Sub-program with function value: for call from Fortran	REAL*8 FUNCTION XHS97(H,S) REAL*8 H,S
Sub-program with parameter: for call from DLL	INTEGER*4 FUNCTION C_XHS97(X,H,S) REAL*8 X,H,S

Input values

H - Specific enthalpy h in kJ/kg

S - Specific entropy s in kJ/kg K

Result

XHS97, X or x_hs_97 - Vapor fraction x in (kg saturated steam)/(kg wet steam)

Range of validity

Enthalpy range and entropy range according to pressures from 0.00611 bar to 1000 bar and Temperatures from 0 °C to 800 °C

High temperature region: according pressures to 500 bar and temperatures to 2000 °C

Details on the calculation of wet steam

The wet steam region is calculated automatically. This means that from the given values of h and s the function will determine whether the state point to be calculated is located within the single-phase region (liquid or steam) or the wet steam region. When calculating wet steam the value for x between 0 and 1 is calculated (0 for saturated liquid, 1 for saturated steam). If the state point to be calculated is located in the single-phase region the result x = -1 will be returned.

Results for wrong input values

Result XHS97, X = -1 or x_hs_97 = -1 for input values:

s < -0.009 kJ/kg K h < h(0.00611 bar, x) at h'(0.00611 bar) < h < h''(0.00611 bar) if the state point is located in the single phase region

Backward Function: Vapor Fraction x = f(p,h)

Function Name:

x_ph_97

REAL*8 X,P,H

Sub-program with function value: for call from Fortran

REAL*8 FUNCTION XPH97(P,H) REAL*8 P,H INTEGER*4 FUNCTION C_XPH97(X,P,H)

Sub-program with parameter: for call from DLL

Input values

P - Pressure *p* in bar

H - Specific enthalpy h in kJ/kg

Result

XPH97, X or x_ph_97 - Vapor fraction x in (kg saturated steam)/(kg wet steam)

Range of validity

Pressure range: from 0.00611 bar to 1000 bar Enthalpy range: according to pressures from 0.00611 bar to 1000 bar and Temperatures from 0 °C to 800 °C High temperature region: according pressures to 500 bar and temperatures to 2000 °C

Details on the calculation of wet steam

The wet steam region is calculated automatically. This means that from the given values of p and h the function will determine whether the state point to be calculated is located within the single-phase region (liquid or steam) or the wet steam region. When calculating wet steam the value for x between 0 and 1 is calculated (0 for saturated liquid, 1 for saturated steam). If the state point to be calculated is located in the single-phase region the result x = -1 will be returned.

Results for wrong input values

Result XPH97, X = -1 or x_ph_97 = -1 for input values:

if the state point is located in the single phase region

p > 220.64 bar or p < 0.00611 bar

Backward Function: Vapor Fraction x = f(v,h)

Function Name:

x_vh_97

REAL*8 X,V,H

Sub-program with function value: for call from Fortran

REAL*8 FUNCTION XVH97(V,H) REAL*8 V,H INTEGER*4 FUNCTION C_XVH97(X,V,H)

Sub-program with parameter: for call from DLL

Input values

V - Specific volume v in m³/kg

H - Specific enthalpy h in kJ/kg

Result

XVH97, X or x_vh_97 - Vapor fraction x in (kg saturated steam)/(kg wet steam)

Range of validity

Enthalpy range: according to pressures from 0.00611 bar to 1000 bar and temperatures from 0 $^\circ\text{C}$ to 800 $^\circ\text{C}$

High temperature region: according to pressures to 500 bar and temperatures to 2000 °C

Details on the calculation of wet steam

The wet steam region is calculated automatically. This means that from the given values of vand *h* the function will determine whether the state point to be calculated is located within the single-phase region (liquid or steam) or the wet steam region. When calculating wet steam the value for x between 0 and 1 is calculated (0 for saturated liquid, 1 for saturated steam). If the state point to be calculated is located in the single-phase region the result x = -1 will be returned.

Results for wrong input values

Result XVH97, X = -1 or $x_vh_97 = -1$ for input values: if the state point is located in the single phase region p > 220.64 bar or p < 0.00611 bar

Backward Function: Vapor Fraction x = f(v, u)

Function Name:

x_vu_97

REAL*8 X,V,U

Sub-program with function value: for call from Fortran

REAL*8 FUNCTION XVU97(V,U) REAL*8 V,U INTEGER*4 FUNCTION C_XVU97(X,V,U)

Sub-program with parameter: for call from DLL

Input values

V - Specific volume v in m³/kg

U - Specific internal energy u in kJ/kg

Result

XVU97, X or x_vu_97 - Vapor fraction x in (kg saturated steam)/(kg wet steam)

Range of validity

Enthalpy range: according to pressures from 0.00611 bar to 1000 bar and temperatures from 0 $^\circ\text{C}$ to 800 $^\circ\text{C}$

High temperature region: according to pressures to 500 bar and temperatures to 2000 °C

Details on the calculation of wet steam

The wet steam region is calculated automatically. This means that from the given values of v and u the function will determine whether the state point to be calculated is located within the single-phase region (liquid or steam) or the wet steam region. When calculating wet steam the value for x between 0 and 1 is calculated (0 for saturated liquid, 1 for saturated steam). If the state point to be calculated is located in the single-phase region the result x = -1 will be returned.

Results for wrong input values

Result **XVU97**, **X** = -1 or **x_vu_97** = -1 for input values: if the state point is located in the single phase region p > 220.64 bar or p < 0.00611 bar

References: [1], [2], [3]

Backward Function: Vapor Fraction *x* = f(*p*,*s*)

Function Name:

x_ps_97

REAL*8 X,P,S

Sub-program with function value: for call from Fortran

REAL*8 FUNCTION XPS97(P,S) REAL*8 P,S INTEGER*4 FUNCTION C_XPS97(X,P,S)

Sub-program with parameter: for call from DLL

Input values

P - Pressure *p* in bar

S - Specific entropy s in kJ/kg K

Result

XPS97, X or x_ps_97 - Vapor fraction x in (kg saturated steam)/(kg wet steam)

Range of validity

Pressure range: from 0.00611 bar to 1000 bar Entropy range: according to pressures from 0.00611 bar to 1000 bar and temperatures from 0 °C to 800 °C High temperature region: according pressures to 500 bar and temperatures to 2000 °C

Details on the calculation of wet steam

The wet steam region is calculated automatically. This means that from the given values of p and s the function will determine whether the state point to be calculated is located within the single-phase region (liquid or steam) or the wet steam region. When calculating wet steam the value for x between 0 and 1 is calculated (0 for saturated liquid, 1 for saturated steam). If the state point to be calculated is located in the single-phase region the result x = -1 will be returned.

Results for wrong input values

Result XPS97, X = -1 or x_ps_97 = -1 for input values:

if the state point is located in the single phase region

p > 220.64 bar or p < 0.00611 bar

References: [1], [2], [3]

Compression Factor z = f(p,t,x)

Function Name:	z_ptx_97
Sub-program with function value: for call from Fortran	REAL*8 FUNCTION ZPTX97(P,T,X) REAL*8 P,T,X
Sub-program with parameter: for call from DLL	INTEGER*4 FUNCTION C_ZPTX97 (Z,P,T,X) REAL*8 Z,P,T,X
Input values	
P - Pressure <i>p</i> in bar	

T - Temperature t in °C

X - Vapor fraction *x* in (kg saturated steam)/(kg wet steam)

Result

ZPTX97, Z or z_ptx_97 - Compression factor z

Range of validity

Temperature range:	from 0 °C to 800 °C
Pressure range:	from 0.00611 bar to 1000 bar
High temperature region:	to 2000 °C at pressures to 500 bar

Details on the vapor fraction *x* and on the calculation of saturated liquid and saturated steam

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction *x* are to be considered:

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

If the state point to be calculated is located on the saturated liquid line, x = 0 must be entered. When calculating saturated steam (saturated vapor line) x = 1 must be entered. The calculation for *x*-values between 0 and 1 is not possible.

When calculating saturated liquid or saturated steam, it is adequate to enter either the given value for t and p = -1, or the given value for p and t = -1, plus the value for x (x = 0 or x = 1). If p and t and x are entered as given values, the program will consider p and t to be appropriate to represent the vapor pressure curve.

(Saturated liquid and saturated vapor line:

Temperature ranges from	$t_{\rm t}$ = 0 °C to $t_{\rm c}$ = 373.946 °C
Pressure ranges from	$p_{\rm t}$ = 0.00611 bar to $p_{\rm c}$ = 220.64 bar)

Results for wrong input values

Result **ZPTX97**, **Z** = **-1** or **z_ptx_97** = **-1** for input values:

Single phase region: (<i>x</i> = –1)	<i>p</i> > 1000 bar or <i>p</i> < 0.00611 bar or <i>t</i> > 2000 °C or <i>t</i> < 0 °C or <i>t</i> > 800 °C at <i>p</i> > 500 bar
Saturation lines: ($x = 0$ or $x = 1$)	at $p = -1$ and $t > 373.946$ °C or $t < 0$ °C or at $t = -1$ and $p > 220.64$ bar or $p < 0.00611$ bar or at $p > 220.64$ bar or $p < 0.00611$ bar and $t > 373.946$ °C or $t < 0$ °C at $ t-t_s(p) > 0.1$ K

References: [1], [2], [3]

KCE-ThermoFluidProperties www.thermofluidprop.com

Property Libraries for Calculating Heat Cycles, Boilers, Turbines and Refrigerators

Water and Steam

Library LiblF97

- Industrial Formulation IAPWS-IF97 (Revision 2007)
- Supplementary Standards IAPWS-IF97-S01, -S03rev, -S04, and -S05
- IAPWS Revised Advisory Note No. 3 on Thermodynamic Derivatives (2008)

Library LibIF97_META

 Industrial Formulation IAPWS-IF97 (Revision 2007) for metastable steam

Humid Combustion Gas Mixtures

Library LibHuGas

Model: Ideal mixture of the real fluids: CO₂ - Span, Wagner H₂O - IAPWS-95

- O_2 Schmidt, Wagner N₂ Span et al. Ar - Tegeler et al.
 - and of the ideal gases: SO₂, CO, Ne
- (Scientific Formulation of Bücker et al.) Consideration of:
 - Dissociation from VDI 4670
 - Poynting effect

Humid Air

Library LibHuAir

Model: Ideal mixture of the real fluids:

 Dry air from Lemmon et al.
 Steam, water and ice from IAPWS-IF97 and IAPWS-06

Consideration of:

- Condensation and freezing of steam
- Dissociation from VDI 4670
 Poynting effect from
- ASHRAE RP-1485

Extremely Fast Property Calculations

Spline-Based Table Look-up Method (SBTL)

Library LibSBTL_IF97 Library LibSBTL_95 Library LibSBTL_HuAir

For steam, water, humid air, carbon dioxide and other fluids and mixtures according IAPWS Guideline 2015 for Computational Fluid Dynamics (CFD), real-time and non-stationary simulations

Carbon Dioxide Including Dry Ice

Library LibCO2

Formulation of Span and Wagner (1996)

Seawater

Library LibSeaWa

IAPWS Industrial Formulation 2013

lce

Library LibICE

Ice from IAPWS-06, Melting and sublimation pressures from IAPWS-08, Water from IAPWS-IF97, Steam from IAPWS-95 and -IF97

Ideal Gas Mixtures

Library LibIdGasMix

Model: Ideal mixture of the ideal gases:

			•
Ar	NO	He	Propylene
Ne	H ₂ O	F ₂	Propane
N ₂	SO ₂	NH ₃	Iso-Butane
0 ₂	H ₂	Methane	n-Butane
CO	H₂S	Ethane	Benzene
CO ₂	ОН	Ethylene	Methanol
Air			

Consideration of: • Dissociation from the VDI Guideline 4670

Library LibIDGAS

Model: Ideal gas mixture from VDI Guideline 4670

Consideration of: • Dissociation from the VDI Guideline 4670

Humid Air

Library ASHRAE LibHuAirProp

Model: Virial equation from ASHRAE Report RP-1485 for real mixture of the real fluids:

- Dry air
- Steam
- Consideration of
- Enhancement of the partial
- saturation pressure of water vapor at elevated total pressures
 - www.ashrae.org/bookstore

Dry Air Including Liquid Air

Library LibRealAir

Formulation of Lemmon et al. (2000)

Refrigerants

Ammonia

Library LibNH3

Formulation of Tillner-Roth et al. (1993)

R134a

Library LibR134a

Formulation of Tillner-Roth and Baehr (1994)

Iso-Butane

Library LibButane_Iso

Formulation of Bücker and Wagner (2006)

n-Butane

Library LibButane_n

Formulation of Bücker and Wagner (2006)

Mixtures for Absorption Processes

Ammonia/Water Mixtures

Library LibAmWa

IAPWS Guideline 2001 of Tillner-Roth and Friend (1998) Helmholtz energy equation for the mixing term (also useable for calculating the Kalina Cycle)

Water/Lithium Bromide Mixtures

Library LibWaLi

Formulation of Kim and Infante Ferreira (2004) Gibbs energy equation for the mixing term

Liquid Coolants

Liquid Secondary Refrigerants

Library LibSecRef

Liquid solutions of water with		
	$C_2H_6O_2$	Ethylene glycol
	C ₃ H ₈ O ₂	Propylene glycol
	C₂H₅OH	Ethanol
	CH₃OH	Methanol
	C ₃ H ₈ O ₃	Glycerol
	K ₂ CO ₃	Potassium carbonate
	CaCl ₂	Calcium chloride
	MgCl ₂	Magnesium chloride
	NaCl	Sodium chloride
	$C_2H_3KO_2$	Potassium acetate
	CHKO ₂	Potassium formate
	LiCl	Lithium chloride
	NH ₃	Ammonia

Formulation of the International Institute of Refrigeration (IIR 2010)

Ethanol

Library LibC2H5OH

Formulation of Schroeder et al. (2014)

Methanol

Library LibCH3OH

Formulation of de Reuck and Craven (1993)

Propane

Library LibPropane

Formulation of Lemmon et al. (2009)

Siloxanes as ORC Working Fluids

Octamethylcyclotetrasiloxane $C_8H_{24}O_4Si_4$ Library LibD4 Decamethylcyclopentasiloxane $C_{10}H_{30}O_5Si_5$ Library LibD5 Tetradecamethylhexasiloxane $C_{14}H_{42}O_5Si_6$ Library LibMD4M Hexamethyldisiloxane $C_6H_{18}OSi_2$ Library LibMM Formulation of Colonna et al. (2006)

Dodecamethylcyclohexasiloxane $C_{12}H_{36}O_6Si_6$ Library LibD6 Decamethyltetrasiloxane $C_{10}H_{30}O_3Si_4$ Library LibMD2M Dodecamethylpentasiloxane $C_{12}H_{36}O_4Si_5$ Library LibMD3M Octamethyltrisiloxane $C_8H_{24}O_2Si_3$ Library LibMDM Formulation of Colonna et al. (2008)

Nitrogen and Oxygen

Libraries LibN2 and LibO2

Formulations of Span et al. (2000) and Schmidt and Wagner (1985)

Hydrogen

Library LibH2

Formulation of Leachman et al. (2009)

Helium

Library LibHe Formulation of Arp et al. (1998)

Hydrocarbons

Decane $C_{10}H_{22}$ Library LibC10H22 Isopentane C_5H_{12} Library LibC5H12_Iso Neopentane C_5H_{12} Library LibC5H12_Neo Isohexane C_6H_{14} Library LibC6H14 Toluene C_7H_8 Library LibC7H8 Formulation of Lemmon and Span (2006)

Further Fluids

Carbon monoxide CO Library LibCO Carbonyl sulfide COS Library LibCOS Hydrogen sulfide H_2S Library LibH2S Nitrous oxide N_2O Library LibN2O Sulfur dioxide SO₂ Library LibSO2 Acetone C_3H_6O Library LibC3H6O Formulation of Lemmon and Span (2006)

For more information please contact:

KCE-ThermoFluidProperties UG & Co. KG Prof. Dr. Hans-Joachim Kretzschmar Wallotstr. 3 01307 Dresden, Germany

Internet: www.thermofluidprop.com Email: info@thermofluidprop.com Phone: +49-351-27597860 Mobile: +49-172-7914607 Fax: +49-3222-1095810

The following thermodynamic and transport properties can be calculated^a:

Thermodynamic Properties

- Vapor pressure p_s
- Saturation temperature T_s
- Density ρ
- Specific volume v
- Enthalpy h
- Internal energy u
- Entropy s
- Exergy e
- Isobaric heat capacity c_p
- Isochoric heat capacity c_v
- Isentropic exponent κ
- Speed of sound w
- Surface tension σ

Transport Properties

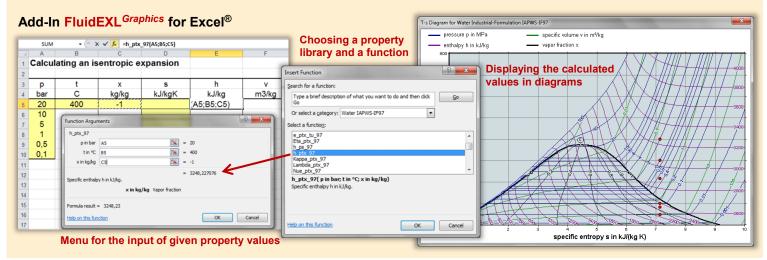
- Dynamic viscosity η
- Kinematic viscosity v
- Thermal conductivity λ
- Prandtl number Pr
- Thermal diffusivity a

Backward Functions

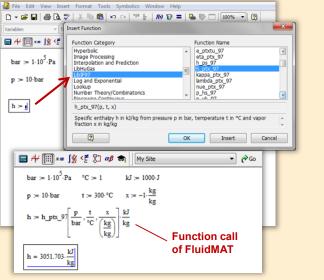
- *T*, *v*, *s* (*p*,*h*)
- *T*, *v*, *h* (*p*,*s*)
- *p*, *T*, *v* (*h*,*s*)
- p, T (v,h)
- p, T (v,u)

Thermodynamic Derivatives

 Partial derivatives used in process modeling can be calculated.


a Not all of these property functions are available in all property libraries.

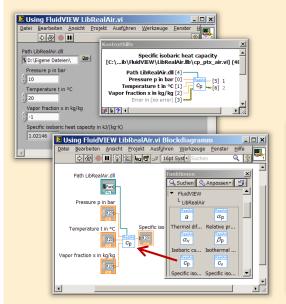
KCE-ThermoFluidProperties www.thermofluidprop.com



Property Software for Calculating Heat Cycles, Boilers, Turbines and Refrigerators

Add-On FluidMAT for Mathcad[®] Add-On FluidPRIME for Mathcad Prime[®]

The property libraries can be used in Mathcad[®] and Mathcad Prime[®].


Add-On FluidLAB for MATLAB[®] and SIMULINK[®]

Using the Add-In FluidLAB the property functions can be called in ${\rm MATLAB}^{\circledast}$ and ${\rm SIMULINK}^{\circledast}.$

Ele Edt Debug Desktop Window Image: State S	6 🗹 🖬	C:\Programme\FluidL	ABIJLIBHUAr_Example
Current Directory - C:\Programme	e\FluidLAB\Lib	oHuAir_Example 🔻 🗙	Editor - C:\Programme\FluidLAB\LibHuAir_Example\Example_hl ?
Al Files Bi hi_ ptxy_HuAir.mexw32 bi LibHuAir.dll bi libmmdd.dll bi libmmdd.dll bi msyc71.d.dll Example_hi_ptxw_HuAir.m Workspace_current.Directory Command History - % 20.06.07 10:50	File Type MEX-file DLL File DLL File DLL File DLL File DLL File DLL File M-file	Description hl_ptxw_HuAir.m	I * i
Start Click and drag to move Com	nand History		OVR

Add-On FluidVIEW for LabVIEW™

The property functions can be calculated in LabVIEW[™].

File Edit 🛎 🖬 🔍 🖨 ○ 🎸 A 🔳 🚣 • 🏝 • 🛱 🍡 🖾 • 🖏 • 🔶 ቅ 🖨 🖪 🛃 🛃 100% 💌 ₩ 1/ □ fluidDYM_LibSeaWa_Input in FluidDYM_SeaWa.TestMo ackage Browser Packages 🖲 🕕 Modelica Rei Add modifiers Modelica k=1 Name fluidDYM LibSeaWa Inpu FluidDYM_SeaWa Interfaces FluidDYM_Lib luidDYM_LibSeaVVa_Input FluidDYM_SeaWa.FluidDYM_LibSeaWa_Inpu TestModelle

The property functions can be called in DYMOLA® and SimulationX®.

Add-On FluidDYM for DYMOLA® (Modelica) and SimulationX®

Add-On FluidEES for Engineering Equation Solver[®]

?× Function Informatio C EES library routines Math functions Fluid properties External routines ○ Boiling and Condensation 💌 C Solid/liquid properties CIENCONTINO uer_EES\HuAirProp_SI\Be Tables Plots Windows Help Exa E_{ES} Equ ulating the Enthalpy - h_ptWHuAirPi p=11 Main t=20 Unit Settings: [kJ]/[C]/[kPa]/[kg]/[degrees] W=(h = 45.4866 [kJ/kg] p = 101.3 [kPa] t = 20 [C] W = 0.01 [kg/kg] CAL No unit problems were detected. Calculation time = .1 sec.

App International Steam Tables for iPhone, iPad, iPod touch, Android Smartphones and Tablets

International Steam Tables

IAPWS-IF97

p,x t,x p,h p,s

Spe Den

Enth

Ent

Online Property Calculator at www.thermofluidprop.com

luid:	Water and Steam IAPWS-	F97 - LiblF97 💌		
unction:	Specific enthalpy h(p.t,x)	• 4/		
Init System:	SI 👤			
nter given	values: Range of validity			
Pressure p		100	bar	- X X
Temperature	et	400	.c	-
				XX
Vapor fracti	on x	-1	kg/kg	-
	he vapor fraction x		KATTY	XY
	Calculat	te / Recalculate		
Result:		BARKER	HALLEN	XV
Result: Specific ent	thalpy h	= 3097.38	kJ/kg	•
Specific ent	3/1/18/2	THINK	ELT ELEL	Jett.
Specific ent	formation on property librarie	s available for EXCEL®	MATLAB®, Mathc	ad®,
Specific ent or further inf	3/1/18/2	s available for EXCEL®	MATLAB®, Mathc	ad®,
Specific ent or further inf ingineering E ere.	formation on property librarie Equation Sofver®, DYMOLA	s available for EXCEL® (Modelica), Simulation	, MATLAB®, Mathc X®, and LabView®	ad®, click
Specific ent or further inf ingineering E ere. In App for ca	formation on property librarie Equation Solver®, DYMOLAG	s available for EXCEL® (Modelica), Simulation	, MATLAB®, Mathc X®, and LabView®	ad®, click
Specific ent or further inf ingineering E ere. In App for ca	formation on property librarie Equation Solver®, DYMOLAG	s available for EXCEL® (Modelica), Simulation	, MATLAB®, Mathc X®, and LabView®	ad®, click
Specific ent or further int ingineering B <u>ere.</u> In App for ca 'DF with the D Zittau/Goerit	formation on property librarie Equation Solver®, DYMOLA liculating steam properties o description. 2 University of Applied Sciences	s available for EXCEL® 9 (Modelica), Simulation n iPhone, iPad, and iPoo Tel.: +49-3583-61-184	, MATLAB®, Mathc X®, and LabView® d touch can be four 6 or -1881	ad®, click
Specific ent or further int ingineering B ere. In App for ca 'DF with the D Zittau/Goerit Faculty of Me	formation on property librarie Equation Solver®, DYMOLAI liculating steam properties o description. University of Applied Sciences chanical Engineering	s available for EXCEL® (Modelica), Simulation n iPhone, iPad, and iPor Tel. +49-3583-61-184 Fax +49-3583-61-184	MATLAB®, Mathc X®, and LabView® I touch can be four 6 or -1881	ad®, click
Specific ent or further int ingineering E ere. In App for ca DF with the Statut Goerint Faculty of Me Department	formation on property librarie Equation Solver®, DYMOLAt liculating steam properties o description. 2 University of Applied Sciences ichanical Engineering of Technical Thermodynamics	s available for EXCEL® 9 (Modelica), Simulation n iPhone, iPad, and iPor Tel: +49-3583-61-184 Fax +49-3583-61-184 E-mail: info@thermod	MATLAB®, Mathc X®, and LabView® d touch can be four 6 or -1881 6 mamics-cittau de	ad®, click
Specific ent or further int ingineering B ere n App for ca 'DF with the DE with the Eacuty of Me Department Prof. Hans-J	formation on property Ibrane Equation Solver®, DYMOLAI Idulating steam properties o description 2 University of Applied Sciences chancal Engineering of Technical Thermodynamics achim Kretschmar	is available for EXCEL® 6 (Modelica), Simulation n iPhone, iPad, and iPoo Tel. +49-3583-61-184 Fax, +49-3583-61-184 E-mail: info@hermod www.hermodn.amics	MATLAB®, Mathc X®, and LabView® d touch can be four 6 or -1881 6 	ad®, click
Specific ent or further inl ingineering E ere n App for ca 'DF with the DF with the Department Prof. Hans-J Dr. Ines Stoe	formation on property Ibrane Equation Solver®, DYMOLAI Idulating steam properties o description 2 University of Applied Sciences chancal Engineering of Technical Thermodynamics achim Kretschmar	s available for EXCEL® 9 (Modelica), Simulation n iPhone, iPad, and iPor Tel: +49-3583-61-184 Fax +49-3583-61-184 E-mail: info@thermod	MATLAB®, Mathc X®, and LabView® d touch can be four 6 or -1881 6 	ad®, click

Property Software for Pocket Calculators

For more information please contact:

KCE-ThermoFluidProperties UG & Co. KG Prof. Dr. Hans-Joachim Kretzschmar Wallotstr. 3 01307 Dresden, Germany Internet: www.thermofluidprop.com Email: info@thermofluidprop.com Phone: +49-351-27597860 Mobile: +49-172-7914607 Fax: +49-3222-1095810

The following thermodynamic and transport properties^a can be calculated in Excel[®], MATLAB[®], Mathcad[®], Engineering Equation Solver[®] (EES), DYMOLA[®] (Modelica), SimulationX[®] and LabVIEW™:

Thermodynamic Properties

- Vapor pressure p_s
- Saturation temperature $T_{\rm s}$
- Density ρ
- Specific volume v
- Enthalpy h
- Internal energy u
- Entropy s
- Exergy e
- Isobaric heat capacity c_p
- Isochoric heat capacity c_v
- Isentropic exponent κ
- Speed of sound w
- Surface tension σ

Transport Properties

- Dynamic viscosity η
- Kinematic viscosity v
- Thermal conductivity λ
- Prandtl number Pr
- Thermal diffusivity a

Backward Functions

- T, v, s (p,h)
- T, v, h (p,s)
- p, T, v (h,s)
- p, T (v,h)
- p, T (v,u)

Thermodynamic Derivatives

 Partial derivatives used in process modeling can be calculated.

a Not all of these property functions are available in all property libraries.

5. References

- [1] Release on the IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam IAPWS-IF97.
 Available at the IAPWS website http://www.iapws.org
- [2] Wagner, W.; Kretzschmar, H.-J.: International Steam Tables. Springer-Verlag, Berlin (2008)
- [3] Wagner, W.; Cooper, J.R.; Dittmann, A.; Kijima, J.; Kretzschmar, H.-J.; Kruse, A.; Mares, R.; Oguchi, K.; Sato, H.; Stöcker, I.; Sifner, O.; Takaishi, Y.; Tanishita, I.; Trübenbach, J.; Willkommen, Th.: The IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam.

Journal of Eng. for Gas Turbines and Power 122 (2000) No 1, pp. 150-182

- [4] Advisory Note No. 3, Calculation of Thermodynamic Derivatives for Water and Steam from the IAPWS Formulations 2007. Available at the IAPWS website http://www.iapws.org
- [5] Kretzschmar, H.-J.: Mollier h-s Diagram. Springer-Verlag, Berlin (1998, 2008)
- [6] Release on the IAPWS Formulation 2011 for the Thermal Conductivity of Ordinary Water Substance. Available at the IAPWS website http://www.iapws.org
- [7] Release on the IAPWS Formulation 2008 for the Viscosity of Ordinary Water Substance. Available at the IAPWS website http://www.iapws.org
- [8] Release on Surface Tension of Ordinary Water Substance 1994. Available at the IAPWS website http://www.iapws.org
- [9] Supplementary Release on Backward Equations for Specific Volume as a Function of Pressure and Temperature v(p,T) for Region 3 of the IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam 2005. Available at the IAPWS website http://www.iapws.org
- [10] Supplementary Release on Backward Equations p(h,s) for Region 3, Equations as a Function of h and s for the Region Boundaries, and an Equation T_{sat}(h,s) for Region 4 of the IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam 2004. Available at the IAPWS website http://www.iapws.org

- [11] Release on the IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use. Available at the IAPWS website http://www.iapws.org
- [12] Grigull, U.: Properties of Water and Steam in SI Units. Springer-Verlag, Berlin (1989)
- [13] Kretzschmar, H.-J.:
 Zur Aufbereitung und Darbietung thermophysikalischer Stoffdaten für die Energietechnik.
 Habilitation, TU Dresden, Fakultät Maschinenwesen (1990)
- Baehr, H.D.; Diederichsen, Ch.:
 Berechnungsgleichungen f
 ür Enthalpie und Entropie der Komponenten von Luft und Verbrennungsgasen.
 BWK 40 (1988) No 1/2, pp. 30-33
- Brandt, F.:
 Wärmeübertragung in Dampferzeugern und Wärmetauschern.
 FDBR-Fachbuchreihe, 2nd edition, Vulkan Verlag Essen (1995)
- [16] VDI-Wärmeatlas, 7. Auflage. VDI-Verlag, Düsseldorf (1995)
- [17] Blanke, W.: Thermophysikalische Stoffgrößen. Springer-Verlag, Berlin (1989)
- [18] VDI-Richtlinie 4670
 Thermodynamische Stoffwerte von feuchter Luft und Verbrennungsgasen.
 VDI-Handbuch Energietechnik, VDI-Gesellschaft Energietechnik, Düsseldorf (2000)
- [19] Lemmon, E. W.; Jacobsen, R. T.; Penoncello, S. G.; Friend, D. G.: Thermodynamic Properties of Air and Mixtures of Nitrogen, Argon and Oxygen from 60 to 2000 K at Pressures to 2000 MPa. J. Phys. Chem. Ref. Data 29 (2000) No 2, pp. 331-385
- [20] Lemmon, E. W.; Jacobsen, R. T: Transport Properties of Air. National Institute of Standards and Technology, Boulder CO, (2000), private communication
- [21] Revised Supplementary Release on Saturation Properties of Ordinary Water Substance 1992. Available at the IAPWS website http://www.iapws.org
- [22] Hyland, R. W.; Wexler, A.: Formulations for the Thermodynamic Properties of Saturated Phases of H₂O from 173.15 K to 473.15 K.
 Report No. 2793 (RP-216), National Bureau of Standards, Washington, D.C. (1983)

Satisfied Customers

 KCE-ThermoFluidProperties UG & Co. KG Prof. Dr. Hans-Joachim Kretzschmar Wallotstr. 3, 01307 Dresden, Germany Phone: +49-351-27597860 Mobile: +49-172-7914607 Fax: +49-3222-1095810 Email: info@thermofluidprop.com Internet: www.thermofluidprop.com

Satisfied Customers

Date: 12/2019

The following companies and institutions use the property libraries:

- FluidEXL^{Graphics} for Excel[®]
- FluidLAB for $\ensuremath{\mathsf{MATLAB}}\xspace^{\ensuremath{\mathbb{R}}}$ and $\ensuremath{\mathsf{Simulink}}\xspace$
- FluidMAT for Mathcad®
- FluidPRIME for Mathcad Prime®
- FluidEES for Engineering Equation Solver[®] EES
- FluidDYM for Dymola $^{\ensuremath{\mathbb{R}}}$ (Modelica) and Simulation $X^{\ensuremath{\mathbb{R}}}$
- FluidVIEW for LabVIEW[™]
- DLLs for Windows[™]
- Shared Objects for Linux[®].

PEU Leipzig, Rötha	12/2019
MB-Holding, Vestenbergsgreuth	12/2019
COMPAREX, Leipzig for RWE Supply & Trading GmbH, Essen	12/2019
Georg-Büchner-Hochschule, Darmstadt	11/2019
EEB ENERKO, Aldenhoven	11/2019
Robert Benoufa Energietechnik, Wiesloch	11/2019
Kehrein & Kubanek Klimatechnik, Moers	10/2019
Hanon Systems Autopal Services, Hluk, Czech Republic	10/2019
CEA Saclay, Gif Sur Yvette cedex, France	10/2019
Saudi Energy Efficiency Center SEEC, Riyadh, Saudi Arabia	10/2019
VPC, Vetschau	09/2019
jGanser PM + Engineering, Forchheim	09/2019
Ruchti IB, Uster, Switzerland	09/2019
ZWILAG Zwischenlager Würenlingen, Switzerland	08/2019
Hochschule Zittau/Görlitz, Faculty Maschinenwesen	08/2019
Stadtwerke Neubrandenburg	08/2019
Physikalisch Technische Bundesanstalt PTB, Braunschweig	08/2019
GMVA Oberhausen	07/2019
Endress+Hauser Flowtec AG, Reinach, Switzerland	07/2019, 09/2019
WARNICA, Waterloo, Canada	07/2019
MIBRAG, Zeitz	06/2019
Pöyry, Zürich, Switzerland	06/2019
RWTH Aachen, Institut für Strahlantriebe und Turbomaschinen	06/2019
Midiplan, Bietigheim-Bissingen	06/2019
GKS Schweinfurt	06/2019
HS Zittau/Görlitz, Wirtschaftswissenschaften und Wirtschaftsingenieurwesen	06/2019
ILK Dresden	06/2019
HZDR Helmholtz Zentrum Dresden-Rossendorf	06/2019
TH Köln, Technische Gebäudeausrüstung	05/2019

IB Knittel, Braunschweig	05/2019
Norsk Energi, Oslo, Norway	05/2019
STEAG, Essen	05/2019
Stora Enso, Eilenburg	05/2019
IB Lücke, Paderborn	05/2019
Haarslev, Sonderso, Denmark	05/2019
MAN Augsburg	05/2019
Wieland Werke, Ulm	04/2019
Fels-Werke, Elbingerode	04/2019
Univ. Luxembourg, Luxembourg	04/2019
BTU Cottbus, Power Engineering	03/2009
Eins-Energie Sachsen, Schwarzenberg	03/2019
TU Dresden, Kälte- und Kryotechnik	03/2019
ITER, St. Paul Lez Durance Cedex, France	03/2019
Fraunhofer UMSICHT, Oberhausen	03/2019
Comparex Leipzig for Spedition Thiele HEMMERSBACH	03/2019
Rückert NaturGas, Lauf/Pegnitz	03/2019
BASF, Basel, Switzerland	02/2019
Stadtwerke Leipzig	02/2019
Maerz Ofenbau Zürich, Switzerland	02/2019
Hanon Systems Germany, Kerpen	02/2019
Thermofin, Heinsdorfergrund	01/2019
BSH Berlin	01/2019

Jaguar Energy, Guatemala	12/2018
WEBASTO, Gilching	12/2018
Smurfit Kappa, Oosterhout, Netherlands	12/2018
Univ. BW München	12/2018
RAIV, Liberec for VALEO, Prague, Czech Republic	11/2018
VPC Group Vetschau	11/2018
SEITZ, Wetzikon, Switzerland	11/2018
MVV, Mannheim	10/2018
IB Troche	10/2018
KANIS Turbinen, Nürnberg	10/2018
TH Ingolstadt, Institut für neue Energiesysteme	10/2018
IB Kristl & Seibt, Graz, Austria	09/2018
INEOS, Köln	09/2018
IB Lücke, Paderborn	09/2018
Südzucker, Ochsenfurt	08/2018
K&K Turbinenservice, Bielefeld	07/2018
OTH Regensburg, Elektrotechnik	07/2018
Comparex Leipzig for LEAG, Berlin	06/2018
Münstermann, Telgte	05/2018
TH Nürnberg, Verfahrenstechnik	05/2018
Universität Madrid, Madrid, Spanien	05/2018
HS Zittau/Görlitz, Wirtschaftswissenschaften und Wirtschaftsingenieurwesen	05/2018

HS Niederrhein, Krefeld	05/2018
Wilhelm-Büchner HS, Pfungstadt	03/2018
GRS, Köln	03/2018
WIB, Dennheritz	03/2018
RONAL AG, Härklingen, Schweiz	02/2018
Ingenieurbüro Leipert, Riegelsberg	02/2018
AIXPROCESS, Aachen	02/2018
KRONES, Neutraubling	02/2018
Doosan Lentjes, Ratingen	01/2018
2047	
2017	
Compact Kältetechnik, Dresden	12/2017
Endress + Hauser Messtechnik GmbH +Co. KG, Hannover	12/2017
TH Mittelhessen, Gießen	11/2017
Haarslev Industries, Søndersø, Denmark	11/2017
Hochschule Zittau/Görlitz, Fachgebiet Energiesystemtechnik	11/2017
ATESTEO, Alsdorf	10/2017
Wijbenga, PC Geldermalsen, Netherlands	10/2017
Fels-Werke GmbH, Elbingerode	10/2017
-	
KIT Karlsruhe, Institute für Neutronenphysik und Reaktortechnik	09/2017
Air-Consult, Jena	09/2017
Papierfabrik Koehler, Oberkirch	09/2017
ZWILAG, Würenlingen, Switzerland	09/2017
TLK-Thermo Universität Braunschweig, Braunschweig	08/2017
Fichtner IT Consulting AG, Stuttgart	07/2017
Hochschule Ansbach, Ansbach	06/2017
RONAL, Härkingen, Switzerland	06/2017
BORSIG Service, Berlin	06/2017
BOGE Kompressoren, Bielefeld	06/2017
STEAG Energy Services, Zwingenberg	06/2017
CES clean energy solutions, Wien, Austria	04/2017
Princeton University, Princeton, USA	04/2017
B2P Bio-to-Power, Wadersloh	04/2017
TU Dresden, Institute for Energy Engineering, Dresden	04/2017
SAINT-GOBAIN, Vaujours, France	03/2017
TU Bergakademie Freiberg, Chair of Thermodynamics, Freiberg	03/2017
SCHMIDT + PARTNER, Therwil, Switzerland	03/2017
KAESER Kompressoren, Gera	03/2017
F&R, Praha, Czech Republic	03/2017
ULT Umwelt-Lufttechnik, Löbau	02/2017
JS Energie & Beratung, Erding	02/2017
Kelvion Brazed PHE, Nobitz-Wilchwitz	02/2017
MTU Aero Engines, München	02/2017
Hochschule Zittau/Görlitz, IPM	01/2017
CombTec ProCE, Zittau	01/2017
SHELL Deutschland Oil, Wesseling	01/2017
MARTEC Education Center, Frederikshaven, Denmark	01/2017

SynErgy Thermal Management, Krefeld

BOGE Druckluftsysteme, Bielefeld	12/2016
BFT Planung, Aachen	11/2016
Midiplan, Bietigheim-Bissingen	11/2016
BBE Barnich IB	11/2016
Wenisch IB,	11/2016
INL, Idaho Falls	11/2016
TU Kältetechnik, Dresden	11/2016
Kopf SynGas, Sulz	11/2016
INTVEN, Bellevne (USA)	11/2016
DREWAG Dresden, Dresden	10/2016
AGO AG Energie+Anlagen, Kulmbach	10/2016
Universität Stuttgart, ITW, Stuttgart	09/2016
Pöyry Deutschland GmbH, Dresden	09/2016
Siemens AG, Erlangen	09/2016
BASF über Fichtner IT Consulting AG	09/2016
B+B Engineering GmbH, Magdeburg	09/2016
Wilhelm Büchner Hochschule, Pfungstadt	08/2016
Webasto Thermo & Comfort SE, Gliching	08/2016
TU Dresden, Dresden	08/2016
Endress+Hauser Messtechnik GmbH+Co. KG, Ha	annover 08/2016
D + B Kältetechnik, Althausen	07/2016
Fichtner IT Consulting AG, Stuttgart	07/2016
AB Electrolux, Krakow, Poland	07/2016
ENEXIO Germany GmbH, Herne	07/2016
VPC GmbH, Vetschau/Spreewald	07/2016
INWAT, Lodz, Poland	07/2016
E.ON SE, Düsseldorf	07/2016
Planungsbüro Waidhas GmbH, Chemnitz	07/2016
EEB Enerko, Aldershoven	07/2016
IHEBA Naturenergie GmbH & Co. KG, Pfaffenhof	en 07/2016
SSP Kälteplaner AG, Wolfertschwenden	07/2016
EEB ENERKO Energiewirtschaftliche Beratung G	mbH, Berlin 07/2016
BOGE Kompressoren Otto BOGE GmbH & Co K	G, Bielefeld 06/2016
Universidad Carlos III de Madrid, Madrid, Spain	04/2016
INWAT, Lodzi, Poland	04/2016
Planungsbüro WAIDHAS GmbH, Chemnitz	04/2016
STEAG Energy Services GmbH, Laszlo Küppers,	Zwingenberg 03/2016
WULFF & UMAG Energy Solutions GmbH, Husur	
FH Bielefeld, Bielefeld	03/2016
EWT Eckert Wassertechnik GmbH, Celle	03/2016
ILK Institut für Luft- und Kältetechnik GmbH, Dres	sden 02/2016, 06/2016
IEV KEMA - DNV GV – Energie, Dresden	02/2016
Allborg University, Department of Energie, Aalbor	-
G.A.M. Heat GmbH, Gräfenhainichen	02/2016
Institut für Luft- und Kältetechnik, Dresden	02/2016, 05/2016, 06/2016

Bosch, Stuttgart	02/2016
INL Idaho National Laboratory, Idaho, USA	11/2016, 01/2016
FriedI ID, Wien, Austria	01/2016
Technical University of Dresden, Dresden	01/2016
2015	
EES Enerko, Aachen	12/2015
Ruldolf IB, Strau, Austria	12/2015
Allborg University, Department of Energie, Aalborg, Denmark	12/2015
University of Lyubljana, Slovenia	12/2015
Steinbrecht IB, Berlin	11/2015
Universidad Carlos III de Madrid, Madrid, Spain	11/2015
STEAK, Essen	11/2015
Bosch, Lohmar	10/2015
Team Turbo Machines, Rouen, France	09/2015
BTC – Business Technology Consulting AG, Oldenburg	07/2015
KIT Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen	07/2015
ILK, Dresden	07/2015
Schniewindt GmbH & Co. KG, Neuenwalde	08/2015
2014	
PROJEKTPLAN, Dohna	04/2014
Technical University of Vienna, Austria	04/2014
MTU Aero Engines AG, Munich	04/2014
GKS, Schweinfurt	03/2014
Technical University of Nuremberg	03/2014
EP-E, Niederstetten	03/2014
Rückert NatUrgas GmbH, Lauf	03/2014
YESS-World, South Korea	03/2014
ZAB, Dessau	02/2014
KIT-TVT, Karlsruhe	02/2014
Stadtwerke Neuburg	02/2014
COMPAREX, Leipzig	02/2014
for RWE Essen	/
Technical University of Prague, Czech Republic	02/2014
HS Augsburg	02/2014
Envi-con, Nuremberg	01/2014
DLR, Stuttgart	01/2014
Doosan Lentjes, Ratingen	01/2014
Technical University of Berlin	01/2014
Technical University of Munich	01/2014
Technical University of Braunschweig	01/2014
M&M Turbinentechnik, Bielefeld	01/2014
2013	
TRANTER-GmbH, Artern	12/2013
SATAKE, Shanghai, China	12/2013
	10/00/10

12/2013

VOITH, Kunshan, China

ULT, Löbau 12/2013 MAN, Copenhagen, Dänemark 11/2013 DREWAG, Dresden 11/2013 Haarslev Industries, Herlev, Dänemark 11/2013 11/2013, 12/2013 STEAG, Herne Ingersoll-Rand, Oberhausen 11/2013 Wilhelm-Büchner HS, Darmstadt 10/2013 IAV, Chemnitz 10/2013 Technical University of Regensburg 10/2013 PD-Energy, Bitterfeld 09/2013 Thermofin, Heinsdorfergrund 09/2013 SHI, New Jersey, USA 09/2013 M&M Turbinentechnik, Bielefeld 08/2013 **BEG-BHV**, Bremerhaven 08/2013 08/2013 **TIG-Group**, Husum COMPAREX, Leipzig 08/2013, 11/2013 for RWE Essen 12/2013 University of Budapest, Hungary 08/2013 Siemens, Frankenthal 08/2013, 10/2013 11/2013 VGB, Essen 07/2013, 11/2013 Brunner Energieberatung, Zurich, Switzerland 07/2013 **Technical University of Deggendorf** 07/2013 University of Maryland, USA 07/2013, 08/2013 University of Princeton, USA 07/2013 NIST, Boulder, USA 06/2013 IGUS GmbH, Dresden 06/2013 BHR Bilfinger, Essen 06/2013 SÜDSALZ, Bad Friedrichshall 06/2013, 12/2013 Technician School of Berlin 05/2013 KIER, Gajeong-ro, Südkorea 05/2013 Schwing/Stetter GmbH, Memmingen 05/2013 Vattenfall, Berlin 05/2013 AUTARK, Kleinmachnow 05/2013 STEAG, Zwingenberg 05/2013 Hochtief, Düsseldorf 05/2013 University of Stuttgart 04/2013 Technical University -Bundeswehr, Munich 04/2013 Rerum Cognitio Forschungszentrum, Frankfurt 04/2013 Kältetechnik Dresen + Bremen, Alfhausen 04/2013 University Auckland, New Zealand 04/2013 MASDAR Institut, Abu Dhabi, United Arab Emirates 03/2013 Simpelkamp, Dresden 02/2013 VEO, Eisenhüttenstadt 02/2013 ENTEC, Auerbach 02/2013 Caterpillar, Kiel 02/2013 Technical University of Wismar 02/2013 Technical University of Dusseldorf 02/2013

ILK, Dresden Fichtner IT, Stuttgart Schnepf Ingeniuerbüro, Nagold Schütz Engineering, Wadgassen Endress & Hauser, Reinach, Switzerland Oschatz GmbH, Essen frischli Milchwerke, Rehburg-Loccum	01/2013, 08/2013 01/2013, 11/2013 01/2013 01/2013 01/2013 01/2013 01/2013 01/2013
2012	
Voith, Bayreuth	12/2012
Technical University of Munich	12/2012
Dillinger Huette	12/2012
University of Stuttgart	11/2012
Siemens, Muehlheim	11/2012
Sennheiser, Hannover	11/2012
Oschatz GmbH, Essen	10/2012
Fichtner IT, Stuttgart	10/2012, 11/2012
Helbling Technik AG, Zurich, Switzerland	10/2012
University of Duisburg	10/2012
Rerum Cognitio Forschungszentrum, Frankfurt	09/2012
Pöyry Deutschland GmbH, Dresden	08/2012
Extracciones, Guatemala	08/2012
RWE, Essen	08/2012
Weghaus Consulting Engineers, Wuerzburg	08/2012
GKS, Schweinfurt	07/2012
COMPAREX, Leipzig for RWE Essen	07/2012
GEA, Nobitz	07/2012
Meyer Werft, Papenburg	07/2012
STEAG, Herne	07/2012
GRS, Cologne	06/2012
Fichtner IT Consult, Chennai, India	06/2012
Siemens, Freiburg	06/2012
Nikon Research of America, Belmont, USA	06/2012
Niederrhein University of Applied Sciences, Krefeld	06/2012
STEAG, Zwingenberg	06/2012
Mainova, Frankfurt on Main	05/2012
via Fichtner IT Consult	
Endress & Hauser	05/2012
PEU, Espenheim	05/2012
Luzern University of Applied Sciences, Switzerland	05/2012
BASF, Ludwigshafen (general license) via Fichtner IT Consult	05/2012
SPX Balcke-Dürr, Ratingen	05/2012, 07/2012
Gruber-Schmidt, Wien, Austria	04/2012
Vattenfall, Berlin	04/2012
ALSTOM, Baden	04/2012
SKW, Piesteritz	04/2012

		0.4/00.40
	TERA Ingegneria, Trento, Italy	04/2012
	Siemens, Erlangen	04/2012, 05/2012
	LAWI Power, Dresden	04/2012
	Stadtwerke Leipzig	04/2012
	SEITZ, Wetzikon, Switzerland	03/2012, 07/2012
	M & M, Bielefeld	03/2012
	Sennheiser, Wedemark	03/2012
	SPG, Montreuil Cedex, France	02/2012
	German Destilation, Sprendlingen	02/2012
	Lopez, Munguia, Spain	02/2012
	Endress & Hauser, Hannover	02/2012
	Palo Alto Research Center, USA	02/2012
	WIPAK, Walsrode	02/2012
	Freudenberg, Weinheim	01/2012
	Fichtner, Stuttgart	01/2012
	airinotec, Bayreuth	01/2012, 07/2012
	University Auckland, New Zealand	01/2012
	VPC, Vetschau	01/2012
	Franken Guss, Kitzingen	01/2012
20	011	
	XRG-Simulation, Hamburg	12/2011
	Smurfit Kappa PPT, AX Roermond, Netherlands	12/2011
	AWTEC, Zurich, Switzerland	12/2011
	eins-energie, Bad Elster	12/2011
	BeNow, Rodenbach	11/2011
	Luzern University of Applied Sciences, Switzerland	11/2011
	GMVA, Oberhausen	11/2011
	CCI, Karlsruhe	10/2011
	WBüchner University of Applied Sciences, Pfungstadt	10/2011
	PLANAIR, La Sagne, Switzerland	10/2011
	LAWI, Dresden	10/2011
	Lopez, Munguia, Spain	10/2011
	University of KwaZulu-Natal, Westville, South Africa	10/2011
	Voith, Heidenheim	09/2011
	SpgBe Montreal, Canada	09/2011
	SPG TECH, Montreuil Cedex, France	09/2011
	Voith, Heidenheim-Mergelstetten	09/2011
	MTU Aero Engines, Munich	08/2011
	MIBRAG, Zeitz	08/2011
	RWE, Essen	07/2011
	Fels, Elingerode	07/2011
	Weihenstephan University of Applied Sciences	07/2011, 09/2011
		10/2011
	Forschungszentrum Juelich	07/2011
	RWTH Aachen University	07/2011, 08/2011
	INNEO Solutions, Ellwangen	06/2011
	Caliqua, Basel, Switzerland	06/2011

Technical University of Freiberg	06/2011
Fichtner IT Consulting, Stuttgart	05/2011, 06/2011,
	08/2011
Salzgitter Flachstahl, Salzgitter	05/2011
Helbling Beratung & Bauplanung, Zurich, Switzerland	05/2011
INEOS, Cologne	04/2011
Enseleit Consulting Engineers, Siebigerode	04/2011
Witt Consulting Engineers, Stade	03/2011
Helbling, Zurich, Switzerland	03/2011
MAN Diesel, Copenhagen, Denmark	03/2011
AGO, Kulmbach	03/2011
University of Duisburg	03/2011, 06/2011
CCP, Marburg	03/2011
BASF, Ludwigshafen	02/2011
ALSTOM Power, Baden, Switzerland	02/2011
Universität der Bundeswehr, Munich	02/2011
Calorifer, Elgg, Switzerland	01/2011
STRABAG, Vienna, Austria	01/2011
TUEV Sued, Munich	01/2011
ILK Dresden	01/2011
Technical University of Dresden	01/2011, 05/2011
	06/2011, 08/2011

Umweltinstitut Neumarkt	12/2010
YIT Austria, Vienna, Austria	12/2010
MCI Innsbruck, Austria	12/2010
University of Stuttgart	12/2010
HS Cooler, Wittenburg	12/2010
Visteon, Novi Jicin, Czech Republic	12/2010
CompuWave, Brunntal	12/2010
Stadtwerke Leipzig	12/2010
MCI Innsbruck, Austria	12/2010
EVONIK Energy Services, Zwingenberg	12/2010
Caliqua, Basel, Switzerland	11/2010
Shanghai New Energy Resources Science & Technology, China	11/2010
Energieversorgung Halle	11/2010
Hochschule für Technik Stuttgart, University of Applied Sciences	11/2010
Steinmueller, Berlin	11/2010
Amberg-Weiden University of Applied Sciences	11/2010
AREVA NP, Erlangen	10/2010
MAN Diesel, Augsburg	10/2010
KRONES, Neutraubling	10/2010
Vaillant, Remscheid	10/2010
PC Ware, Leipzig	10/2010
Schubert Consulting Engineers, Weißenberg	10/2010
Fraunhofer Institut UMSICHT, Oberhausen	10/2010
Behringer Consulting Engineers, Tagmersheim	09/2010

Saacke, Bremen	09/2010
WEBASTO, Neubrandenburg	09/2010
Concordia University, Montreal, Canada	09/2010
Compañía Eléctrica de Sochagota, Bogota, Colombia	08/2010
Hannover University of Applied Sciences	08/2010
ERGION, Mannheim	07/2010
Fichtner IT Consulting, Stuttgart	07/2010
TF Design, Matieland, South Africa	07/2010
MCE, Berlin	07/2010, 12/2010
IPM, Zittau/Goerlitz University of Applied Sciences	06/2010
TUEV Sued, Dresden	06/2010
RWE IT, Essen	06/2010
Glen Dimplex, Kulmbach	05/2010, 07/2010
	10/2010
Hot Rock, Karlsruhe	05/2010
Darmstadt University of Applied Sciences	05/2010
Voith, Heidenheim	04/2010
CombTec, Zittau	04/2010
University of Glasgow, Great Britain	04/2010
Universitaet der Bundeswehr, Munich	04/2010
Technical University of Hamburg-Harburg	04/2010
Vattenfall Europe, Berlin	04/2010
HUBER Consulting Engineers, Berching	04/2010
VER, Dresden	04/2010
CCP, Marburg	03/2010
Offenburg University of Applied Sciences	03/2010
Technical University of Berlin	03/2010
NIST Boulder CO, USA	03/2010
Technical University of Dresden	02/2010
Siemens Energy, Nuremberg	02/2010
Augsburg University of Applied Sciences	02/2010
ALSTOM Power, Baden, Switzerland	02/2010, 05/2010
MIT Massachusetts Institute of Technology Cambridge MA, USA	02/2010
Wieland Werke, Ulm	01/2010
Siemens Energy, Goerlitz	01/2010, 12/2010
Technical University of Freiberg	01/2010
ILK, Dresden	01/2010, 12/2010
Fischer-Uhrig Consulting Engineers, Berlin	01/2010
	0
2009	
ALSTOM Power, Baden, Schweiz	01/2009, 03/2009
	05/2009
Nordostschweizerische Kraftwerke AG, Doettingen, Switzerland	02/2009
RWE, Neurath	02/2009
Brandenburg University of Technology, Cottbus	02/2009
Hamburg University of Applied Sciences	02/2009
Kehrein, Moers	03/2009

03/2009

EPP Software, Marburg

Bernd Münstermann, Telgte	03/2009
Suedzucker, Zeitz	03/2009
CPP, Marburg	03/2009
Gelsenkirchen University of Applied Sciences	04/2009
Regensburg University of Applied Sciences	05/2009
Gatley & Associates, Atlanta, USA	05/2009
BOSCH, Stuttgart	06/2009, 07/2009
Dr. Nickolay, Consulting Engineers, Gommersheim	06/2009
Ferrostal Power, Saarlouis	06/2009
BHR Bilfinger, Essen	06/2009
Intraserv, Wiesbaden	06/2009
Lausitz University of Applied Sciences, Senftenberg	06/2009
Nuernberg University of Applied Sciences	06/2009
Technical University of Berlin	06/2009
Fraunhofer Institut UMSICHT, Oberhausen	07/2009
Bischoff, Aurich	07/2009
Fichtner IT Consulting, Stuttgart	07/2009
Techsoft, Linz, Austria	08/2009
DLR, Stuttgart	08/2009
Wienstrom, Vienna, Austria	08/2009
RWTH Aachen University	09/2009
Vattenfall, Hamburg	10/2009
AIC, Chemnitz	10/2009
Midiplan, Bietigheim-Bissingen	11/2009
Institute of Air Handling and Refrigeration ILK, Dresden	11/2009
FZD, Rossendorf	11/2009
Techgroup, Ratingen	11/2009
Robert Sack, Heidelberg	11/2009
EC, Heidelberg	11/2009
MCI, Innsbruck, Austria	12/2009
Saacke, Bremen	12/2009
ENERKO, Aldenhoven	12/2009
- ,	
2008	
Pink, Langenwang	01/2008
Fischer-Uhrig, Berlin	01/2008
University of Karlsruhe	01/2008
MAAG, Kuesnacht, Switzerland	02/2008
M&M Turbine Technology, Bielefeld	02/2008
Lentjes, Ratingen	03/2008
Siemens Power Generation, Goerlitz	04/2008
Evonik, Zwingenberg (general EBSILON program license)	04/2008
WEBASTO, Neubrandenburg	04/2008
CFC Solutions, Munich	04/2008
RWE IT, Essen	04/2008
Rerum Cognitio, Zwickau	04/2008, 05/2008
	05/2008

05/2008

07/2008

ARUP, Berlin

Research Center, Karlsruhe

AWECO, Neukirch	07/2008
Technical University of Dresden,	07/2008
Professorship of Building Services	
Technical University of Cottbus,	07/2008, 10/2008
Chair in Power Plant Engineering	
Ingersoll-Rand, Unicov, Czech Republic	08/2008
Technip Benelux BV, Zoetermeer, Netherlands	08/2008
Fennovoima Oy, Helsinki, Finland	08/2008
Fichtner Consulting & IT, Stuttgart	09/2008
PEU, Espenhain	09/2008
Poyry, Dresden	09/2008
WINGAS, Kassel	09/2008
TUEV Sued, Dresden	10/2008
Technical University of Dresden,	10/2008, 11/2008
Professorship of Thermic Energy Machines and Plants	
AWTEC, Zurich, Switzerland	11/2008
Siemens Power Generation, Erlangen	12/2008
2007	
Audi, Ingolstadt	02/2007
ANO Abfallbehandlung Nord, Bremen	02/2007
TUEV NORD SysTec, Hamburg	02/2007
VER, Dresden	02/2007
Technical University of Dresden, Chair in Jet Propulsion Systems	02/2007
Redacom, Nidau, Switzerland	02/2007
Universität der Bundeswehr, Munich	02/2007
Maxxtec, Sinsheim	03/2007
University of Rostock, Chair in Technical Thermodynamics	03/2007
AGO, Kulmbach	03/2007
University of Stuttgart, Chair in Aviation Propulsions	03/2007
Siemens Power Generation, Duisburg	03/2007
ENTHAL Haustechnik, Rees	05/2007
AWECO, Neukirch	05/2007
ALSTOM, Rugby, Great Britain	06/2007
SAAS, Possendorf	06/2007
Grenzebach BSH, Bad Hersfeld	06/2007
Reichel Engineering, Haan	06/2007
Technical University of Cottbus,	06/2007
Chair in Power Plant Engineering	
Voith Paper Air Systems, Bayreuth	06/2007
Egger Holzwerkstoffe, Wismar	06/2007
Tissue Europe Technologie, Mannheim	06/2007
Dometic, Siegen	07/2007
RWTH Aachen University, Institute for Electrophysics	09/2007
National Energy Technology Laboratory, Pittsburg, USA	10/2007
Energieversorgung Halle	10/2007
AL-KO, Jettingen	10/2007
Grenzebach BSH, Bad Hersfeld	10/2007
	10,2001

Wiesbaden University of Applied Sciences,	10/2007
Department of Engineering Sciences	
Endress+Hauser Messtechnik, Hannover	11/2007
Munich University of Applied Sciences,	11/2007
Department of Mechanical Engineering	12/2007
Rerum Cognitio, Zwickau	12/2007
Siemens Power Generation, Erlangen	11/2007
University of Rostock, Chair in Technical Thermodynamics	11/2007, 12/2007
2006	
STORA ENSO Sachsen, Eilenburg	01/2006
Technical University of Munich, Chair in Energy Systems	01/2006
NUTEC Engineering, Bisikon, Switzerland	01/2006, 04/2006
Conwel eco, Bochov, Czech Republic	01/2006
Offenburg University of Applied Sciences	01/2006
KOCH Transporttechnik, Wadgassen	01/2006
BEG Bremerhavener Entsorgungsgesellschaft	02/2006
Deggendorf University of Applied Sciences,	02/2006
Department of Mechanical Engineering and Mechatronics	02/2000
University of Stuttgart,	02/2006
Department of Thermal Fluid Flow Engines	
Technical University of Munich,	02/2006
Chair in Apparatus and Plant Engineering	02,2000
Energietechnik Leipzig (company license),	02/2006
Siemens Power Generation, Erlangen	02/2006, 03/2006
RWE Power, Essen	03/2006
WAETAS, Pobershau	04/2006
Siemens Power Generation, Goerlitz	04/2006
Technical University of Braunschweig,	04/2006
Department of Thermodynamics	
EnviCon & Plant Engineering, Nuremberg	04/2006
Brassel Engineering, Dresden	05/2006
University of Halle-Merseburg,	05/2006
Department of USET Merseburg incorporated society	
Technical University of Dresden,	05/2006
Professorship of Thermic Energy Machines and Plants	
Fichtner Consulting & IT Stuttgart	05/2006
(company licenses and distribution)	
Suedzucker, Ochsenfurt	06/2006
M&M Turbine Technology, Bielefeld	06/2006
Feistel Engineering, Volkach	07/2006
ThyssenKrupp Marine Systems, Kiel	07/2006
Caliqua, Basel, Switzerland (company license)	09/2006
Atlas-Stord, Rodovre, Denmark	09/2006
Konstanz University of Applied Sciences,	10/2006
Course of Studies Construction and Development	
Siemens Power Generation, Duisburg	10/2006
Hannover University of Applied Sciences,	10/2006
Department of Mechanical Engineering	

Siemens Power Generation, Berlin Zikesch Armaturentechnik, Essen Wismar University of Applied Sciences, Seafaring Department BASF, Schwarzheide Enertech Energie und Technik, Radebeul	11/2006 11/2006 11/2006 12/2006 12/2006
2005	
TUEV Nord, Hannover	01/2005
J.H.K Plant Engineering and Service, Bremerhaven	01/2005
Electrowatt-EKONO, Zurich, Switzerland	01/2005
FCIT, Stuttgart	01/2005
Energietechnik Leipzig (company license)	02/2005, 04/2005
	07/2005
eta Energieberatung, Pfaffenhofen	02/2005
FZR Forschungszentrum, Rossendorf/Dresden	04/2005
University of Saarbruecken	04/2005
Technical University of Dresden	04/2005
Professorship of Thermic Energy Machines and Plants	
Grenzebach BSH, Bad Hersfeld	04/2005
TUEV Nord, Hamburg	04/2005
Technical University of Dresden, Waste Management	05/2005
Siemens Power Generation, Goerlitz	05/2005
Duesseldorf University of Applied Sciences,	05/2005
Department of Mechanical Engineering and Process Engineering	
Redacom, Nidau, Switzerland	06/2005
Dumas Verfahrenstechnik, Hofheim	06/2005
Alensys Engineering, Erkner	07/2005
Stadtwerke Leipzig	07/2005
SaarEnergie, Saarbruecken	07/2005
ALSTOM ITC, Rugby, Great Britain	08/2005
Technical University of Cottbus, Chair in Power Plant Engineering	08/2005
Vattenfall Europe, Berlin (group license)	08/2005
Technical University of Berlin	10/2005
Basel University of Applied Sciences,	10/2005
Department of Mechanical Engineering, Switzerland	44/0005
Midiplan, Bietigheim-Bissingen	11/2005
Technical University of Freiberg, Chair in Hydrogeology	11/2005
STORA ENSO Sachsen, Eilenburg	12/2005
Energieversorgung Halle (company license)	12/2005
KEMA IEV, Dresden	12/2005
000 /	

01/2004
01/2004
02/2004
02/2004
02/2004
03/2004

Visteon, Kerpen	03/2004, 10/2004		
Technical University of Dresden,			
Professorship of Thermic Energy Machines and Plants	04/2004		
Rerum Cognitio, Zwickau	04/2004		
University of Saarbruecken	04/2004		
Grenzebach BSH, Bad Hersfeld	04/2004		
SOFBID Zwingenberg (general EBSILON program license)	04/2004		
EnBW Energy Solutions, Stuttgart	05/2004		
HEW-Kraftwerk, Tiefstack	06/2004		
h s energieanlagen, Freising	07/2004		
FCIT, Stuttgart	08/2004		
Physikalisch Technische Bundesanstalt (PTB), Braunschweig	08/2004		
Mainova Frankfurt	08/2004		
Rietschle Energieplaner, Winterthur, Switzerland	08/2004		
MAN Turbo Machines, Oberhausen	09/2004		
TUEV Sued, Dresden	10/2004		
STEAG Kraftwerk, Herne	10/2004, 12/2004		
University of Weimar	10/2004		
energeticals (e-concept), Munich	11/2004		
SorTech, Halle	11/2004		
Enertech EUT, Radebeul (company license)	11/2004		
Munich University of Applied Sciences	12/2004		
STORA ENSO Sachsen, Eilenburg	12/2004		
Technical University of Cottbus, Chair in Power Plant Engineering	12/2004		
Freudenberg Service, Weinheim	12/2004		
2003			
Paper Factory, Utzenstorf, Switzerland	01/2003		
MAB Plant Engineering, Vienna, Austria	01/2003		
Wulff Energy Systems, Husum	01/2003		
Technip Benelux BV, Zoetermeer, Netherlands	01/2003		
ALSTOM Power, Baden, Switzerland	01/2003, 07/2003		
VER, Dresden	02/2003		
Rietschle Energieplaner, Winterthur, Switzerland	02/2003		
DLR, Leupholdhausen	04/2003		
Emden University of Applied Sciences, Department of Technology	05/2003		
Petterssson+Ahrends, Ober-Moerlen	05/2003		
SOFBID ,Zwingenberg (general EBSILON program license)	05/2003		
Ingenieurbuero Ostendorf, Gummersbach	05/2003		
TUEV Nord, Hamburg	06/2003		
Muenstermann GmbH, Telgte-Westbevern	06/2003		
University of Cali, Colombia	07/2003		
Atlas-Stord, Rodovre, Denmark	08/2003		
ENERKO, Aldenhoven	08/2003		
STEAG RKB, Leuna	08/2003		
eta Energieberatung, Pfaffenhofen	08/2003		
exergie, Dresden	09/2003		
AWTEC, Zurich, Switzerland	09/2003		
-, ,	00,2000		

	Energie, Timelkam, Austria	09/2003
	Electrowatt-EKONO, Zurich, Switzerland	09/2003
	LG, Annaberg-Buchholz	10/2003
	FZR Forschungszentrum, Rossendorf/Dresden	10/2003
	EnviCon & Plant Engineering, Nuremberg	11/2003
	Visteon, Kerpen	11/2003
	VEO Vulkan Energiewirtschaft Oderbruecke, Eisenhuettenstadt	11/2003
	Stadtwerke Hannover	11/2003
		11/2003
	SaarEnergie, Saarbruecken	
	Fraunhofer-Gesellschaft, Munich	12/2003
	Erfurt University of Applied Sciences,	12/2003
	Department of Supply Engineering	
	SorTech, Freiburg	12/2003
	Mainova, Frankfurt	12/2003
	Energieversorgung Halle	12/2003
20	002	
	Hamilton Medical AG, Rhaezuens, Switzerland	01/2002
	Bochum University of Applied Sciences,	01/2002
	Department of Thermo- and Fluid Dynamics	
	SAAS, Possendorf/Dresden	02/2002
	Siemens, Karlsruhe	02/2002
		02/2002
	(general license for the WinIS information system)	02/2002
	FZR Forschungszentrum, Rossendorf/Dresden	03/2002
	CompAir, Simmern	03/2002
	GKS Gemeinschaftskraftwerk, Schweinfurt	04/2002
	ALSTOM Power Baden, Switzerland (group licenses)	05/2002
	InfraServ, Gendorf	05/2002
	SoftSolutions, Muehlhausen (company license)	05/2002
	DREWAG, Dresden (company license)	05/2002
	SOFBID, Zwingenberg	06/2002
	(general EBSILON program license)	
	Kleemann Engineering, Dresden	06/2002
	Caliqua, Basel, Switzerland (company license)	07/2002
	PCK Raffinerie, Schwedt (group license)	07/2002
	Fischer-Uhrig Engineering, Berlin	08/2002
	Fichtner Consulting & IT, Stuttgart	08/2002
	(company licenses and distribution)	00/2002
	Stadtwerke Duisburg	08/2002
	0	
	Stadtwerke Hannover	09/2002
	Siemens Power Generation, Goerlitz	10/2002
	Energieversorgung Halle (company license)	10/2002
	Bayer, Leverkusen	11/2002
	Dillinger Huette, Dillingen	11/2002
	G.U.N.T. Geraetebau, Barsbuettel	12/2002
	(general license and training test benches)	
	VEAG, Berlin (group license)	12/2002

ALSTOM Power, Baden, Switzerland	01/2001, 06/2001
	12/2001
KW2 B. V., Amersfoot, Netherlands	01/2001, 11/2001
Eco Design, Saitamaken, Japan	01/2001
M&M Turbine Technology, Bielefeld	01/2001, 09/2001
MVV Energie, Mannheim	02/2001
Technical University of Dresden, Department of	02/2001
Power Machinery and Plants	
PREUSSAG NOELL, Wuerzburg	03/2001
Fichtner Consulting & IT Stuttgart	04/2001
(company licenses and distribution)	
Muenstermann GmbH, Telgte-Westbevern	05/2001
SaarEnergie, Saarbruecken	05/2001
Siemens, Karlsruhe	08/2001
(general license for the WinIS information system)	
Neusiedler AG, Ulmerfeld, Austria	09/2001
h s energieanlagen, Freising	09/2001
Electrowatt-EKONO, Zurich, Switzerland	09/2001
IPM Zittau/Goerlitz University of Applied Sciences (general license)	10/2001
eta Energieberatung, Pfaffenhofen	11/2001
ALSTOM Power Baden, Switzerland	12/2001
VEAG, Berlin (group license)	12/2001
2000	
SOFBID, Zwingenberg	01/2000
(general EBSILON program license)	
AG KKK - PGW Turbo, Leipzig	01/2000
PREUSSAG NOELL, Wuerzburg	01/2000
M&M Turbine Technology, Bielefeld	01/2000
IBR Engineering Reis, Nittendorf-Undorf	02/2000
GK, Hannover	03/2000
KRUPP-UHDE, Dortmund (company license)	03/2000
UMAG W. UDE, Husum	03/2000
VEAG, Berlin (group license)	03/2000
Thinius Engineering, Erkrath	04/2000
SaarEnergie, Saarbruecken	05/2000, 08/2000
DVO Data Processing Service, Oberhausen	05/2000
RWTH Aachen University	06/2000
VAUP Process Automation, Landau	08/2000
Knuerr-Lommatec, Lommatzsch	09/2000
AVACON, Helmstedt	10/2000
Compania Electrica, Bogota, Colombia	10/2000
G.U.N.T. Geraetebau, Barsbuettel	11/2000
(general license for training test benches)	
Steinhaus Informationssysteme, Datteln	12/2000
	12,2000

(general license for process data software)

Bayernwerk, Munich	01/1999
DREWAG, Dresden (company license)	02/1999
KEMA IEV, Dresden	03/1999
Regensburg University of Applied Sciences	04/1999
Fichtner Consulting & IT, Stuttgart	07/1999
(company licenses and distribution)	
Technical University of Cottbus, Chair in Power Plant Engineering	07/1999
Technical University of Graz, Department of Thermal Engineering, Austria	11/1999
Ostendorf Engineering, Gummersbach	12/1999
1998	
Technical University of Cottbus, Chair in Power Plant Engineering	05/1998
Fichtner Consulting & IT (CADIS information systems) Stuttgart	05/1998
(general KPRO program license)	
M&M Turbine Technology Bielefeld	06/1998
B+H Software Engineering Stuttgart	08/1998
Alfa Engineering, Switzerland	09/1998
VEAG Berlin (group license)	09/1998
NUTEC Engineering, Bisikon, Switzerland	10/1998
SCA Hygiene Products, Munich	10/1998
RWE Energie, Neurath	10/1998
Wilhelmshaven University of Applied Sciences	10/1998
BASF, Ludwigshafen (group license)	11/1998
Energieversorgung, Offenbach	11/1998
1997	
Gerb, Dresden	06/1997

Gerb, Diesden	00/1997
Siemens Power Generation, Goerlitz	07/1997