

Property Library for Humid Gas Mixtures

FluidEXL Graphics with LibHuGas for Excel®

Prof. Dr. Hans-Joachim Kretzschmar Prof. Dr. Matthias Kunick Dr. Sebastian Herrmann M.Eng Martin Suender Ines Jaehne Matthias Kunick L. Kleemann D. Seibt

Software for the Calculation of the Properties of Humid Gas Mixtures Including DLL and Add-In for Excel[®] FluidEXL*Graphics* LibHuGas

Contents

- 0. Package Contents
 - 0.1 Zip-files for 32-bit Office®
 - 0.2 Zip-files for 64-bit Office®
- 1. Property Functions
- 2. Application of FluidEXL in Excel®
 - 2.1 Installing FluidEXL
 - 2.2 Registering FluidEXL as Add-In in Excel®
 - 2.3 Licensing the LibHuGas Property Library
 - 2.4 Example calculation
 - 2.5 The FluidEXL Help System
 - 2.6 Removing FluidEXL
- 3. Program Documentation
- 4. Property Libraries for Calculating Heat Cycles, Boilers, Turbines, and Refrigerators
- 5. References
- 6. Satisfied Customers
- KCE-ThermoFluidProperties Prof. Dr. Hans-Joachim Kretzschmar Haager Weg 6, 92224 Amberg, Germany Phone: +49-9621-1762047 Mobile: +49-172-7914607 Fax: +49-3222-1095810 Email: info@thermofluidprop.com Internet: www.thermofluidprop.com

0 Package Contents

0.1 Zip files for 64-bit Office[®]

The following zip file has been delivered for your computer running a 64-bit Office[®] version:

CD_FluidEXL_Graphics_Eng_LibHuGas_x64.zip including the following folders an files:

\FLUFT\ \Formulation97\ FluidEXL_Graphics_LibHuGas_Docu_Eng.pdf FluidEXL_Graphics_Eng.xla LC.dll LibHuGas.dll LibHuGas.chm.

0.2 Zip files for 32-bit Office®

The following zip file has been delivered for your computer running a 32-bit Office[®] version:

CD_FluidEXL_Graphics_Eng_LibHuGas.zip

including the following folders and files:

\FLUFT\ \Formulation97\ FluidEXL_Graphics_LibHuGas_Docu_Eng.pdf FluidEXL_Graphics_Eng.xla LC.dll LibHuGas.dll LibHuGas.chm.

1. Property Functions

Function	Function Name	Call of Fortran Program	Property or Function	Unit
a = f(p, t)	a_ptcomp_HuGas	= A_PTCOMP_HUGAS(p,T,type,comp)	Thermal diffusivity	m²/s
$c_p = f(h, s)$	cp_hscomp_HuGas	= CP_HSCOMP_HUGAS(h,s,type,comp)	Backward function: Specific isobaric heat capacity from enthalpy and entropy	kJ/(kg∙K)
$c_p = f(p, h)$	cp_phcomp_HuGas	= CP_PHCOMP_HUGAS(p,h,type,comp)	Backward function: Specific isobaric heat capacity from pressure and enthalpy	kJ/(kg∙K)
$c_p = f(p, s)$	cp_pscomp_HuGas	= CP_PSCOMP_HUGAS(p,s,type,comp)	Backward function: Specific isobaric heat capacity from pressure and entropy	kJ/(kg∙K)
$c_p = f(p,t)$	cp_ptcomp_HuGas	= CP_PTCOMP_HUGAS(p,T,type,comp)	Specific isobaric heat capacity	kJ/(kg⋅K)
$c_p = f(t,s)$	cp_tscomp_HuGas	= CP_TSCOMP_HUGAS(T,s,type,comp)	Backward function: Specific isobaric heat capacity from temperature and entropy	kJ/(kg∙K)
$c_v = f(p,t)$	cv_ptcomp_HuGas	= CV_PTCOMP_HUGAS(p,T,type,comp)	Specific isochoric heat capacity	kJ/(kg⋅K)
$\eta = f(p, t)$	Eta_ptcomp_HuGas	= ETA_PTCOMP_HUGAS(p,T,type,comp)	Dynamic viscosity	Pa√s
h = f(p, s)	h_pscomp_HuGas	= H_PSCOMP_HUGAS(p,s,type,comp)	Backward function: Specific enthalpy from pressure and entropy	kJ/kg
h = f(p, t)	h_ptcomp_HuGas	= H_PTCOMP_HUGAS(p,T,type,comp)	Specific Enthalpy	kJ/kg
h = f(t,s)	h_tscomp_HuGas	= H_TSCOMP_HUGAS(T,s,type,comp)	Backward function: Specific enthalpy from temperature and entropy	kJ/kg
$\kappa = f(p, s)$	Kappa_pscomp_HuGas	= KAPPA_PSCOMP_HUGAS(p,s,type,comp)	Backward function: Isentropic exponent from pressure and entropy	-

Function	Function Name	Call of Fortran Program	Property or Function	Unit	
$\kappa = f(p, t)$	Kappa_ptcomp_HuGas	= KAPPA_PTCOMP_HUGAS(p,T,type,comp)	Isentropic exponent	-	
$\lambda = f(p, t)$	Lambda_ptcomp_HuGas	= LAMBDA_PTCOMP_HUGAS(p,T,type,comp)	Thermal conductivity	W/(m⋅K)	
М	M_comp_HuGas	= M_COMP_HUGAS(type,comp)	Molar mass	kg/kmol	
v = f(p, t)	Ny_ptcomp_HuGas	= NY_PTCOMP_HUGAS(p,T,type,comp)	Kinematic viscosity	m²/s	
p = f(h, s)	p_hscomp_HuGas	= P_HSCOMP_HUGAS(h,s,type,comp)	Backward function: Pressure from enthalpy and entropy	bar	
p = f(t,s)	p_tscomp_HuGas	= P_TSCOMP_HUGAS(T,s,type,comp)	Backward function: Pressure from temperature and entropy	bar	
$p_{dsat} = f(p,t)$	pdsat_pt_HuGas	= PDSAT_PT_HUGAS(p,T)	Saturation pressure of water in mixture	bar	
$\varphi = f(p, t)$	Phi_ptcomp_HuGas	= PHI_PTCOMP_HUGAS(p,T,type,comp)	Relative humidity	%	
$\Pr = f(p, t)$	Pr_ptcomp_HuGas	= PR_PTCOMP_HUGAS(p,T,type,comp)	Prandtl number	-	
$\psi_{wl} = f(p,t)$	Psiwl_ptcomp_HuGas	= PSIWL_PTCOMP_HUGAS(p,T,type,comp)	Mole fraction of water (liquid)	kmol/kmol	
$\psi_{wsat} = f(p, t)$	Psiwsat_ptcomp_HuGas	= PSIWSAT_PTCOMP_HUGAS(p,T,type,comp)	Mole fraction of water of the saturated gas	kmol/kmol	
R	R_comp_HuGas	= R_COMP_HUGAS(type,comp)	Gas constant	kJ/(kg⋅K)	
Region = $f(h,s)$	Region_hscomp_HuGas	= REGION_HSCOMP_HUGAS(h,s,type,comp)	Region from given enthalpy and entropy	-	
Region = f(p,h)	Region_phcomp_HuGas	= REGION_PHCOMP_HUGAS(p,h,type,comp)	Region from given pressure and enthalpy	-	
Region = $f(p,s)$	Region_pscomp_HuGas	= REGION_PSCOMP_HUGAS(p,s,type,comp)	Region from given pressure and entropy	-	

Function	Function Name	Call of Fortran Program	Property or Function	Unit	
Region = $f(p,t)$	Region_ptcomp_HuGas	= REGION_PTCOMP_HUGAS(p,T,type,comp)	Region from given pressure and temperature	-	
Region = $f(t,s)$	Region_tscomp_HuGas	= REGION_TSCOMP_HUGAS(T,s,type,comp)	Region from given temperature and entropy	-	
$\rho = f(p, t)$	Rho_ptcomp_HuGas	= RHO_PTCOMP_HUGAS(p,T,type,comp)	Density	kg/m ³	
s = f(p, h)	s_phcomp_HuGas	= S_PHCOMP_HUGAS(p,h,type,comp)	Backward function: Specific entropy from pressure and specific enthalpy	kJ/(kg∙K)	
s = f(p, t)	s_ptcomp_HuGas	= S_PTCOMP_HUGAS(p,T,type,comp)	Entropy	kJ/(kg⋅K)	
$\sigma_{\rm w}={\sf f}(t)$	Sigmaw_t_HuGas	= SIGMAW_T_HUGAS(T)	Surface tension of water	N/m	
t = f(h, s)	t_hscomp_HuGas	= T_HSCOMP_HUGAS(h,s,type,comp)	Backward function: Temperature from enthalpy and entropy	°C	
t=f(p,h)	t_phcomp_HuGas	= T_PHCOMP_HUGAS(p,h,type,comp)	Backward function: Temperature from pressure and enthalpy	°C	
t = f(p, s)	t_pscomp_HuGas	= T_PSCOMP_HUGAS(p,s,type,comp)	Backward function: Temperature from pressure and entropy	°C	
$t_{w,dew} = f(p)$	twdew_pcomp_HuGas	= TWDEW_PCOMP_HUGAS(p,type,comp)	Dew point temperature of water	°C	
u = f(p, t)	u_ptcomp_HuGas	= U_PTCOMP_HUGAS(p,T,type,comp)	Specific internal energy	kJ/kg	
<i>v</i> = f(<i>h</i> , s)	v_hscomp_HuGas	= V_HSCOMP_HUGAS(h,s,type,comp)	OMP_HUGAS(h,s,type,comp) Backward function: Specific volume from enthalpy and entropy		

Function	Function Name	Call of Fortran Program	Property or Function	Unit
v = f(p, h)	v_phcomp_HuGas	= V_PHCOMP_HUGAS(p,h,type,comp)	Backward function: Specific volume from pressure and enthalpy	m ³ /kg
v = f(p, s)	v_pscomp_HuGas	= V_PSCOMP_HUGAS(p,s,type,comp)	Backward function: Specific volume from pressure and entropy	m ³ /kg
v = f(p, t)	v_ptcomp_HuGas	= V_PTCOMP_HUGAS(p,T,type,comp)	Specific volume	m ³ /kg
v = f(t, s)	v_tscomp_HuGas	= V_TSCOMP_HUGAS(T,s,type,comp)	Backward function: Specific volume from temperature and entropy	m ³ /kg
w = f(p, t)	w_ptcomp_HuGas	= W_PTCOMP_HUGAS(p,T,type,comp)	Isentropic speed of sound	m/s
x _w	xw_comp_HuGas	= XW_COMP_HUGAS(type,comp)	Humidity ratio (Absolute humidity)	g _{water} /kg _{gas}

Parameter

р	- Pressure <i>p</i> of mixture in bar
t	- Temperature <i>t</i> in °C
type	- Type of composition:
	type = 0 for compostion in mole fractions
	type = 1 for compostion in mass fractions
comp(1:8)	- Mole or mass fractions of components

Parameter for using Fortran Functions of LibHuGas

р	- Pressure <i>p</i> of mixture in bar
Т	- Temperature <i>t</i> in °C

- Temperature t in °C

For input of composition in mass fractions use the function set_comp_mass_HuGas or

For input of composition in mole fractions use the function set_comp_mol_HuGas.

This composition will be stored in a Common Block and will be used for all calculations after that.

This will continue to occur unless the composition is changed by calling set_comp_mol_HuGas or set_comp_mass_HuGas again. In order to know what composition is stored, it can be called by using get_comp_mass_HuGas or get_comp_mol_HuGas.

Range of Validity

Temperature:	<i>t</i> = - 70 °C 3026.15 °C
Pressure of mixture:	<i>p</i> = 0.01 bar 1000 bar

Mixture Components

Nr.	Symbol	Name of mixture component
0	Dummy	
1	Ar	Argon
2	Ne	Neon
3	N ₂	Nitrogen
4	0 ₂	Oxygen
5	СО	Carbon Monoxide
6	CO ₂	Carbon Dioxide
7	H ₂ O	Water
8	SO ₂	Sulfur dioxide

Consideration of Dissociation

For temperatures above 1000 °C and mole fractions of oxygen of more than 1 % ($\psi_{O_a} \ge 0.01$) the dissociation of the gases nitrogen, oxygen, carbon dioxide, steam, and sulfur dioxide based on the VDI 4670 are considered.

In order to achieve smooth transitions in the calculations, between 1 % and 2 % mol fractions of oxygen and between 500 and 501 °C, linear transition functions for the calculations of c_{D} , c_{V} , h, and s were built into the programs.

Values of the Region Functions

Region	Description
0	Out of range of validity
1	Dry gas mixture
2	Unsaturated humid gas mixture
3	Liquid fog
4	Ice fog
5	Liquid-ice fog at 0.01 °C exactly
6	Pure liquid water
7	Pure water-wet steam
8	Pure steam
10	The CO2 in the gas mixture would be partly liquid. Calculation is terminated.
11	The SO2 in the gas mixture would be partly liquid. Calculation is terminated.

Reference States of LibHuGas

Fluid	<i>t</i> ₀ [°C]	<i>p</i> ₀ [bar]	h₀ [kJ/kg]	s₀ [kJ/(kg K)]	u₀ [kJ/kg]
Argon	0	1.01325	0	0	-56.79766
Neon	0	1.01325	0	0	-112.5436
Nitrogen	0	1.01325	0	0	-81.03459
Oxygen	0	1.01325	0	0	-70.90573
Carbon monoxide	0	1.01325	0	0	-81.08139
Carbon dioxide	0	1.01325	0	0	-51.25686
Water	0.01	0.00611657	0.611872·10 ⁻³	0	0
Sulfur dioxide	0	1.01325	0	0	-35.45001

Conversion to the Reference State of Water to $t_0 = 0$ °C

 $h = h_{HuGas} - \xi_{H_2O} \cdot 2500.914579 \text{ kJ/kg}$

 $u = u_{\text{HuGas}} - \xi_{\text{H}_2\text{O}} \cdot 2500.914579 \text{ kJ/kg}$

 $s = s_{HuGas} - \xi_{H_2O} \cdot 9.155493408 \text{ (kJ/kgK)}$

Conversion to the Reference States of the Publications

 $\frac{z_{\text{Publication}} = z_{\text{LibHuGas}} + \Delta z \text{ where } z \equiv h, s, u}{\text{Fluid}} \frac{t_0 [^{\circ}\text{C}]}{p_0 [\text{bar}]} \Delta h [\text{kJ/kg}]}$

Fluid	<i>t</i> ₀ [°C]	p_0 [bar]	Δh [kJ/kg]	∆s [kJ/(kg K)]	∆ <i>u</i> [kJ/kg]	Reference
Argon	25	1.01325	-13.23564	-4.6203961·10 ⁻²	-13.23564	[27]
Neon	0	1.01325	0	0	0	-
Nitrogen	25	1.01325	283.2331	6.744095	283.2331	[28]
Oxygen	25	1	-23.20175	-8.448914·10 ⁻²	-23.20175	[29]
Carbon monoxide	0	1.01325	0	0	0	-
Carbon dioxide	25	1.01325	-21.90979	-7.564382·10 ⁻²	-21.90979	[30]
Water	0.01	0.00611657	0	0	0	[31]
Sulfur dioxide	0	1.01325	0	0	0	-

2. Application of FluidEXLGraphics in Excel®

The FluidEXL^{Graphics} Add-In has been developed to calculate thermodynamic properties in Excel[®] more conveniently. Within Excel[®], it enables the direct call of functions relating to Water and Steam from the LibHuGas property program library.

2.1 Installing FluidEXL^{Graphics}

Complete the following steps for initial installation of FluidEXL^{Graphics}. Before you begin, it is best to uninstall any older version of FluidEXL^{Graphics}.

The installation routine for 32-bit and 64-bit versions of Excel is similar. The following instructions are valid for both versions.

After you have downloaded and extracted the zip-file:

CD_FluidEXL_Graphics_LibHuGas_x64_Eng.zip (for 64 bit version)

or

CD_FluidEXL_Graphics_LibHuGas_Eng.zip" (for 32 bit version).

you will see the folder

\CD_FluidEXL_Graphics_LibHuGas_Eng\ (for 32 bit version)

in your Windows Explorer, Total Commander etc.

Now, open this folder by double-clicking on it.

Within this folder you will see the following folders and files:

\FLUFT\

\Formulation97\

FluidEXL_Graphics_Eng.xla

FluidEXL_Graphics_LibHuGas_Docu_Eng

LC.dll

LibHuGas.dll

LibHuGas.chm

Reg_.reg

Now, please copy the following folders and files

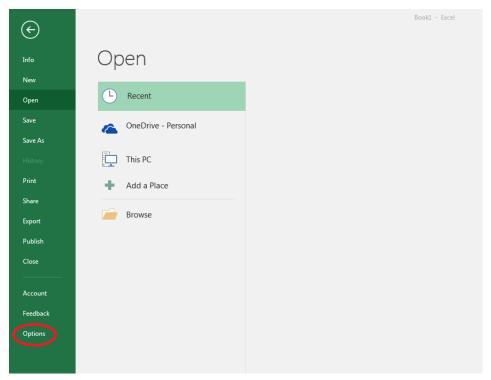
\FLUFT\ \Formulation97\ FluidEXL_Graphics_Eng.xla LibHuGas.dll LibHuGas.chm LC.dll

into the folder

C:\Users\[your name]\AppData\Roaming\Microsoft\AddIns\,

where [your name] is your name in the Windows system.

If this folder is not found, follow the next section anyway.


2.2 Registering FluidEXL^{Graphics} as Add-In in Excel[®]

After installation in Windows[®], FluidEXL^{*Graphics*} must be registered in Excel[®] as an Add-In. To do this, start Excel[®] and carry out the following steps:

Η		<u>⇒ A</u>											
File	⊢	me In	sert Pag	ge Layout	Formulas	Data	Review	View	♀ Tell me	what you wa	ant to do		
P	🔏 Cut		Calibri	· ·	11 · A	≡ =	= %	岸 Wra	ap Text	Gene	ral	-	
Paste		y ▼ nat Painter								er 👻 😨 🛪	% *	€.0 .00 .00 →.0	Conditional For Formatting * T
	Clipboar	d	5	Font		G.	Ali	gnment		G.	Number	G.	
A1		-	x 🗸	f_X									
	А	В	С	D	E	F	G	н	I	J	к	L	м
1													
2													
3													
4 5													
6													
7													
8													
9													
10													
11													
12													
13													
14													
15													
16													
17													

- Click the "File" button in the upper left hand corner of Excel[®] (see Fig. 2.1)

Figure 2.1: Registering FluidEXL^{Graphics} as Add-In in Excel[®] 2016

- Click on the "Options" button in the menu which appears (see Fig. 2.2)

Figure 2.2: Registering FluidEXL^{Graphics} as Add-In in Excel[®] 2016

9 XX Excel Options General 🙀 View and manage Microsoft Office Add-ins. Formulas Proofing Add-ins Save Name 🔺 Location Туре Analysis ToolPak C:\...nalysis\ANALYS32.XLL Excel Add-in Language Analysis ToolPak - VBA C:\...lysis\ATPVBAEN.XLAM Excel Add-in Ease of Access Date (XML) C:\...\Smart Tag\MOFL.DLL Action Euro Currency Tools C:\...rary\EUROTOOL.XLAM Excel Add-in Advanced Financial Symbol (XML) C:\...\Smart Tag\MOFL.DLL Action Inquire C:\...16\DCF\NativeShim.dll COM Add-in Customize Ribbon Microsoft Actions Pane 3 XML Expansion Pack ss Toolbar Microsoft Power Map for Excel C:\...XCELPLUGINSHELL.DLL COM Add-in Microsoft Power Pivot for Excel C:\...ivotExcelClientAddIn.dll COM Add-in Add-ins Microsoft Power View for Excel C:\...ReportingExcelClient.dll COM Add-in Solver Add-in C:\...SOLVER\SOLVER.XLAM Excel Add-in Team Foundation Add-in "C:\...s\TFSOfficeAdd-in.dll" COM Add-in Visual Studio Tools for Office Design-Time Adaptor for Excel C:\...6\VSTOExcelAdaptor.dll COM Add-in Document Related Add-ins No Document Related Add-ins **Disabled Application Add-ins** Add-in: Analysis ToolPak ublisher: Microsoft Corporation npatibility: No compatibility information available Loc C:\Program Files (x86)\Microsoft Office\root\Office16\Library\Analysis\ANALYS32.XLL Descrip Provides data ols for statistical and engineering analysis Excel Add-ins Manaq Go. OK Cancel

- Click on "Add-Ins" in the next menu (Fig. 2.3)

Figure 2.3: Dialog window "Excel Options"

- Select "Excel Add-ins" next to "Manage:" in the lower area of the menu
- Then click the "Go..." button
- Click "Browse" in the following window (Fig. 2.4)

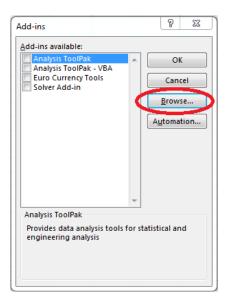


Figure 2.4: Dialog window "Add-ins"

- Excel opens the AddIns folder. This is usually
 C:\Users\[your name]\AppData\Roaming\Microsoft\AddIns\.
- If the FluidEXL files have already been copied to this directory in section 2.1, please skip the following indented section. If not, follow the indented instructions to successful paste the needed files for the FluidEXL Add-In:

In the upper part of the "Browse" window the correct Add-In path is displayed (see Figure 2.5). Please note that not the entire path is displayed.

XII Browse		×
← → ✓ ↑	∨ ບັ ,> s	earch AddIns
Organise 👻 New folder		::: • 🔟 😮
Quick access Desktop Downloads Documents Pictures Microsoft Excel OneDrive This PC	Date modified 10/01/2022 16:55 10/01/2022 16:55 10/01/2022 15:45	Type Size File folder File folder Microsoft Excel A
≥ 2D Objecte V <		:
File name:		ıs (*.xlam;*.xla;*.xll)

Figure 2.5: "Browse"-Window

Please copy this path and paste it into your file manager. Now, please copy the following directories and files:

\FLUFT\ \Formulation97\ LC.dll FluidEXL_Graphics_Eng.xla LibHuGas.dll LibHuGas.chm from the delivered CD-folder into this folder.

- Click "FluidEXL_Graphics_Eng.xla" in this folder (see Fig. 2.5) and click "OK."
- Now, "FluidEXL Graphics Eng" will be shown in the list of Add-ins (see Fig. 2.6).
 (If a checkmark is in the box next to the name "FluidEXL Graphics Eng", this Add-In will automatically be loaded whenever Excel starts. This will continue to occur unless the checkmark is removed from the box by clicking on it.)
- In order to register the Add-In click the "OK" button in the "Add-ins" window (see Fig. 2.6).

<u>A</u> dd-ins available:		\sim
Analysis ToolPak	- (ОК
Analysis ToolPak - VBA		\sim
Euro Currency Tools	_	Cancel
FluidEXL Graphics Eng Solver Add-in		
Solver Add-In		Browse
		Automation
	-	
FluidEXL Graphics Eng		
Libraries for the Calculation	n of Th	ermophysical
Properties		
for Fluids of the Power Tec	hnolog	1V

Figure 2.6: Dialog window "Add-Ins"

In order to use FluidEXL^{Graphics} in the following example, click on the menu item "Add-Ins" shown in Fig. 2.7.

	<u>ه. ج.</u>	<u>A</u> =								В	ook1 - Excel
File	Home	Inser	t Page Layout	Formulas	Data R	leview	View Add-ins	Q	Tell me what you	want to c	lo
Paste	K Cut ⊡ Copy → ∛ Format Pa						🖶 Wrap Text 📰 Merge & Cente	er ▼	General	▼ €.0 .00 .00 →.0	Conditional Format as Formatting ▼ Table ▼
C	lipboard	E.	Font	G.		Aligr	iment	E.	Number	G.	-

Figure 2.7: Menu item "Add-Ins"

In the upper menu region of Excel[®], the FluidEXL^{Graphics} menu bar will appear as marked with the red circle in Fig. 2.8.

🗄 5ਾਟਾ	<u>A</u> =							Book1 - Excel
File Home	Insert	Page Layout	Formulas	Data	Review	View	Add-ins	${\mathbb Q}$ Tell me what you want to do
Calculate Diagrams	Number	Format ?•						

Figure 2.8: FluidEXLGraphics menu bar

The Installation of FluidEXLGraphics in Excel® is now complete.

An example calculation of "LibHuGas" DLL library property functions can be found in chapter 2.4.

2.3 Licensing the LibHuGas Property LibHuGasrary

The licensing procedure has to be carried out when Excel[®] starts up and a FluidEXL*Graphics* prompt message appears. In this case, you will see the "License Information" window (see figure below).

Figure 2.12: "License Information" window

Here you will have to type in the license key. You can find contact information on the "Content" page of this User's Guide or by clicking the yellow question mark in the "License Information" window. Then the following window will appear:

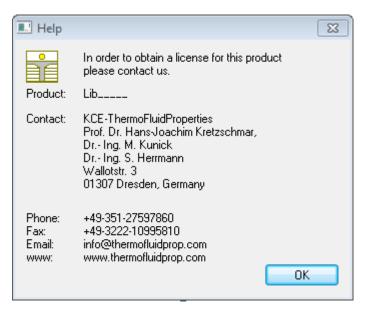


Figure 2.13: "Help" window

If you do not enter a valid license it is still possible to start Excel[®] by clicking "Cancel" twice. In this case, the LibHuGas property library will display the result "-11111111" for every calculation.

The "License Information" window will appear every time you start Excel[®] unless you uninstall FluidEXL^{Graphics} according to the description in section 2.6 of this User's Guide.

Should you not wish to license the LibHuGas property library, you have to delete the files LibHuGas.dll

LibHuGas.chm

in the installation folder of FluidEXL^{Graphics} (the standard being)

C:\Program Files\FluidEXL_Graphics_Eng

using an appropriate program such as Explorer® or Norton Commander.

Note:

The product name "LibHuGas____ in Figure 2.12 and 2.13 stands for the LibHuGasrary you are installing. In this case it is the LibHuGas library.

2.4 Example calculation

Now we will calculate, step by step, the specific enthalpy h as function of pressure, temperature, type (composition as mole or mass fractions) and composition vector using FluidEXL*Graphics*.

The description is based on Excel[®] 2000. But the instructions are similar in Excel 97, XP, and 2007. Carry out the following steps:

- Start Excel®
- Prepare a worksheet as shown in Figure 2.9

	A	В	С	D	E	
1	Input:					
2	Pressure		p=		bar	
3	Temperature		t=		°C	
4	Туре		type=			
5	composition	Ar	Psi=		kmol/kmol	
6		Ne	Psi=		kmol/kmol	
7		N2	Psi=		kmol/kmol	
8		02	Psi=		kmol/kmol	
9		CO	Psi=		kmol/kmol	
10		CO2	Psi=		kmol/kmol	
11		H2O	Psi=		kmol/kmol	
12		SO2	Psi=		kmol/kmol	
13						
14	Output:					
15	Specific Enth	alpy	h(p,t,comp)=		kJ/kg	
16						

Figure 2.9: Example worksheet for the calculation of specific enthalpy

- Enter the value for pressure *p* in bar into a cell (Range of validity of LibHuGas: p = 0.01 bar ... 1000 bar)
 ⇒ e.g.: Enter the value 10 into cell D2
- Enter the value for temperature *t* in °C in a cell
 (Range of validity of LibHuGas: t = 70 °C ... 3026.15 °C)
 - \Rightarrow e.g.: Enter the value 500 into cell D3
- Enter the value for type into a cell (Definition of type: 0 – composition as mole fractions 1 – composition as mass fractions)
 ⇒ e.g.: Enter the value 0 into cell D4
- Enter the composition vector into 8 successive cells, either within a column or within a row

ψ_1 for Argon	Ar	\Rightarrow e.g.: Enter the value 0.0088	in Cell D5
ψ_2 for Neon	Ne	\Rightarrow e.g.: Enter the value 0	in Cell D6
ψ_3 for Nitrogen	N2	\Rightarrow e.g.: Enter the value 0.7480	in Cell D7
ψ_4 for Oxygen	O2	\Rightarrow e.g.: Enter the value 0.1352	in Cell D8
ψ_5 for Carbon monoxide	CO	\Rightarrow e.g.: Enter the value 0	in Cell D9
ψ_6 for Carbon dioxide	CO2	\Rightarrow e.g.: Enter the value 0.0330	in Cell D10
ψ_7 for Water	H2O	\Rightarrow e.g.: Enter the value 0.0750	in Cell D11
ψ_8 for Sulfur dioxide	SO2	\Rightarrow e.g.: Enter the value 0	in Cell D12

The Excel sheet should now look as shown in Figure 2.10.

	A	В	С	D	E
1	Input:				
2	Pressure		p=	10	bar
3	Temperature		t=	500	°C
4	Туре		type=	0	
5	composition	Ar	Psi=	0.0088	kmol/kmol
6		Ne	Psi=	0	kmol/kmol
- 7 -		N2	Psi=	0.7480	kmol/kmol
8		02	Psi=	0.1352	kmol/kmol
9		CO	Psi=	0	kmol/kmol
10		CO2	Psi=	0.0330	kmol/kmol
11		H2O	Psi=	0.0750	kmol/kmol
12		S02	Psi=	0	kmol/kmol
13					
14	Output:				
15	Specific Enth	alpy	h(p,t,comp)=		kJ/kg
16					

Figure 2.10: Example sheet after input of the given parameters

- Click the cell in which the calculated enthalpy *h* in kJ/kg is to be displayed ⇒ e.g.: Click the cell D15
- Click "Calculate" in the menu bar of FluidEXL^{Graphics} Now the "Insert Function" window appears.
- Search and click the "Humid Gas LibHuGas" library under "Or select a category:" (see Figure 2.11)
- Search and click the "h_ptcomp_HuGas" function under "Select a function:"

	A	В	С	D	E	F
1	Input:					
2	Pressure		p=	10	bar	
3	Temperature		t=	500	°C	
4	Туре	Insert Funct	ion			? ×
5	composition					
6		Search for a f	unction:			
7			of description of v	what you want to	o do and then	Go
8		click Go				
9		Or select a	category: Humic	d Gas LibHuGas	-	
10			Date	& Time		
11		Select a funct	- Imaun			
12		cv_ptcomp				
13		Eta_ptcom	P_1100003 [p & Reference Jase		
14	Output:	h_pscomp h_ptcomp				
15	Specific Entha	a h_tscomp_	HuGas Logica			
16		Kappa_pso	omp_HuGaInforr omp_HuGaUser [
17		[Kappa_ptc	omp_HuGaOSO	Air - cp=f(t)		
18		h_ptcomp	_HuGas(Humic	Air LibHuAir	p((1:8))
19		Spec. entha	alpy in kJ/k <mark>Humic</mark>	l Gas LibHuGas		
20						
21						
22		Help on this f	unction		ОК	Cancel
23						
24						

Figure 2.11: Choice of library and function name

- Click the "OK" button The "Function Arguments" window will now appear (Figure 2.12).

Function Argumen	s X
_h_ptcomp_HuGas-	
P in bar	<u></u>
T in °C	<u> </u>
1->Xi 0->Psi	<u> </u>
Comp(1:8)	<u> </u>
Spec. enthalpy in kJ P in bar l	
Formula result =	
Help on this function	OK Cancel

Figure 2.12: Input menu for the function h_ptcomp_HuGas

- The cursor is situated on the line next to "P in bar". You can now enter the value for *p* either by clicking the cell with the value for *p*, by entering the name of the cell with the value for *p*, or by entering the value for *p* directly.

\Rightarrow e.g.: Click on cell D2

- Situate the cursor on the line next to "T in °C". You can now enter the value for *t* either by clicking the cell with the value for *t*, by entering the name of the cell with the value for *t*, or by entering the value for *t* directly.

\Rightarrow e.g.: Type D3 into the window next to "t in °C"

- Situate the cursor on the line next to "1→Xsi 0→Psi". You can now enter the value for type either by clicking the cell with the value for type, by entering the name of the cell with the value for type, or by entering the value for type directly.

type = 0 for input of mole fractions

type = 1 for input of mass fractions

 \Rightarrow e.g.: Click on cell D4

- Situate the cursor on the line next to "comp(1:8)". Now the composition as mole or mass fractions must be entered.
- Click on the cell including the mole or mass fraction of the first gas Ar

 \Rightarrow e.g.: Click the cell D5

- The mouse arrow changes into a cross.

By pressing the left mouse button, mark the other cells including mole or mass fractions for Ne, N₂, O₂, CO, CO₂, H₂O and SO₂ and let the mouse button go after that.

 \Rightarrow e.g.:Mark the cells D5 to D12 by pressing the left mouse button and let the mouse button go

The marked range "D5:D12" appears in the window next to "comp(1:8)".

Alternatively, the range can be set directly by entering the numbers of the first and last cells separated by a colon in the window next to "comp(1:8)", for example enter "D5:D12".

Function Argumen	ts	X
_h_ptcomp_HuGas-		
P in bar	D2	1 0
T in °⊂	D3	5 00
1->Xi 0->Psi	D4	E = 0
Comp(1:8)	D5:D12	≣ = {0.0088;0;0.748;0.1
Spec. enthalpy in ki	/kg.	= 662.8039107
	Ar/Ne/N2/O2/CO/CO2/H2O/5O	
Formula result =	662.8039107	
Help on this function	1	OK Cancel

Figure 2.13: Input menu showing the result

- Click "OK"

The result for *h* in kJ/kg appears in the cell selected above.

 \Rightarrow The result in our sample calculation here is: h = 662.8039107 kJ/kg.

The calculation of h = f(p, t, type, comp(1:8)) has thus been completed.

You can now arbitrarily change the values for p, t, type, and comp(1:8) in the appropriate cells. The specific enthalpy is recalculated and updated every time you change the data. This shows that the Excel data flow and the DLL calculations are working together successfully.

Number Formats

When using FluidEXL^{Graphics} you have the option of choosing special number formats in advance.

Changes can be made as follows:

- Click the cell or select and click on the cells you wish to format. (In empty cells the new format will be applied once a value has been entered.)
- Click "Number Format" in the FluidEXL Graphics menu bar.
- Select the desired number format in the dialog box which appears:

"STD – Standard":	Insignificant zeros behind the decimal point are not shown.
"FIX – Fixed Number of Digits":	All set decimal places are shown, including insignificant zeros.
"SCI – Scientific Format":	Numbers are always shown in the exponential form with the set number of decimal places.

- Set the "Number of decimal places" by entering the number into the appropriate window.
- Confirm this by clicking the "OK" button.

As an example, the table below shows the three formats for the number 1.230 adjusted for three decimal places:

STD	1.23
FIX	1.230
SCI	1.230E+00

This formatting can also be applied to cells which have already been calculated.

2.5 The FluidEXL^{Graphics} Help System

As mentioned earlier, FluidEXL^{Graphics} also provides detailed help functions. Information on individual property functions may be accessed via the following steps:

- Click "Calculate" in the FluidEXL Graphics menu bar.
- Click on the "LibHuGas" library under "Or select a <u>category</u>:" in the "Insert Function" window which will appear.
- Click the "Help on this function" button in the lower left-hand edge of the "Insert Function" window.

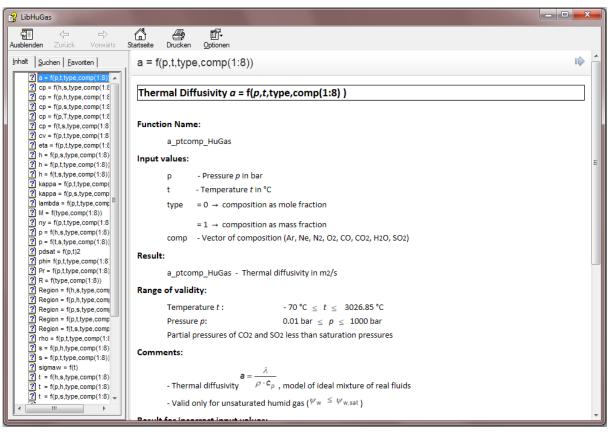


Figure 2.14: Help Window

If the LibHuGas.chm function help cannot be found, you will be redirected to a Microsoft[®] help website by your standard browser. In this case, the LibHuGas.chm file has to be copied into the folder of FluidEXL^{Graphics}, in the standard case

C:\Program Files\FluidEXL_Graphics_Eng

to use the help system.

2.6 Removing FluidEXLGraphics

2.6.1 Removing LibHuGas Library

Should you wish to remove only the LibHuGas library, delete the files

LibHuGas.dll LibHuGas.chm

in the directory selected for the installation of FluidEXL^{Graphics}, in the standard case,

C:\Program Files\FluidEXL_Graphics_Eng

by using an appropriate program such as Explorer® or Norton Commander.

2.6.2 Unregistering and uninstalling FluidEXL^{Graphics} as Add-In in versions of Excel[®] from 2007 onwards (for earlier versions see 2.6.3)

In order to unregister the FluidEXL^{*Graphics*} Add-In in versions of Excel[®] from 2007 onwards start Excel[®] and carry out the following commands:

- Click the "File" button in the upper left corner of Excel®
- Click on the "Options" button in the menu which appears

日	ن ب	c⇒ - <u>A</u>	Ŧ									Bo	ok1 - Excel
File	н	ome Ins	sert Pag	e Layout	Formulas	Data	Review	View	♀ Tell me	what you wa	ant to do		
Paste	K Cut E Cop ✓ Forr Clipboar	oy ▼ mat Painter		<u>u</u> • 🖽 •	11 · A /	• = =		Me				▼ .00 .00 .00 →.0	Conditional Form Formatting ▼ Tal
A1		-	x v	$f_{\mathcal{K}}$									
	А	В	с	D	E	F	G	н	I	J	к	L	м
1													
2													
З													
4													
5													
6													
7													
9													
10													
11													
12													
13													
14													
15													
16													
17													

Figure 2.15: Unregistering FluidEXLGraphics as Add-In in Excel® 2016

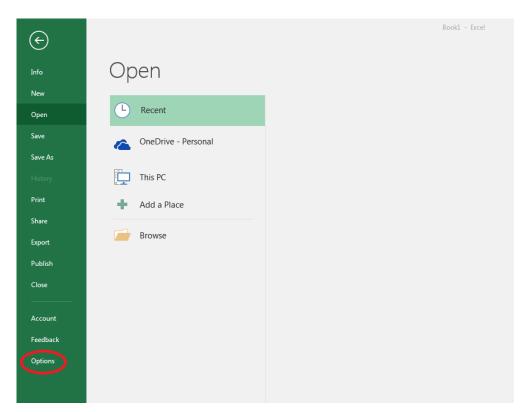


Figure 2.16 Unregistering FluidEXLGraphics as Add-In in Excel[®] 2016

- Click on "Add-Ins" in the next menu (Figure 2.17)

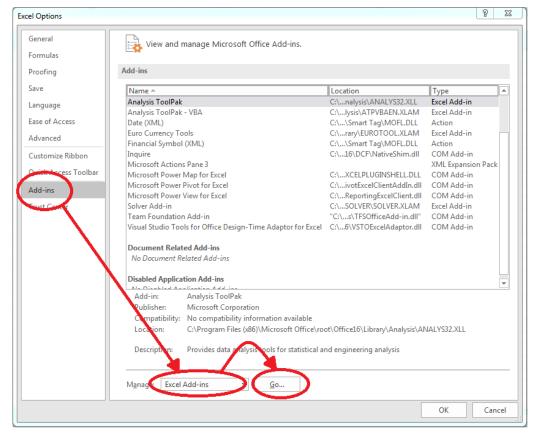


Figure 2.17: Dialog window "Add-Ins"

- If it is not shown in the list automatically, chose and click "Excel Add-ins" next to "Manage:" in the lower area of the menu

- Afterwards click the "Go..." button
- Remove the checkmark in front of "FluidEXL Graphics Eng"

in the window which now appears. Click the "OK" button to confirm your entry.

Add-ins	8 ×	
Add-ins available:	ОК	
Euro Currency Tools	Cancel	
Fluidexl_Graphics Solver Add-in	<u>B</u> rowse	
τ.	A <u>u</u> tomation	
FluidEXL Graphics Eng Libraries for the Calculation of Thermophysical Properties for Fluids of the Power Technology		

Figure 2.18: Dialog window "Add-Ins"

In order to remove FluidEXL^{Graphics} from Windows and the hard drive, click "Start" in the Windows task bar, select "Settings" and click "Control Panel."

Now, double click on "Add or Remove Programs."

In the list box of the "Add or Remove Programs" window that appears, select

"FluidEXL Graphics Eng"

by clicking on it and then clicking the "Add/Remove..." button.

Click "Automatic" in the following dialog box and then the "Next >" button.

Click "Finish" in the "Perform Uninstall" window.

Answer the question of whether all shared components should be removed with "Yes to All." Finally, close the "Add or Remove Programs" and "Control Panel" windows.

Now FluidEXLGraphics has been completely removed from your computer.

2.6.3 Unregistering and uninstalling FluidEXL^{Graphics} as Add-In in Excel[®], versions 2003 or earlier

To remove FluidEXLGraphics completely, proceed as follows: First the registration of

FluidEXL_Graphics_Eng.xla

has to be cancelled in Excel[®].

In order to do this, click "Tools" in the upper menu bar of Excel[®] and here "Add-Ins...". Untick the box on the left-hand side of

"FluidEXL Graphics Eng"

in the window that appears and click the "OK" button. The additional menu bar of FluidEXL^{Graphics} disappears from the upper part of the Excel[®] window. Afterwards, we

recommend closing Excel[®].

If the FluidEXL^{Graphics} menu bar does not disappear, take the following steps:

Click "View" in the upper menu bar of Excel[®], then "Toolbars" and then "Customize..." in the list box which appears.

"FluidEXL Graphics Eng"

is situated at the bottom of the "Toolbars" entries, which must be selected by clicking on it. Delete the entry by clicking "Delete". You will be asked whether you really want to delete the toolbar – click "OK".

Within the next step delete the files

LibHuGas.dll LibHuGas.chm

in the directory selected for the installation of FluidEXLGraphics, in the standard case,

C:\Program Files\FluidEXL_Graphics_Eng

using an appropriate program such as Explorer[®] or Norton Commander.

In order to remove FluidEXL^{Graphics} from Windows and the hard drive, click "Start" in the Windows task bar, select "Settings" and click "Control Panel". Now double-click on "Add or Remove Programs". In the list box of the "Add/Remove Programs" window that appears select

"FluidEXL Graphics Eng"

by clicking on it and click the "Add/Remove..." button. In the following dialog box, click "Automatic" and then "Next >". Click "Finish" in the "Perform Uninstall" window. Answer the question whether all shared components shall be removed with "Yes to All". Finally, close the "Add/Remove Programs" and "Control Panel" windows.

Now FluidEXL^{Graphics} has been removed.

3. Program Documentation

3.1 Documentation of FluidEXL^{Graphics} including LibHuGas for Excel[®]

Thermal Diffusivity *a* = f(*p*,*t*,type,comp(1:8))

Function Name:

a_ptcomp_HuGas

Input values:

р	- Pressure	<i>p</i> in	bar

t - Temperature t in °C

type $= 0 \rightarrow$ composition as mole fraction

= 1 \rightarrow composition as mass fraction

comp - Vector of composition (Ar, Ne, N₂, O₂, CO, CO₂, H₂O, SO₂)

Result:

a_ptcomp_HuGas - Thermal diffusivity in m²/s

Range of validity:

Temperature t:	- 70 °C $\leq t \leq$ 3026.85 °C	
Pressure <i>p</i> :	0.01 bar $\leq p \leq 1000$ bar	
Partial pressures of CO_2 and SO_2 less than saturation pressures		

Comments:

- Thermal diffusivity $a = \frac{\lambda}{\rho \cdot c_{\rho}}$, model of ideal mixture of real fluids

- Valid only for unsaturated humid gas ($\psi_w \leq \psi_{w,sat}$)

Result for incorrect input values:

a_ptcomp_HuGas = $-1 \cdot 10^{100}$

Gas	$ ho$, ${\it c_p}$ - ideal part	$ ho$, $c_{ ho}$ - real part	λ
Ar	[10]	[11]	[17]
Ne	[10]	-	[18],[19],[24],[25]
N ₂	[10]	[12]	[26]
O ₂	[10]	[13]	[21]
CO	[10]	-	[22]
CO ₂	[10]	[14]	[27]
H ₂ O	[10]	[15]	[6]
SO ₂	[10]	-	[18],[19],[24]

Specific Isobaric Heat Capacity $c_p = f(h, s, type, comp(1:8))$

Function Name:

cp_hscomp_HuGas

Input values:

h - Specific enthalpy h in kJ/kg

s - Specific entropy s in kJ/(kg K)

type $= 0 \rightarrow$ composition as mole fraction

= 1 \rightarrow composition as mass fraction

comp - vector of composition (Ar ,Ne, N₂, O₂, CO, CO₂, H₂O, SO₂)

Result:

cp_hscomp_HuGas - specific isobaric heat capacity in kJ/(kg K)

Range of validity:

Temperature t:	$-70 ^{\circ}\text{C} \leq t \leq 3026.85 ^{\circ}\text{C}$
Pressure <i>p</i> :	0.01 bar $\leq p \leq 1000$ bar
Partial pressures of CO_2 and	SO ₂ less than saturation pressures

Comments:

Iteration of *p* and *t* from h(p,t,comp) and s(p,t,comp) and calculation of c_p from $c_p(p,t,comp)$

Calculation:

- Valid only for unsaturated humid gas ($\psi_w \leq \psi_{w,sat}$)

- Effects of dissociation are considered for temperatures greater than 500 °C

Result for incorrect input values:

cp_hscomp_HuGas = $-1 \cdot 10^{100}$

Gas	<i>c_p,h,s</i> - ideal part	<i>c_p,h,s</i> - real part
Ar	[10]	[11]
Ne	[10]	-
N ₂	[10]	[12]
0 ₂	[10]	[13]
CO	[10]	-
CO ₂	[10]	[14]
H ₂ O	[10]	[15]
SO ₂	[10]	-

Specific Isobaric Heat Capacity $c_p = f(p, h, type, comp(1:8))$

Function Name:

cp_phcomp_HuGas

Input values:

p - Pressure *p* in bar h - Specific enthalpy *h* in kJ/kg type = 0 → composition as mole fraction = 1 → composition as mass fraction

comp - Vector of composition (Ar, Ne, N₂, O₂, CO, CO₂, H₂O, SO₂)

Result:

cp_phcomp_HuGas - specific isobaric heat capacity in kJ/(kg K)

Range of validity:

Temperature t:	$-70 ^{\circ}\text{C} \leq t \leq 3026.85 ^{\circ}\text{C}$	
Pressure <i>p</i> :	0.01 bar $\leq p \leq 1000$ bar	
Partial pressures of CO_2 and SO_2 less than saturation pressures		

Comments:

Iteration of *t* from h(p,t,comp) and calculation of c_p from c_p (p,t,comp)

Calculation:

- Valid only for unsaturated humid gas ($\psi_w \leq \psi_{w,sat}$)

- Effects of dissociation are considered for temperatures greater than 500 °C

Result for incorrect input values:

cp_phcomp_HuGas = $-1 \cdot 10^{100}$

Gas	<i>c_p,h</i> - ideal part	<i>c_p,h</i> - real part
Ar	[10]	[11]
Ne	[10]	-
N_2	[10]	[12]
0 ₂	[10]	[13]
CO	[10]	-
CO ₂	[10]	[14]
H ₂ O	[10]	[15]
SO ₂	[10]	-

3/4

Specific Isobaric Heat Capacity $c_p = f(p, s, type, comp(1:8))$

Function Name:

cp_pscomp_HuGas

Input values:

p - Pressure *p* in bar

s - Specific entropy s in kJ/(kg K)

type $= 0 \rightarrow$ composition as mole fraction

= 1 \rightarrow composition as mass fraction

comp - Vector of composition (Ar, Ne, N₂, O₂, CO, CO₂, H₂O, SO₂)

Result:

cp_pscomp_HuGas - specific isobaric heat capacity in kJ/(kg K)

Range of validity:

Temperature t:	$-70 ^{\circ}\text{C} \leq t \leq 3026.85 ^{\circ}\text{C}$	
Pressure <i>p</i> :	0.01 bar $\leq p \leq 1000$ bar	
Partial pressures of CO_2 and SO_2 less than saturation pressures		

Comments:

Iteration of *t* from s(p,t,comp) and calculation of c_p from $c_p(p,t,comp)$

Calculation:

- Valid only for unsaturated humid gas ($\psi_w \leq \psi_{w,sat}$)

- Effects of dissociation are considered for temperatures greater than 500 °C

Result for incorrect input values:

cp_pscomp_HuGas = $-1 \cdot 10^{100}$

Gas	<i>c_p,s</i> - ideal part	<i>c_p,s</i> - real part
Ar	[10]	[11]
Ne	[10]	-
N ₂	[10]	[12]
0 ₂	[10]	[13]
CO	[10]	-
CO ₂	[10]	[14]
H ₂ O	[10]	[15]
SO ₂	[10]	-

Specific Isobaric Heat Capacity $c_p = f(p, t, type, comp(1:8))$

Function Name:

cp_ptcomp_HuGas

Input values:

p - Pressure p in bar

t - Temperature t in °C

type $= 0 \rightarrow$ composition as mole fraction

= 1 \rightarrow composition as mass fraction

comp - Vector of composition (Ar, Ne, N₂, O₂, CO, CO₂, H₂O, SO₂)

Result:

cp_ptcomp_HuGas - specific isobaric heat capacity in kJ/(kg K)

Range of validity:

Temperature t:	- 70 °C $\leq t \leq$ 3026.85 °C	
Pressure <i>p</i> :	0.01 bar $\le p \le 1000$ bar	
Partial pressures of CO_2 and SO_2 less than saturation pressures		

Comments:

Calculation:

- Valid only for unsaturated humid gas ($\psi_{w} \leq \psi_{w,sat}$)

- Effects of dissociation are considered for temperatures greater than 500 °C

Result for incorrect input values:

cp_ptcomp_HuGas = $-1 \cdot 10^{100}$

Gas	$c_{ ho}$ - ideal part	<i>c_p</i> - real part
Ar	[10]	[11]
Ne	[10]	-
N ₂	[10]	[12]
0 ₂	[10]	[13]
CO	[10]	-
CO ₂	[10]	[14]
H ₂ O	[10]	[15]
SO ₂	[10]	-

Specific Isobaric Heat Capacity $c_p = f(t,s,type,comp(1:8))$

Function Name:

cp_tscomp_HuGas

Input values:

t - Temperature t in °C

s - Specific entropy s in kJ/(kg K)

type $= 0 \rightarrow$ composition as mole fraction

= 1 \rightarrow composition as mass fraction

comp - Vector of composition (Ar, Ne, N₂, O₂, CO, CO₂, H₂O, SO₂)

Result:

cp_tscomp_HuGas - specific isobaric heat capacity in kJ/(kg K)

Range of validity:

Temperature t:	$-70 ^{\circ}\text{C} \leq t \leq 3026.85 ^{\circ}\text{C}$
Pressure <i>p</i> :	0.01 bar $\le p \le 1000$ bar
Partial pressures of CO_2 and SO_2 less than saturation pressures	

Comments:

Iteration of p from s(p,t,comp) and calculation of c_p from c_p(p,t,comp)

Calculation:

- Valid only for unsaturated humid gas ($\psi_w \leq \psi_{w,sat}$)

- Effects of dissociation are considered for temperatures greater than 500 °C

Result for incorrect input values:

cp_tscomp_HuGas = $-1 \cdot 10^{100}$

Gas	<i>c_p,</i> s - ideal part	<i>c_p,s</i> - real part
Ar	[10]	[11]
Ne	[10]	-
N ₂	[10]	[12]
0 ₂	[10]	[13]
CO	[10]	-
CO ₂	[10]	[14]
H ₂ O	[10]	[15]
SO ₂	[10]	-

Specific Isochoric Heat Capacity $c_v = f(p, t, type, comp(1:8))$

Function Name:

cv_ptcomp_HuGas

Input values:

p - Pressure *p* in bar

t - Temperature t in °C

type $= 0 \rightarrow$ composition as mole fraction

= 1 \rightarrow composition as mass fraction

comp - Vector of composition (Ar, Ne, N₂, O₂, CO, CO₂, H₂O, SO₂)

Result:

cv_ptcomp_HuGas - Specific isochoric heat capacity in kJ/(kg K)

Range of validity:

Temperature t:	- 70 °C $\leq t \leq$ 3026.85 °C
Pressure <i>p</i> :	0.01 bar $\le p \le 1000$ bar
Partial pressures of CO_2 and SO_2 less than saturation pressures	

Comments:

Calculation:

- Valid only for unsaturated humid gas ($\psi_{
 m w}~\leq~\psi_{
 m w,sat}$)
- Effects of dissociation are considered for temperatures greater than 500 °C

Result for incorrect input values:

 $cv_ptcomp_HuGas = -1.10^{100}$

Gas	c_v - ideal part	c_v - real part
Ar	[10]	[11]
Ne	[10]	-
N ₂	[10]	[12]
0 ₂	[10]	[13]
CO	[10]	-
CO ₂	[10]	[14]
H ₂ O	[10]	[15]
SO ₂	[10]	-

Dynamic Viscosity $\eta = f(p, t, type, comp(1:8))$

Function Name:

Eta_ptcomp_HuGas

Input values:

p - Pressure *p* in bar

t - Temperature t in °C

type $= 0 \rightarrow$ composition as mole fraction

= 1 \rightarrow composition as mass fraction

comp - Vector of composition (Ar, Ne, N₂, O₂, CO, CO₂, H₂O, SO₂)

Result:

Eta_ptcomp_HuGas - Dynamic viscosity in Pa s

Range of validity:

Temperature t:	- 70 °C $\leq t \leq$ 3026.85 °C
Pressure <i>p</i> :	0.01 bar $\le p \le 1000$ bar
Partial pressures of CO ₂ and	$d SO_2$ less than saturation pressures

Comments:

Calculation:

- for unsaturated and saturated humid gas ($\psi_w \leq \psi_{w,sat}$) as ideal mixture of real fluids
- for liquid fog ($\psi_{\rm W}$ > $\psi_{\rm w,sat}$) as ideal mixture of saturated humid gas and liquid water
- for ice fog ($\psi_w > \psi_{w,sat}$, t < 0.01 °C) as saturated humid gas mixture

Result for incorrect input values:

Eta_ptcomp_HuGas = $-1 \cdot 10^{100}$

Gas	η
Ar	[17]
Ne	[18]
N ₂	[20]
O ₂	[21]
CO	[22]
CO ₂	[23]
H ₂ O	[7]
SO ₂	[18]

Specific Enthalpy *h* = f(*p*, s, type, comp(1:8))

Function Name:

h_pscomp_HuGas

Input values:

p - Pressure *p* in bar

s - Specific entropy s in kJ/(kg K)

type $= 0 \rightarrow$ composition as mole fraction

= 1 \rightarrow composition as mass fraction

comp - Vector of composition (Ar, Ne, N₂, O₂, CO, CO₂, H₂O, SO₂)

Result:

h_pscomp_HuGas - specific enthalpy in kJ/kg

Range of validity:

Temperature t:	$-70 ^{\circ}\text{C} \leq t \leq 3026.85 ^{\circ}\text{C}$
Pressure <i>p</i> :	0.01 bar $\le p \le 1000$ bar
Partial pressures of CO ₂ and	$d SO_2$ less than saturation pressures

Comments:

Iteration of *t* from s(p,t,comp) and calculation of *h* from h(p,t,comp)

Calculation:

- for unsaturated and saturated humid gas ($\psi_{w} \leq \psi_{w,sat}$) as ideal mixture of real fluids

- for fog ($\psi_w > \psi_{w,sat}$) as ideal mixture of saturated humid gas and liquid water or water ice
- Effects of dissociation are considered for temperatures greater than 500 °C

Result for incorrect input values:

 $h_pscomp_HuGas = -1.10^{100}$

Gas	h,s - ideal part	h,s - real part	ice
Ar	[10]	[11]	-
Ne	[10]	-	-
N ₂	[10]	[12]	-
O ₂	[10]	[13]	-
CO	[10]	-	-
CO ₂	[10]	[14]	-
H ₂ O	[10]	[15]	[9]
SO ₂	[10]	-	-

Specific Enthalpy *h* = f(*p*,*t*,type,comp(1:8))

Function Name:

h_ptcomp_HuGas

Input values:

p - Pressure *p* in bar

t - Temperature t in °C

type $= 0 \rightarrow$ composition as mole fraction

= 1 \rightarrow composition as mass fraction

comp - Vector of composition (Ar, Ne, N₂, O₂, CO, CO₂, H₂O, SO₂)

Result:

h_ptcomp_HuGas - Specific enthalpy in kJ/kg

Range of validity:

Temperature t:	$-70 ^{\circ}\text{C} \leq t \leq 3026.85 ^{\circ}\text{C}$
Pressure <i>p</i> :	0.01 bar $\leq p \leq 1000$ bar
Partial pressures of CO ₂ and	d SO ₂ less than saturation pressures

Comments:

Calculation:

- for unsaturated and saturated humid gas ($\psi_w \leq \psi_{w,sat}$) as ideal mixture of real fluids
- for fog ($\psi_w > \psi_{w,sat}$) as ideal mixture of saturated humid gas and liquid water or water ice
- Effects of dissociation are considered for temperatures greater than 500 °C

Result for incorrect input values:

h_ptcomp_HuGas = $-1 \cdot 10^{100}$

Gas	h - ideal part	h - real part	ice
Ar	[10]	[11]	-
Ne	[10]	-	-
N ₂	[10]	[12]	-
0 ₂	[10]	[13]	-
CO	[10]	-	-
CO ₂	[10]	[14]	-
H ₂ O	[10]	[15]	[9]
SO ₂	[10]	-	-

Specific Enthalpy *h* = f(*t*,s,type,comp(1:8))

Function Name:

h_tscomp_HuGas

Input values:

t - Temperature *t* in °C

s - Specific entropy s in kJ/(kg K)

type $= 0 \rightarrow$ composition as mole fraction

= 1 \rightarrow composition as mass fraction

comp - Vector of composition (Ar, Ne, N₂, O₂, CO, CO₂, H₂O, SO₂)

Result:

h_tscomp_HuGas - Specific enthalpy in kJ/kg

Range of validity:

Temperature t:	- 70 °C $\leq t \leq$ 3026.85 °C
Pressure <i>p</i> :	0.01 bar $\leq p \leq 1000$ bar
Partial pressures of CO2 and	$d SO_2$ less than saturation pressures

Comments:

Iteration of *p* from s(p,t,comp) and calculation *h* from h(p,t,comp)

Calculation:

- for unsaturated and saturated humid gas ($\psi_w \leq \psi_{w,sat}$) as ideal mixture of real gases (dry gas and steam)
- for fog ($\psi_w > \psi_{w,sat}$) as ideal mixture of saturated humid gas and liquid water or water ice, calculation is not possible for liquid-ice fog at 0.01 °C
- Effects of dissociation are considered for temperatures greater than 500 °C

Result for incorrect input values:

h_tscomp_HuGas = $-1 \cdot 10^{100}$

Gas	h,s ideal part	h,s real part	ice
Ar	[10]	[11]	-
Ne	[10]	-	-
N ₂	[10]	[12]	-
O ₂	[10]	[13]	-
CO	[10]	-	-
CO ₂	[10]	[14]	-
H ₂ O	[10]	[15]	[9]
SO ₂	[10]	-	-

Isentropic Exponent $\kappa = f(p, t, type, comp(1:8))$

Function Name:

Kappa_ptcomp_HuGas

Input values:

p - Pressure *p* in bar

t - Temperature t in °C

type $= 0 \rightarrow$ composition as mole fraction

= 1 \rightarrow composition as mass fraction

comp - Vector of composition (Ar, Ne, N₂, O₂, CO, CO₂, H₂O, SO₂)

Result:

Kappa_ptcomp_HuGas - Isentropic exponent

Range of validity:

Temperature t:	- 70 °C $\leq t \leq$ 3026.85 °C
Pressure <i>p</i> :	0.01 bar $\leq p \leq 1000$ bar
Partial pressures of CO ₂ and	d SO ₂ less than saturation pressures

Comments:

Calculation:

- for unsaturated and saturated humid gas ($\psi_w \leq \psi_{w,sat}$):

$$\kappa = -\frac{v}{p} \cdot \left(\frac{\partial p}{\partial v}\right)_T \cdot \frac{c_p}{c_v}$$

- for liquid fog ($\psi_w > \psi_{w,sat}$) as ideal mixture of saturated humid gas and liquid water

- for ice fog ($\psi_w > \psi_{w,sat}$, t < 0.01 °C) as saturated humid gas mixture

Result for incorrect input values:

```
kappa_ptcomp_HuGas = -1 \cdot 10^{100}
```

Gas	v, c_p, c_v - ideal part	<i>v, c_p, c_v</i> - real part
Ar	[10]	[11]
Ne	[10]	-
N ₂	[10]	[12]
0 ₂	[10]	[13]
CO	[10]	-
CO ₂	[10]	[14]
H ₂ O	[10]	[15]
SO ₂	[10]	-

Isentropic Exponent $\kappa = f(p, s, type, comp(1:8))$

Function Name:

Kappa_pscomp_HuGas

Input values:

p - Pressure *p* in bar

s - Specific entropy *s* in kJ/(kg K)

type $= 0 \rightarrow$ composition as mole fraction

= 1 \rightarrow composition as mass fraction

comp - Vector of composition (Ar, Ne, N₂, O₂, CO, CO₂, H₂O, SO₂)

Result:

Kappa_pscomp_HuGas - Isentropic exponent

Range of validity:

Temperature t:	$-70 ^{\circ}\text{C} \leq t \leq 3026.85 ^{\circ}\text{C}$
Pressure <i>p</i> :	0.01 bar $\leq p \leq 1000$ bar
Partial pressures of CO ₂ and	d SO ₂ less than saturation pressures

Comments:

Iteration of *t* from s(p,t,comp) and calculation of κ from kappa(p,t,comp) :

- for unsaturated and saturated humidity gas ($\psi_{w} \leq \psi_{w,sat}$)

$$\kappa = -\frac{\mathbf{v}}{\mathbf{p}} \cdot \left(\frac{\partial \mathbf{p}}{\partial \mathbf{v}}\right)_{T} \cdot \frac{\mathbf{c}_{\mathbf{p}}}{\mathbf{c}_{\mathbf{v}}}$$

- for liquid fog ($\psi_w > \psi_{w,sat}$) as ideal mixture of saturated humid gas and liquid water

- for ice fog ($\psi_w > \psi_{w,sat}$, t < 0.01 °C) as saturated humid gas mixture

Result for incorrect input values:

```
kappa_pscomp_HuGas = -1 \cdot 10^{100}
```

Gas	<i>v, c_p, c_v</i> - ideal part	<i>v, c_p, c_v</i> - real part
Ar	[10]	[11]
Ne	[10]	-
N ₂	[10]	[12]
O ₂	[10]	[13]
CO	[10]	-
CO ₂	[10]	[14]
H ₂ O	[10]	[15]
SO ₂	[10]	-

Thermal Conductivity $\lambda = f(p, t, type, comp(1:8))$

Function Name:

Lambda_ptcomp_HuGas

Input values:

p - Pressure *p* in bar

t - Temperature t in °C

type $= 0 \rightarrow$ composition as mole fraction

= 1 \rightarrow composition as mass fraction

comp - Vector of composition (Ar, Ne, N₂, O₂, CO, CO₂, H₂O, SO₂)

Result:

Lambda_ptcomp_HuGas - Thermal conductivity in W/(m K)

Range of validity:

Temperature t:	$-70 ^{\circ}\text{C} \leq t \leq 3026.85 ^{\circ}\text{C}$	
Pressure <i>p</i> :	0.01 bar $\le p \le 1000$ bar	
Partial pressures of CO_2 and SO_2 less than saturation pressures		

Comments:

- for unsaturated and saturated humid gas ($\psi_w \leq \psi_{w,sat}$) as ideal mixture of real fluids

- for liquid fog ($\psi_{\rm w}$ > $\psi_{\rm w,sat}$) as ideal mixture of saturated humid gas and liquid water

- for ice fog ($\psi_w > \psi_{w,sat}$, t < 0.01 °C) as saturated humid gas mixture

Result for incorrect input values:

lambda_ptcomp_HuGas = $-1 \cdot 10^{100}$

Gas	λ
Ar	[17]
Ne	[18],[19],[24],[25]
N_2	[26]
0 ₂	[21]
CO	[22]
CO ₂	[27]
H ₂ O	[6]
SO ₂	[18],[19],[24]

Molar Mass *M* = f(type,comp(1:8))

Function Name:

M_comp_HuGas

Input values:

type $= 0 \rightarrow$ composition as mole fraction

= 1 \rightarrow composition as mass fraction

comp $\,$ - Vector of composition (Ar, Ne, N_2, O_2, CO, CO_2, H_2O, SO_2) $\,$

Result:

M_comp_HuGas - Molar mass in kg/kmol

Result for incorrect input values:

 $M_comp_HuGas = -1 \cdot 10^{100}$

Kinematic Viscosity v = f(p, t, type, comp(1:8))

Function Name:

Ny_ptcomp_HuGas

Input values:

p - Pressure *p* in bar

t - Temperature t in °C

type $= 0 \rightarrow$ composition as mole fraction

= 1 \rightarrow composition as mass fraction

comp - Vector of composition (Ar, Ne, N₂, O₂, CO, CO₂, H₂O, SO₂)

Result:

Ny_ptcomp_HuGas - Kinematic viscosity in m²/s

Range of validity:

Temperature t:	- 70 °C $\leq t \leq$ 3026.85 °C
Pressure <i>p</i> :	0.01 bar $\leq p \leq 1000$ bar
Partial pressures of CO ₂ and	d SO ₂ less than saturation pressures

Comments:

- Kinematic viscosity $v = \frac{\eta}{\rho} = \eta \cdot v$
- for unsaturated and saturated humid gas ($\psi_w \leq \psi_{w,sat}$) as ideal mixture of real fluids

- for liquid fog ($\psi_w > \psi_{w,sat}$) as ideal mixture of saturated humid gas and liquid water

- for ice fog ($\psi_w > \psi_{w,sat}$, t < 0.01 °C) as saturated humid gas mixture

Result for incorrect input values:

Ny_ptcomp_HuGas = $-1 \cdot 10^{100}$

Gas	v - ideal part	v - real part	λ
Ar	[10]	[11]	[17]
Ne	[10]	-	[18],[19],[24],[25]
N ₂	[10]	[12]	[26]
0 ₂	[10]	[13]	[21]
CO	[10]	-	[22]
CO ₂	[10]	[14]	[27]
H ₂ O	[10]	[15]	[6]
SO ₂	[10]	-	[18],[19],[24]

Pressure p = f(h, s, type, comp(1:8))

Function Name:

p_hscomp_HuGas

Input values:

h - Specific enthalpy h in kJ/kg

s - Specific entropy s in kJ/(kg K)

type $= 0 \rightarrow$ composition as mole fraction

= 1 \rightarrow composition as mass fraction

comp - Vector of composition (Ar, Ne, N₂, O₂, CO, CO₂, H₂O, SO₂)

Result:

p_hscomp_HuGas - Pressure in bar

Range of validity:

Temperature t:	$-70 ^{\circ}\text{C} \leq t \leq 3026.85 ^{\circ}\text{C}$
Pressure <i>p</i> :	0.01 bar $\leq p \leq 1000$ bar
Partial pressures of CO2 and	$d SO_2$ less than saturation pressures

Comments:

Iteration of *t* and *p* from h(p,t,comp) and s(p,t,comp) and calculation:

- for unsaturated and saturated humid gas ($\psi_w \leq \psi_{w,sat}$) as ideal mixture of real gases (dry gas and steam)
- for fog ($\psi_{\rm w}$ > $\psi_{\rm w,sat}$) as ideal mixture of saturated humid gas and
- liquid water or water ice, calculation is not possible for liquid-ice fog at 0.01 °C
- Effects of dissociation are considered for temperatures greater than 500 °C

Result for incorrect input values:

 $p_hscomp_HuGas = -1 \cdot 10^{100}$

Gas	h, s - ideal part	h, s - real part	ice
Ar	[10]	[11]	-
Ne	[10]	-	-
N ₂	[10]	[12]	-
O ₂	[10]	[13]	-
CO	[10]	-	-
CO ₂	[10]	[14]	-
H ₂ O	[10]	[15]	[9]
SO ₂	[10]	-	-

Pressure p = f(t, s, type, comp(1:8))

Function Name:

p_tscomp_HuGas

Input values:

t - Temperature *t* in °C

s - Specific entropy s in kJ/(kg K)

type $= 0 \rightarrow$ composition as mole fraction

= 1 \rightarrow composition as mass fraction

comp - Vector of composition (Ar, Ne, N₂, O₂, CO, CO₂, H₂O, SO₂)

Result:

p_tscomp_HuGas - Pressure in bar

Range of validity:

Temperature t:	- 70 °C $\leq t \leq$ 3026.85 °C
Pressure <i>p</i> :	0.01 bar $\leq p \leq 1000$ bar
Partial pressures of CO2 and	d SO ₂ less than saturation pressures

Comments:

Iteration of *p* from s(p,t,comp) and calculation:

- for unsaturated and saturated humid gas ($\psi_w \leq \psi_{w,sat}$) as ideal mixture of real gases (dry gas and steam)
- for fog ($\psi_{\rm w}$ > $\psi_{\rm w,sat}$) as ideal mixture of saturated humid gas and
- liquid water or water ice, calculation is not possible for liquid-ice fog at 0.01 °C
- Effects of dissociation are considered for temperatures greater than 500 °C

Result for incorrect input values:

 $p_tscomp_HuGas = -1.10^{100}$

Gas	<i>s</i> - ideal part	s - real part	ice
Ar	[10]	[11]	-
Ne	[10]	-	-
N ₂	[10]	[12]	-
O ₂	[10]	[13]	-
CO	[10]	-	-
CO ₂	[10]	[14]	-
H ₂ O	[10]	[15]	[9]
SO ₂	[10]	-	-

Saturation Pressure of Water $p_{dsat} = f(p,t)$

Function Name:

pdsat_pt_HuGas

Input values:

- p Pressure *p* in bar
- t Temperature *t* in °C

Result:

pdsat_pt_HuGas - Saturation pressure of water in bar

Range of validity:

Temperature t:	-70 °C $\leq t \leq$	3026.85 °C
Pressure <i>p</i> :	0.01 bar $\leq p \leq$	1000 bar

Comments:

 $p_{dsat}(p,t)$ for $t \ge 0.01 \text{ °C}$ – Vapour pressure of water in gas mixtures for t < 0.01 °C – Sublimation pressure of water in gas mixtures

Result for incorrect input values:

 $pdsat_pt_HuGas = -1.10^{100}$

- $p_{dsat}(p,t)$ for $t \ge 0.01$ °C from IAPWS-IF97 [1], [2], [3], [4]
- $p_{dsat}(p,t)$ for t < 0.01 °C from IAPWS-92 [8]

Relative Humidity $\varphi = f(p, t, type, comp(1:8))$

Function Name:

Phi_ptcomp_HuGas

Input values:

p - Pressure *p* in bar t - Temperature *t* in °C type = 0 → composition as mole fraction = 1 → composition as mass fraction comp - Vector of composition (Ar, Ne, N₂, O₂, CO, CO₂, H₂O, SO₂)

Result:

Phi_ptcomp_HuGas - Relative humidity in %

Range of validity:

Temperature t:	- 70 °C $\leq t \leq$ 3026.85 °C
Pressure <i>p</i> :	0.01 bar $\le p \le 1000$ bar
Partial pressures of CO ₂ an	d SO ₂ less than saturation pressures

Comments:

Relative humidity
$$\varphi = \frac{X_{w}}{\frac{R_{l}}{R_{w}} + X_{w}} \frac{p}{p_{dsat}(p,t)} \cdot 100\%$$

with $p_{dsat}(p,t)$ for $t \ge 0.01 \text{ °C}$ - Vapour pressure of water in gas mixtures

for t < 0.01 °C - Sublimation pressures of water in gas mixtures

Result for incorrect input values:

Phi_ptcomp_HuGas = $-1 \cdot 10^{100}$

Reference:

 $p_{dsat}(p,t)$ for $t \ge 0.01 \text{ °C}$ from IAPWS-IF97 [1], [2], [3], [4]

 $p_{\text{dsat}}(p,t)$ for t < 0.01 °C from IAPWS-92 [8]

Prandtl Number *Pr* = f(*p*,*t*,type,comp(1:8))

Function Name:

Pr_ptcomp_HuGas

Input values:

p - Pressure *p* in bar
t - Temperature *t* in °C

type $= 0 \rightarrow$ composition as mole fraction

= 1 \rightarrow composition as mass fraction

comp - Vector of composition (Ar, Ne, N₂, O₂, CO, CO₂, H₂O, SO₂)

Result:

Pr_ptcomp_HuGas - Prandtl-number

Range of validity:

Temperature t:	- 70 °C $\leq t \leq$ 3026.85 °C
Pressure <i>p</i> :	0.01 bar $\leq p \leq 1000$ bar
Partial pressures of CO2 and	d SO ₂ less than saturation pressures

Comments:

- *Prandtl*-number $Pr = \frac{v}{a} = \frac{\eta \cdot c_p}{\lambda}$
- for unsaturated and saturated humid gas ($\psi_w \leq \psi_{w,sat}$) as ideal mixture of real fluids
- for liquid fog ($\psi_w > \psi_{w,sat}$) as ideal mixture of saturated humid gas and liquid water
- for ice fog ($\psi_w > \psi_{w,sat}$, t < 0.01 °C) as saturated humid gas mixture

Result for incorrect input values:

 $Pr_ptcomp_HuGas = -1 \cdot 10^{100}$

Gas	c_p - ideal part	<i>c_p</i> - real part	η	λ
Ar	[10]	[11]	[17]	[17]
Ne	[10]	-	[18]	[18],[19],[24],[25]
N ₂	[10]	[12]	[20]	[26]
0 ₂	[10]	[13]	[21]	[21]
CO	[10]	-	[22]	[22]
CO ₂	[10]	[14]	[23]	[27]
H ₂ O	[10]	[15]	[7]	[6]
SO ₂	[10]	-	[18]	[18],[19],[24]

Gas Constant R = f(type,comp(1:8))

Function Name:

R_comp_HuGas

Input values:

type = 0 \rightarrow composition as mole fraction = 1 \rightarrow composition as mass fraction

comp - Vector of composition (Ar, Ne, N₂, O₂, CO, CO₂, H₂O, SO₂)

Result:

R_comp_HuGas - Gas constant in kJ/(kg K)

Result for incorrect input values:

 $R_comp_HuGas = -1 \cdot 10^{100}$

Reference: [16]

Function Name:

Region_hscomp_HuGas

Input values:

h - Specific enthalpy h in kJ/kg

s - Specific entropy s in kJ/(kg K)

type $= 0 \rightarrow$ composition as mole fraction

= 1 \rightarrow composition as mass fraction

comp - Vector of composition (Ar, Ne, N₂, O₂, CO, CO₂, H₂O, SO₂)

Result:

Region_hscomp_HuGas - State point of humid gas mixture

$= 0 \rightarrow \text{Out of range of validity}$	= 6 \rightarrow Pure liquid water
= 1 \rightarrow Dry gas mixture	= 7 \rightarrow Pure water-wet steam
= 2 \rightarrow Unsaturated Gas mixture	= 8 \rightarrow Pure steam
$= 3 \rightarrow$ Liquid fog	= 10 \rightarrow The CO2 in the gas mixture would be
$=4 \rightarrow \text{lce fog}$	partly liquid. Calculation is terminated.
= 5 \rightarrow Liquid-ice fog at 0.01 °C exactly	= 11 \rightarrow The SO2 in the gas mixture would be
	partly liquid. Calculation is terminated.

Range of validity:

Temperature t:	- 70 °C $\leq t \leq$ 3026.85 °C
Pressure <i>p</i> :	0.01 bar $\leq p \leq 1000$ bar
Partial pressures of CO ₂ an	d SO_2 less than saturation pressures

Comments:

Iteration of p and t from s(p,t,comp) and h(p,t,comp) and calculation

of *Region* from Region(p,t,comp)

Result for incorrect input values:

Region_hscomp_HuGas = 0

Gas	h, s - ideal part	h, s - real part
Ar	[10]	[11]
Ne	[10]	-
N ₂	[10]	[12]
O ₂	[10]	[13]
CO	[10]	-
CO ₂	[10]	[14]
H ₂ O	[10]	[15]
SO ₂	[10]	-

Region = f(p,h,type,comp(1:8))

Function Name:

Region_phcomp_HuGas

Input values:

p - Pressure *p* in bar

h - Specific enthalpy h in kJ/kg

type $= 0 \rightarrow$ composition as mole fraction

= 1 \rightarrow composition as mass fraction

comp - Vector of composition (Ar, Ne, N₂, O₂, CO, CO₂, H₂O, SO₂)

Result:

Region_phcomp_HuGas - State point of humid gas mixture

$= 0 \rightarrow \text{Out of range of validity}$	= 6 \rightarrow Pure liquid water
= 1 \rightarrow Dry gas mixture	= 7 \rightarrow Pure water-wet steam
= 2 \rightarrow Unsaturated Gas mixture	= 8 \rightarrow Pure steam
$= 3 \rightarrow \text{Liquid fog}$	= 10 \rightarrow The CO2 in the gas mixture would be
$=4 \rightarrow \text{Ice fog}$	partly liquid. Calculation is terminated.
= 5 \rightarrow Liquid-ice fog at 0.01 °C exactly	= 11 \rightarrow The SO2 in the gas mixture would be
	partly liquid. Calculation is terminated.

Range of validity:

Temperature t:	- 70 °C $\leq t \leq$ 3026.85 °C
Pressure <i>p</i> :	0.01 bar $\leq p \leq 1000$ bar
Partial pressures of CO ₂ an	d SO ₂ less than saturation pressures

Comments:

Iteration of t from h(p,t,comp) and calculation of Region from Region(p,t,comp)

Result for incorrect input values:

```
Region_phcomp_HuGas = 0
```

Gas	h - ideal part	h - real part
Ar	[10]	[11]
Ne	[10]	-
N ₂	[10]	[12]
0 ₂	[10]	[13]
CO	[10]	-
CO ₂	[10]	[14]
H ₂ O	[10]	[15]
SO ₂	[10]	-

Function Name:

Region_pscomp_HuGas

Input values:

p - Pressure *p* in bar

s - Specific entropy s in kJ/(kg K)

type $= 0 \rightarrow$ composition as mole fraction

= 1 \rightarrow composition as mass fraction

comp - Vector of composition (Ar, Ne, N₂, O₂, CO, CO₂, H₂O, SO₂)

Result:

Region_pscomp_HuGas - State point of humid gas mixture

$= 0 \rightarrow$ Out of range of validity	= 6 \rightarrow Pure liquid water
= 1 \rightarrow Dry gas mixture	= 7 \rightarrow Pure water-wet steam
= 2 \rightarrow Unsaturated Gas mixture	= 8 \rightarrow Pure steam
$= 3 \rightarrow \text{Liquid fog}$	= 10 \rightarrow The CO2 in the gas mixture would be
$=4 \rightarrow \text{Ice fog}$	partly liquid. Calculation is terminated.
= 5 \rightarrow Liquid-ice fog at 0.01 °C exactly	= 11 \rightarrow The SO2 in the gas mixture would be
	partly liquid. Calculation is terminated.

Range of validity:

Temperature t:	- 70 °C $\leq t \leq$ 3026.85 °C
Pressure <i>p</i> :	0.01 bar $\leq p \leq 1000$ bar
Partial pressures of CO ₂ an	d SO_2 less than saturation pressures

Comments:

Iteration of *t* from s(p,t,comp) and calculation of *Region* from Region(p,t,comp)

Result for incorrect input values:

```
Region_pscomp_HuGas = 0
```

Gas	s - ideal part	s - real part
Ar	[10]	[11]
Ne	[10]	-
N ₂	[10]	[12]
0 ₂	[10]	[13]
CO	[10]	-
CO ₂	[10]	[14]
H ₂ O	[10]	[15]
SO ₂	[10]	-

Region = f(*p*,*t*,type,comp(1:8))

Function Name:

Region_ptcomp_HuGas

Input values:

p - Pressure *p* in bar

t - Temperature t in °C

type $= 0 \rightarrow$ composition as mole fraction

= 1 \rightarrow composition as mass fraction

comp - Vector of composition (Ar, Ne, N₂, O₂, CO, CO₂, H₂O, SO₂)

Result:

Region_ptcomp_HuGas - State point of humid gas mixture

$= 0 \rightarrow \text{Out of range of validity}$	= 6 \rightarrow Pure liquid water
$= 1 \rightarrow \text{Dry gas mixture}$	= 7 \rightarrow Pure water-wet steam
= 2 \rightarrow Unsaturated Gas mixture	= 8 \rightarrow Pure steam
$= 3 \rightarrow$ Liquid fog	= $10 \rightarrow$ The CO2 in the gas mixture would be
$=4 \rightarrow \text{Ice fog}$	partly liquid. Calculation is terminated.
= 5 \rightarrow Liquid-ice fog at 0.01 °C exactly	= 11 \rightarrow The SO2 in the gas mixture would be
	partly liquid. Calculation is terminated.

Range of validity:

Temperature t:	- 70 °C $\leq t \leq$ 3026.85 °C
Pressure <i>p</i> :	0.01 bar $\leq p \leq 1000$ bar
Partial pressures of CO ₂ an	d SO ₂ less than saturation pressures

Comments:

Calculation:

- for unsaturated and saturated humid gas ($\psi_w \leq \psi_{w,sat}$) as ideal mixture of real fluids
- for fog ($\psi_w > \psi_{w,sat}$) as ideal mixture of saturated humid gas and liquid water or water ice

Result for incorrect input values:

Region_ptcomp_HuGas = 0

Function Name:

Region_tscomp_HuGas

Input values:

t - Temperature *t* in °C

s - Specific entropy s in kJ/(kg K)

type $= 0 \rightarrow$ composition as mole fraction

= 1 \rightarrow composition as mass fraction

comp - Vector of composition (Ar, Ne, N₂, O₂, CO, CO₂, H₂O, SO₂)

Result:

Region_tscomp_HuGas - State point of humid gas mixture

$= 0 \rightarrow \text{Out of range of validity}$	= 6 \rightarrow Pure liquid water
= 1 \rightarrow Dry gas mixture	= 7 \rightarrow Pure water-wet steam
= 2 \rightarrow Unsaturated Gas mixture	$= 8 \rightarrow$ Pure steam
$=3 \rightarrow$ Liquid fog	= $10 \rightarrow$ The CO2 in the gas mixture would be
$=4 \rightarrow \text{Ice fog}$	partly liquid. Calculation is terminated.
= 5 \rightarrow Liquid-ice fog at 0.01 °C exactly	= 11 \rightarrow The SO2 in the gas mixture would be
	partly liquid. Calculation is terminated.

Range of validity:

Temperature t:	- 70 °C $\leq t \leq$ 3026.85 °C
Pressure <i>p</i> :	0.01 bar $\leq p \leq 1000$ bar
Partial pressures of CO ₂ and	d SO ₂ less than saturation pressures

Comments:

Iteration of *p* from s(p,t,comp) and calculation of *Region* from Region(p,t,comp)

Result for incorrect input values:

```
Region_tscomp_HuGas = 0
```

Gas	s - ideal part	s - real part
Ar	[10]	[11]
Ne	[10]	-
N ₂	[10]	[12]
O ₂	[10]	[13]
CO	[10]	-
CO ₂	[10]	[14]
H ₂ O	[10]	[15]
SO ₂	[10]	-

Density $\rho = f(p, t, type, comp(1:8))$

Function Name:

rho_ptcomp_HuGas

Input values:

Result:

rho_ptcomp_HuGas - Density in kg/m³

Range of validity:

Temperature t:	$-70 ^{\circ}\text{C} \leq t \leq 3026.85 ^{\circ}\text{C}$	
Pressure <i>p</i> :	0.01 bar $\leq p \leq 1000$ bar	
Partial pressures of CO_2 and SO_2 less than saturation pressures		

Comments:

Calculation:

- for unsaturated and saturated humid gas ($\psi_w \leq \psi_{w,sat}$) as ideal mixture of real fluids

- for fog ($\psi_w > \psi_{w,sat}$) as ideal mixture of saturated humid gas and liquid water or water ice

Result for incorrect input values:

rho_ptcomp_HuGas = $-1 \cdot 10^{100}$

Gas	ho - ideal part	ho - real part	ice
Ar	[10]	[11]	-
Ne	[10]	-	-
N ₂	[10]	[12]	-
0 ₂	[10]	[13]	-
CO	[10]	-	-
CO ₂	[10]	[14]	-
H ₂ O	[10]	[15]	[9]
SO ₂	[10]	-	-

Specific Entropy *s* = f(*p*,*h*,type,comp(1:8))

Function Name:

s_phcomp_HuGas

Input values:

 $\begin{array}{ll} p & - \mbox{Pressure p in bar} \\ h & - \mbox{Specific enthalpy h in kJ/kg} \\ \mbox{type} & = 0 \ \rightarrow \ \mbox{composition as mole fraction} \\ & = 1 \ \rightarrow \ \mbox{composition as mass fraction} \\ \mbox{comp} & - \ \mbox{Vector of composition (Ar, Ne, N_2, O_2, CO, CO_2, H_2O, SO_2)} \end{array}$

Result:

s_phcomp_HuGas - Specific entropy in kJ/(kg K)

Range of validity:

Temperature t:	$-70 ^{\circ}\text{C} \leq t \leq 3026.85 ^{\circ}\text{C}$
Pressure <i>p</i> :	0.01 bar $\le p \le 1000$ bar
Partial pressures of CO ₂ and	$d SO_2$ less than saturation pressures

Comments:

Iteration of *t* from h(p,t,comp) and calculation of *s* from s(p,t,comp) Calculation:

- for unsaturated and saturated humid gas ($\psi_w \leq \psi_{w,sat}$) as ideal mixture of real fluids
- for fog ($\psi_w > \psi_{w,sat}$) as ideal mixture of saturated humid gas and liquid water or water ice
- Effects of dissociation are considered for temperatures greater than 500 °C

Result for incorrect input values:

 $s_phcomp_HuGas = -1.10^{100}$

Gas	h,s - ideal part	h,s - real part	ice
Ar	[10]	[11]	-
Ne	[10]	-	-
N ₂	[10]	[12]	-
O ₂	[10]	[13]	-
CO	[10]	-	-
CO ₂	[10]	[14]	-
H ₂ O	[10]	[15]	[9]
SO ₂	[10]	-	-

Specific Entropy s = f(p,t,type,comp(1:8))

Function Name:

s_ptcomp_HuGas

Input values:

p - Pressure *p* in bar

t - Temperature t in °C

type $= 0 \rightarrow$ composition as mole fraction

= 1 \rightarrow composition as mass fraction

comp - Vector of composition (Ar, Ne, N₂, O₂, CO, CO₂, H₂O, SO₂)

Result:

s_ptcomp_HuGas - Specific entropy in kJ/(kg K)

Range of validity:

Temperature t:	$-70 ^{\circ}\text{C} \leq t \leq 3026.85 ^{\circ}\text{C}$
Pressure <i>p</i> :	0.01 bar $\leq p \leq 1000$ bar
Partial pressures of CO2 and	$d SO_2$ less than saturation pressures

Comments:

Calculation:

- for unsaturated and saturated humid gas ($\psi_w \leq \psi_{w,sat}$) as ideal mixture of real fluids
- for fog ($\psi_w > \psi_{w,sat}$) as ideal mixture of saturated humid gas and liquid water or water ice
- Effects of dissociation are considered for temperatures greater than 500 °C

Result for incorrect input values:

 $s_ptcomp_HuGas = -1.10^{100}$

Gas	s - ideal part	<i>s</i> - real part	ice
Ar	[10]	[11]	-
Ne	[10]	-	-
N ₂	[10]	[12]	-
0 ₂	[10]	[13]	-
CO	[10]	-	-
CO ₂	[10]	[14]	-
H ₂ O	[10]	[15]	[9]
SO ₂	[10]	-	-

Function Name:

Sigmaw_t_HuGas

Input values:

- Temperature t in °C

Result:

Sigmaw_t_HuGas - Surface tension of water σ_w in N/m

Range of validity:

Temperature t: $0 \degree C \le t \le 373.946 \degree C$

Comments:

Calculation for pure water from IAPWS-IF97

Result for incorrect input values:

sigmaw_t_HuGas = $-1 \cdot 10^{100}$

References: [5]

Temperature *t* = f(*h*,s,type,comp(1:8))

Function Name:

t_hscomp_HuGas

Input values:

h - Specific enthalpy *h* in kJ/kg s - Specific entropy *s* in kJ/(kg K) type = $0 \rightarrow$ composition as mole fraction

= 1 \rightarrow composition as mass fraction

comp - Vector of composition (Ar, Ne, N₂, O₂, CO, CO₂, H₂O, SO₂)

Result:

t_hscomp_HuGas - Temperature t in °C

Range of validity:

Temperature t:	- 70 °C $\leq t \leq$ 3026.85 °C
Pressure <i>p</i> :	0.01 bar $\leq p \leq 1000$ bar
Partial pressures of CO2 and	d SO ₂ less than saturation pressures

Comments:

Iteration of p and t from h(p,t,comp) and s(p,t,comp)

Calculation:

- for unsaturated and saturated humid gas ($\psi_w \leq \psi_{w,sat}$) as ideal mixture of real fluids

- for fog ($\psi_w > \psi_{w,sat}$) as ideal mixture of saturated humid gas and liquid water or water ice
- Effects of dissociation are considered for temperatures greater than 500 °C

Result for incorrect input values:

t_hscomp_HuGas = $-1 \cdot 10^{100}$

Gas	h,s - ideal part	h,s - real part
Ar	[10]	[11]
Ne	[10]	-
N ₂	[10]	[12]
O ₂	[10]	[13]
CO	[10]	-
CO ₂	[10]	[14]
H ₂ O	[10]	[15]
SO ₂	[10]	-

Temperature *t* = f(*p*,*h*,type,comp(1:8))

Function Name:

t_phcomp_HuGas

Input values:

 $\begin{array}{ll} p & -\operatorname{Pressure} p \text{ in bar} \\ h & -\operatorname{Specific enthalpy} h \text{ in kJ/kg} \\ \text{type} & = 0 \rightarrow \text{ composition as mole fraction} \\ & = 1 \rightarrow \text{ composition as mass fraction} \\ \text{comp} & -\operatorname{Vector of composition} (\operatorname{Ar}, \operatorname{Ne}, \operatorname{N}_2, \operatorname{O}_2, \operatorname{CO}, \operatorname{CO}_2, \operatorname{H}_2\operatorname{O}, \operatorname{SO}_2) \end{array}$

Result:

t_phcomp_HuGas - Temperature in °C

Range of validity:

Temperature t:	$-70 ^{\circ}\text{C} \leq t \leq 3026.85 ^{\circ}\text{C}$
Pressure <i>p</i> :	0.01 bar $\leq p \leq 1000$ bar
Partial pressures of CO_2 and SO_2 less than saturation pressures	

Comments:

Iteration of *t* from h(p,t,comp)

Calculation:

- for unsaturated and saturated humid gas ($\psi_w \leq \psi_{w,sat}$) as ideal mixture of real fluids
- for fog ($\psi_w > \psi_{w,sat}$) as ideal mixture of saturated humid gas and liquid water or water ice
- Effects of dissociation are considered for temperatures greater than 500 °C

Result for incorrect input values:

 $t_phcomp_HuGas = -1 \cdot 10^{100}$

Gas	h - ideal part	<i>h</i> - real part
Ar	[10]	[11]
Ne	[10]	-
N ₂	[10]	[12]
O ₂	[10]	[13]
CO	[10]	-
CO ₂	[10]	[14]
H ₂ O	[10]	[15]
SO ₂	[10]	-

Temperature *t* = f(*p*, *s*, type, comp(1:8))

Function Name:

t_pscomp_HuGas

Input values:

 $\begin{array}{ll} p & - \mbox{Pressure p in bar} \\ s & - \mbox{Specific entropy s in kJ/(kg K)} \\ type & = 0 \ \rightarrow \ composition \ as mole \ fraction \\ & = 1 \ \rightarrow \ composition \ as \ mass \ fraction \\ comp & - \ Vector \ of \ composition \ (Ar, \ Ne, \ N_2, \ O_2, \ CO, \ CO_2, \ H_2O, \ SO_2) \end{array}$

Result:

t_pscomp_HuGas - Temperature t in °C

Range of validity:

Temperature t:	$-70 ^{\circ}\text{C} \leq t \leq 3026.85 ^{\circ}\text{C}$
Pressure <i>p</i> :	0.01 bar $\leq p \leq 1000$ bar
Partial pressures of CO_2 and SO_2 less than saturation pressures	

Comments:

Iteration of *t* from s(p,t,comp)

Calculation:

- for unsaturated and saturated humid gas ($\psi_w \leq \psi_{w,sat}$) as ideal mixture of real fluids

- for fog ($\psi_w > \psi_{w,sat}$) as ideal mixture of saturated humid gas and liquid water or water ice

- Effects of dissociation are considered for temperatures greater than 500 °C

Result for incorrect input values:

 $t_pscomp_HuGas = -1.10^{100}$

Gas	h,s - ideal part	h,s - real part
Ar	[10]	[11]
Ne	[10]	-
N ₂	[10]	[12]
O ₂	[10]	[13]
CO	[10]	-
CO ₂	[10]	[14]
H ₂ O	[10]	[15]
SO ₂	[10]	-

Dew Point Temperature of Water $t_{w,dew} = f(p,type,comp(1:8))$

Function Name:

twdew_pcomp_HuGas

Input values:

Result:

twdew_pcomp_HuGas - Dew point temperature of water $t_{w,dew}$ in °C

Range of validity:

Temperature t:	$-70 ^{\circ}\text{C} \leq t \leq 3026.85 ^{\circ}\text{C}$
Pressure <i>p</i> :	0.01 bar $\leq p \leq 1000$ bar
Partial pressures of CO ₂ and	$d SO_2$ less than saturation pressures

Comments:

Dew point temperature of water $t_{w,dew} = t_s(p, p_d)$ for $t \ge 0.01 \text{ °C}$ $(t_s - \text{Saturation temperatureof water in gas mixtures})$ $t_{w,dew} = t_{sub}(p, p_d)$ for t < 0.01 °C $(t_{sub} - \text{Sublimation temperature of water in gas mixtures})$

Result for incorrect input values:

twdew_pcomp_HuGas = $-1 \cdot 10^{100}$

References:

 $t_s(p, p_d)$ for $t \ge 0.01$ °C from IAPWS-IF97 [1], [2], [3], [4] $t_{sub}(p, p_d)$ for t < 0.01 °C from IAPWS-92 [8]

Internal Energy *u* = f(*p*,*t*,type,comp(1:8))

Function Name:

u_ptcomp_HuGas

Input values:

p - Pressure *p* in bar

t - Temperature t in °C

type $= 0 \rightarrow$ composition as mole fraction

= 1 \rightarrow composition as mass fraction

comp - Vector of composition (Ar, Ne, N₂, O₂, CO, CO₂, H₂O, SO₂)

Result:

u_ptcomp_HuGas - Internal energy in kJ/kg

Range of validity:

Temperature t:	$-70 ^{\circ}\text{C} \leq t \leq 3026.85 ^{\circ}\text{C}$
Pressure <i>p</i> :	0.01 bar $\leq p \leq 1000$ bar
Partial pressures of CO_2 and SO_2 less than saturation pressures	

Comments:

Calculation:

- for unsaturated and saturated humid gas ($\psi_w \leq \psi_{w,sat}$) as ideal mixture of real fluids
- for fog ($\psi_w > \psi_{w,sat}$) as ideal mixture of saturated humid gas and liquid water or water ice
- Effects of dissociation are considered for temperatures greater than 500 °C

Result for incorrect input values:

u_ptcomp_HuGas = $-1 \cdot 10^{100}$

Gas	<i>u</i> - ideal part	<i>u</i> - real part	ice
Ar	[10]	[11]	-
Ne	[10]	-	-
N ₂	[10]	[12]	-
0 ₂	[10]	[13]	-
CO	[10]	-	-
CO ₂	[10]	[14]	-
H ₂ O	[10]	[15]	[9]
SO ₂	[10]	-	-

Specific Volume v = f(h, s, type, comp(1:8))

Function Name:

v_hscomp_HuGas

Input values:

h - Specific enthalpy *h* in kJ/kg

s - Specific entropy s in kJ/(kg K)

type $= 0 \rightarrow$ composition as mole fraction

= 1 \rightarrow composition as mass fraction

comp - Vector of composition (Ar, Ne, N₂, O₂, CO, CO₂, H₂O, SO₂)

Result:

v_hscomp_HuGas - Specific volume in m³/kg

Range of validity:

Temperature t:	$-70 ^{\circ}\text{C} \leq t \leq 3026.85 ^{\circ}\text{C}$
Pressure <i>p</i> :	0.01 bar $\le p \le 1000$ bar
Partial pressures of CO_2 and SO_2 less than saturation pressures	

Comments:

Iteration of p and t from h(p,t,comp) and s(p,t,comp) and calculation of v from v(p,t,comp) Calculation:

- for unsaturated and saturated humid gas ($\psi_w \leq \psi_{w,sat}$) as ideal mixture of real fluids

- for fog ($\psi_w > \psi_{w,sat}$) as ideal mixture of saturated humid gas and liquid water or water ice

Result for incorrect input values:

 $v hscomp HuGas = -1 \cdot 10^{100}$

Gas	<i>v,h,s</i> - ideal part	<i>v,h,s</i> - real part
Ar	[10]	[11]
Ne	[10]	-
N ₂	[10]	[12]
0 ₂	[10]	[13]
CO	[10]	-
CO ₂	[10]	[14]
H ₂ O	[10]	[15]
SO ₂	[10]	-

Specific Volume v = f(p,h,type,comp(1:8))

Function Name:

v_phcomp_HuGas

Input values:

p - Pressure *p* in bar h - Specific enthalpy *h* in kJ/kg type = 0 → composition as mole fraction = 1 → composition as mass fraction

comp - Vector of composition (Ar, Ne, N₂, O₂, CO, CO₂, H₂O, SO₂)

Result:

v_phcomp_HuGas - Specific volume in m3/kg

Range of validity:

Temperature t:	- 70 °C $\leq t \leq$ 3026.85 °C
Pressure <i>p</i> :	0.01 bar $\leq p \leq 1000$ bar
Partial pressures of CO2 and	d SO ₂ less than saturation pressures

Comments:

Iteration of *t* from h(p,t,comp) and calculation of *v* from v(p,t,comp)

Calculation:

- for unsaturated and saturated humid gas ($\psi_w \leq \psi_{w,sat}$) as ideal mixture of real fluids

- for fog ($\psi_w > \psi_{w,sat}$) as ideal mixture of saturated humid gas and liquid water or water ice

Result for incorrect input values:

v_phcomp_HuGas = $-1 \cdot 10^{100}$

Gas	<i>v,h</i> - ideal part	<i>v,h</i> - real part
Ar	[10]	[11]
Ne	[10]	-
N ₂	[10]	[12]
O ₂	[10]	[13]
CO	[10]	-
CO ₂	[10]	[14]
H ₂ O	[10]	[15]
SO ₂	[10]	-

Specific Volume v = f(p,s,type,comp(1:8))

Function Name:

v_pscomp_HuGas

Input values:

p- Pressure p in bars- Specific entropy s in kJ/(kg K)type= 0 \rightarrow composition as mole fraction= 1 \rightarrow composition as mass fraction

comp - Vector of composition (Ar, Ne, N₂, O₂, CO, CO₂, H₂O, SO₂)

Result:

v_pscomp_HuGas - Specific volume in m3/kg

Range of validity:

Temperature t:	$-70 ^{\circ}\text{C} \leq t \leq 3026.85 ^{\circ}\text{C}$		
Pressure <i>p</i> :	0.01 bar $\leq p \leq 1000$ bar		
Partial pressures of CO_2 and SO_2 less than saturation pressures			

Comments:

Iteration of *t* from s(p,t,comp) and calculation of *v* from v(p,t,comp)

Calculation:

- for unsaturated and saturated humid gas ($\psi_{w} \leq \psi_{w,sat}$) as ideal mixture of real fluids

- for fog ($\psi_w > \psi_{w,sat}$) as ideal mixture of saturated humid gas and liquid water or water ice

Result for incorrect input values:

 $v_pscomp_HuGas = -1.10^{100}$

Gas	<i>v,s</i> - ideal part	<i>v,s</i> - real part
Ar	[10]	[11]
Ne	[10]	-
N ₂	[10]	[12]
O ₂	[10]	[13]
CO	[10]	-
CO ₂	[10]	[14]
H ₂ O	[10]	[15]
SO ₂	[10]	-

Specific Volume v = f(p,t,type,comp(1:8))

Function Name:

v_ptcomp_HuGas

Input values:

p - Pressure *p* in bar

t - Temperature t in °C

type $= 0 \rightarrow$ composition as mole fraction

= 1 \rightarrow composition as mass fraction

comp - Vector of composition (Ar, Ne, N₂, O₂, CO, CO₂, H₂O, SO₂)

Result:

v_ptcomp_HuGas - Specific volume in m3/kg

Range of validity:

Temperature t:	$-70 ^{\circ}\text{C} \leq t \leq 3026.85 ^{\circ}\text{C}$		
Pressure <i>p</i> :	0.01 bar $\leq p \leq 1000$ bar		
Partial pressures of CO_2 and SO_2 less than saturation pressures			

Comments:

Calculation:

- for unsaturated and saturated humid gas ($\psi_w \leq \psi_{w,sat}$) as ideal mixture of real fluids

- for fog ($\psi_w > \psi_{w,sat}$) as ideal mixture of saturated humid gas and liquid water or water ice

Result for incorrect input values:

v_ptcomp_HuGas = $-1 \cdot 10^{100}$

Gas	<i>v</i> - ideal part	v - real part	ice
Ar	[10]	[11]	-
Ne	[10]	-	-
N ₂	[10]	[12]	-
0 ₂	[10]	[13]	-
CO	[10]	-	-
CO ₂	[10]	[14]	-
H ₂ O	[10]	[15]	[9]
SO ₂	[10]	-	-

Specific Volume v = f(t,s,type,comp(1:8))

Function Name:

v_tscomp_HuGas

Input values:

t - Temperature *t* in °C

s - Specific entropy s in kJ/(kg K)

type $= 0 \rightarrow$ composition as mole fraction

= 1 \rightarrow composition as mass fraction

comp - Vector of composition (Ar, Ne, N₂, O₂, CO, CO₂, H₂O, SO₂)

Result:

v_tscomp_HuGas - Specific volume in m3/kg

Range of validity:

Temperature t:	$-70 ^{\circ}\text{C} \leq t \leq 3026.85 ^{\circ}\text{C}$
Pressure <i>p</i> :	0.01 bar $\leq p \leq 1000$ bar
Partial pressures of CO ₂ and	$d SO_2$ less than saturation pressures

Comments:

Iteration of p from s(p,t,comp) and calculation v from v(p,t,comp)

Calculation:

- for unsaturated and saturated humid gas ($\psi_w \leq \psi_{w,sat}$) as ideal mixture of real gases (dry gas and steam)
- for fog ($\psi_w > \psi_{w,sat}$) as ideal mixture of saturated humid gas and

liquid water or water ice, calculation is not possible for liquid-ice fog at 0.01 °C

Result for incorrect input values:

v_tscomp_HuGas = $-1 \cdot 10^{100}$

Gas	v,h,s ideal part	v,h,s real part	ice
Ar	[10]	[11]	-
Ne	[10]	-	-
N ₂	[10]	[12]	-
0 ₂	[10]	[13]	-
CO	[10]	-	-
CO ₂	[10]	[14]	-
H ₂ O	[10]	[15]	[9]
SO ₂	[10]	-	-

3/42

Isentropic Speed of Sound w = f(p, t, type, comp(1:8))

Function Name:

w_ptcomp_HuGas

Input values:

p - Pressure *p* in bar

t - Temperature *t* in °C

type $= 0 \rightarrow$ composition as mole fraction

= 1 \rightarrow composition as mass fraction

comp - Vector of composition (Ar, Ne, N₂, O₂, CO, CO₂, H₂O, SO₂)

Result:

w_ptcomp_HuGas - Isentropic speed of sound in m/s

Range of validity:

Temperature t:	$-70 ^{\circ}\text{C} \leq t \leq 3026.85 ^{\circ}\text{C}$
Pressure <i>p</i> :	0.01 bar $\leq p \leq 1000$ bar
Partial pressures of C	CO_2 and SO_2 less than saturation pressures

Comments:

Calculation:

- for unsaturated and saturated humid gas ($\psi_w \leq \psi_{w,sat}$)

$$W = \sqrt{-v^2 \cdot \left(\frac{\partial p}{\partial v}\right)_T \cdot \frac{c_p}{c_v}}$$

- for liquid fog ($\psi_w > \psi_{w,sat}$) as ideal mixture of saturated humid gas and liquid water

- for ice fog ($\psi_{\rm w}$ > $\psi_{\rm w,sat}$, t < 0.01 °C) as saturated humid gas mixture

Result for incorrect input values:

Gas	v, c_p , c_v - ideal part	v , c_p , c_v - real part
Ar	[10]	[11]
Ne	[10]	-
N ₂	[10]	[12]
O ₂	[10]	[13]
CO	[10]	-
CO ₂	[10]	[14]
H ₂ O	[10]	[15]
SO ₂	[10]	-

Humidity Ratio (Absolute Humidity) $x_w = f(type,comp(1:8))$

Function Name:

xw_comp_HuGas

Input values:

type $= 0 \rightarrow$ composition as mole fraction

= 1 \rightarrow composition as mass fraction

comp - Vector of composition (Ar, Ne, N₂, O₂, CO, CO₂, H₂O, SO₂)

Result:

xw_comp_HuGas - Humidity ratio in g_{Water}/kg_{Gas}

Comments:

Humidity ratio of water $x_{w} = \frac{\psi_{w}}{\frac{R_{w}}{R_{mix}} - \psi_{w}}$

Result for incorrect input values:

xw _ comp _ HuGas = $-1 \cdot 10^{100}$

Mole Fraction of Liquid Water $\psi_{wl} = f(p, t, type, comp(1:8))$

Function Name:

Psiwl_ptcomp_HuGas

Input values:

 $\begin{array}{ll} p & -\operatorname{Pressure} p \text{ in bar} \\ t & -\operatorname{Temperature} t \text{ in }^{\circ}\text{C} \\ \text{type} & = 0 \rightarrow \text{composition as mole fraction} \\ & = 1 \rightarrow \text{composition as mass fraction} \\ \text{comp} & -\operatorname{Vector} \text{ of composition (Ar, Ne, N_2, O_2, CO, CO_2, H_2O, SO_2)} \end{array}$

Result:

Psiwl_ptcomp_HuGas - Mole fraction of water in kmol/kmol

Range of validity:

Temperature t:	t_{τ} (p,comp) $\leq t \leq t_{s}(p,p_{d})$
	$(t_{s} - Saturation temperature of water in gas mixtures)$
Pressure <i>p</i> :	0.01 bar $\le p \le 1000$ bar

Comments:

Mole fraction of liquid water:

 $\psi_{wl} = \psi_w - \psi_{wsat}$

with
$$\psi_{\text{wsat}} = \frac{p_{\text{dsat}}(p,t)}{p}$$

with $p_{dsat}(p, t)$ for $t \ge 0.01 \text{ °C}$ – Vapour pressure of water in gas mixtures for t < 0.01 °C – Sublimation pressure of water in gas mixtures

Result for incorrect input values:

 $Psiwl_ptcomp_HuGas = -1 \cdot 10^{100}$

Reference:

 $p_{dsat}(p,t)$ for $t \ge 0.01$ °C from IAPWS-IF97 [1], [2], [3], [4] $p_{dsat}(p,t)$ for t < 0.01 °C from IAPWS-92 [8]

Function Name:

Psiwsat_ptcomp_HuGas

Input values:

p - Pressure *p* in bar

t - Temperature t in °C

type $= 0 \rightarrow$ composition as mole fraction

= 1 \rightarrow composition as mass fraction

comp - Vector of composition (Ar, Ne, N₂, O₂, CO, CO₂, H₂O, SO₂)

Result:

Psiwsat_ptcomp_HuGas – Mole fraction of water of saturated gas $\psi_{w,sat}$ in kmol/ kmol

Range of validity:

Temperature t:	$-70 \ ^{\circ}\text{C} \ \leq \ t \ \leq \ t_{s}(\rho, \rho_{d})$
	$(t_s - Saturation temperature of water in gas mixtures)$
Pressure <i>p</i> :	0.01 bar $\leq p \leq 1000$ bar

Comments:

Mole fraction of liquid water:	$\psi_{\text{wsat}} = \frac{\rho_{\text{dsat}}(\rho, t)}{\rho}$	

with $p_{dsat}(p,t)$ for $t \ge 0.01 \text{ °C}$ – Vapour pressure of water in gas mixtures for t < 0.01 °C – Sublimation pressure of water in gas mixtures

Result for incorrect input values:

Psiwsat_ptcomp_HuGas = $-1 \cdot 10^{100}$

Reference:

 $p_{dsat}(p,t)$ for $t \ge 0.01$ °C from IAPWS-IF97 [1], [2], [3], [4] $p_{dsat}(p,t)$ for t < 0.01 °C from IAPWS-92 [8]

3.2 Documentation of the Fortran Source Code of LibHuGas

Thermal Diffusivity *a* = f(*p*,*t*,type,comp) Name in Fortran: REAL*8 FUNCTION A_PT_HUGAS (REAL*8 P, REAL*8 T, INTEGER*4 TYPE, REAL*8 COMP) Input values: Ρ - Pressure p in bar т - Temperature t in °C TYPE - composition: TYPE=1 for composition as mass fraction ξ TYPE=0 for composition as mole fraction ψ COMP(0:8) - composition as mass fraction $\xi_1...\xi_8$ in kg/kg when TYPE=1 - composition as mole fraction ψ_1 ... ψ_8 in kmol/kmol when TYPE=0 COMP(0) - Dummy COMP(1)...COMP(8) mass or mole fraction of mixture components **Result:** a_pt_HuGas - Thermal diffusivity in m²/s Range of validity: $-70 \,^{\circ}\text{C} \leq t \leq 3026.85 \,^{\circ}\text{C}$ Temperature *t* : 0.01 bar $\leq p \leq 1000$ bar Pressure *p*: Partial pressures of CO₂ and SO₂ less than saturation pressures

Comments:

- Thermal diffusivity $a = \frac{\lambda}{\rho \cdot c_p}$, model of ideal mixture of real fluids

- Valid only for unsaturated humid gas ($\psi_{w} \leq \psi_{w,sat}$)

Result for incorrect input values:

$$a_pt_HuGas = -1.10^{100}$$

Gas	$ ho$, $c_{ m p}$ - ideal part	$ ho$, ${\it c_p}$ - real part	λ
Ar	[10]	[11]	[17]
Ne	[10]	-	[18],[19],[24],[25]
N ₂	[10]	[12]	[26]
0 ₂	[10]	[13]	[21]
CO	[10]	-	[22]
CO ₂	[10]	[14]	[27]
H ₂ O	[10]	[15]	[6]
SO ₂	[10]	-	[18],[19],[24]

Specific Isobaric Heat Capacity $c_p = f(h, s, type, comp)$

Name in Fortran:

REAL*8 FUNCTION CP_HS_HUGAS (REAL*8 H, REAL*8 S, INTEGER*4 TYPE, REAL*8 COMP)

Input values:

	H - Enthalpy <i>h</i> in kJ/kg		
	S - Entropy s in kJ/(kg K)		
	TYPE	- composition:	
		TYPE=1 for composition as mass fraction ξ	
		TYPE=0 for composition as mole fraction ψ	
	COMP(0:8)	- composition as mass fraction $\xi_1\xi_8$ in kg/kg when TYPE=1	
		- composition as mole fraction $\psi_1 \psi_8$ in kmol/kmol when TYPE=0	
		COMP(0) - Dummy	
		COMP(1)COMP(8) mass or mole fraction of mixture components	
Resu	ilt:		
	cp_hs_HuGa	 Specific isobaric heat capacity in kJ/(kg K) 	

Range of validity:

Temperature t:	- 70 °C $\leq t \leq$ 3026.85 °C			
Pressure <i>p</i> :	0.01 bar $\le p \le 1000$ bar			
Partial pressures of CO_2 and SO_2 less than saturation pressures				

Comments:

Iteration of *p* and *t* from h(p,t,type,comp) and s(p,t,type,comp) and calculation of c_p from $c_p(p,t,type,comp)$

Calculation:

- Valid only for unsaturated humid gas ($\psi_{\rm w} \leq \psi_{\rm w,sat}$)
- Effects of dissociation are considered for temperatures higher than 500 °C

Result for incorrect input values:

 $cp_hs_HuGas = -1.10^{100}$

Gas	<i>c_p,h</i> ,s - ideal part	<i>c_p,h,s</i> - real part
Ar	[10]	[11]
Ne	[10]	-
N ₂	[10]	[12]
O ₂	[10]	[13]
CO	[10]	-
CO ₂	[10]	[14]
H ₂ O	[10]	[15]
SO ₂	[10]	-

Specific Isobaric Heat Capacity $c_p = f(p,h,type,comp)$

Name in Fortran:

REAL*8 FUNCTION CP_PH_HUGAS (REAL*8 P, REAL*8 H, INTEGER*4 TYPE, REAL*8 COMP)

Input values:

P - Pressure <i>p</i> in bar
H - Enthalpy <i>h</i> in kJ/kg
TYPE - composition:
TYPE=1 for composition as mass fraction ξ
TYPE=0 for composition as mole fraction ψ
COMP(0:8) - composition as mass fraction $\xi_1\xi_8$ in kg/kg when TYPE=1
- composition as mole fraction $\psi_1 \dots \psi_8$ in kmol/kmol when TYPE=0
COMP(0) - Dummy
COMP(1)COMP(8) mass or mole fraction of mixture components

Result:

cp_ph_HuGas - Specific isobaric heat capacity in kJ/(kg K)

Range of validity:

Temperature t:	- 70 °C $\leq t \leq$ 3026.85 °C
Pressure <i>p</i> :	0.01 bar $\le p \le 1000$ bar
Partial pressures of CO ₂ and	d SO ₂ less than saturation pressures

Comments:

Iteration of *t* from h(p,t,type,comp) and calculation of c_p from $c_p(p,t,type,comp)$

Calculation:

- Valid only for unsaturated humid gas ($\psi_{\rm w} \leq \psi_{\rm w,sat}$)

- Effects of dissociation are considered for temperatures higher than 500 °C

Result for incorrect input values:

 $cp_ph_HuGas = -1.10^{100}$

Gas	<i>c_p,h</i> - ideal part	<i>c_p,h</i> - real part
Ar	[10]	[11]
Ne	[10]	-
N ₂	[10]	[12]
O ₂	[10]	[13]
CO	[10]	-
CO ₂	[10]	[14]
H ₂ O	[10]	[15]
SO ₂	[10]	-

Specific Isobaric Heat Capacity $c_p = f(p, s, type, comp)$

- Pressure *p* in bar

Name in Fortran:

REAL*8 FUNCTION CP_PS_HUGAS (REAL*8 P, REAL*8 S, INTEGER*4 TYPE, REAL*8 COMP)

Input values:

S - Entr	opy s in kJ/(kg K)
TYPE	- composition: TYPE=1 for composition as mass fraction ξ TYPE=0 for composition as mole fraction ψ
COMP(0:8)	 composition as mass fraction ξ₁ξ₈ in kg/kg when TYPE=1 composition as mole fraction ψ₁ ψ₈ in kmol/kmol when TYPE=0 COMP(0) - Dummy COMP(1)COMP(8) mass or mole fraction of mixture components
14 -	

Result:

cp_ps_HuGas - Specific isobaric heat capacity in kJ/(kg K)

Range of validity:

Temperature t:	$-70 ^{\circ}\text{C} \leq t \leq 3026.85 ^{\circ}\text{C}$
Pressure <i>p</i> :	0.01 bar $\le p \le 1000$ bar
Partial pressures of CO ₂ and	d SO_2 less than saturation pressures

Comments:

Iteration of *t* from s(p,t,type,comp) and calculation of c_p from c_p(p,t,type,comp)

Calculation:

- Valid only for unsaturated humid gas ($\psi_{\rm w} \leq \psi_{\rm w,sat}$)

- Effects of dissociation are considered for temperatures higher than 500 °C

Result for incorrect input values:

 $cp_ps_HuGas = -1.10^{100}$

Gas	<i>c_p</i> ,s - ideal part	<i>c_p</i> ,s - real part
Ar	[10]	[11]
Ne	[10]	-
N ₂	[10]	[12]
0 ₂	[10]	[13]
CO	[10]	-
CO ₂	[10]	[14]
H ₂ O	[10]	[15]
SO ₂	[10]	-

Specific Isobaric Heat Capacity *c*_p = f(*p*,*t*,type,comp)

Name in Fortran:

REAL*8 FUNCTION CP_PT _HUGAS (REAL*8 P, REAL*8 T, INTEGER*4 TYPE, REAL*8 COMP)

Input values:

Т	- Temperature	t in	°C
---	---------------	------	----

TYPE	- composition:
	TYPE=1 for composition as mass fraction ξ
	TYPE=0 for composition as mole fraction ψ
COMP(0:8)	- composition as mass fraction $\xi_1\xi_8$ in kg/kg when TYPE=1
	- composition as mole fraction ψ_1 ψ_8 in kmol/kmol when TYPE=0
	COMP(0) - Dummy
	COMP(1)COMP(8) mass or mole fraction of mixture components

Result:

cp_pt_HuGas - Specific isobaric heat capacity in kJ/(kg K)

Range of validity:

Temperature t:	- 70 °C $\leq t \leq$ 3026.85 °C
Pressure <i>p</i> :	0.01 bar $\le p \le 1000$ bar
Partial pressures of CO ₂ and	d SO ₂ less than saturation pressures

Comments:

Calculation:

- Valid only for unsaturated humid gas ($\psi_{w} \leq \psi_{w,sat}$)

- Effects of dissociation are considered for temperatures higher than 500 °C

Result for incorrect input values:

 $cp_pt_HuGas = -1.10^{100}$

Gas	c_p - ideal part	c_p - real part
Ar	[10]	[11]
Ne	[10]	-
N ₂	[10]	[12]
O ₂	[10]	[13]
CO	[10]	-
CO ₂	[10]	[14]
H ₂ O	[10]	[15]
SO ₂	[10]	-

Specific Isobaric Heat Capacity *c*_p = f(*t*, s, type, comp)

Name in Fortran:

REAL*8 FUNCTION CP_T S_HUGAS (REAL*8 T, REAL*8 S, INTEGER*4 TYPE, REAL*8 COMP)

Input values:

T - Temperature t in °C
S - Entropy s in kJ/(kg K)
TYPE- composition:TYPE=1 for composition as mass fraction ξ TYPE=0 for composition as mole fraction ψ
COMP(0:8) - composition as mass fraction ξ ₁ ξ ₈ in kg/kg when TYPE=1 - composition as mole fraction ψ ₁ ψ ₈ in kmol/kmol when TYPE=0 COMP(0) - Dummy COMP(1)COMP(8) mass or mole fraction of mixture components

Result:

cp_ts_HuGas - Specific isobaric heat capacity in kJ/(kg K)

Range of validity:

Temperature t:	$-70 ^{\circ}\text{C} \leq t \leq 3026.85 ^{\circ}\text{C}$
Pressure <i>p</i> :	0.01 bar $\le p \le 1000$ bar
Partial pressures of CO ₂ and	d SO ₂ less than saturation pressures

Comments:

Iteration of p from s(p,t,type,comp) and calculation of c_p from c_p(p,t,type,comp)

Calculation:

- Valid only for unsaturated humid gas ($\psi_{\rm w} \leq \psi_{\rm w,sat}$)

- Effects of dissociation are considered for temperatures higher than 500 °C

Result for incorrect input values:

cp_ts_HuGas = -1.10^{100}

Gas	<i>c_p</i> ,s - ideal part	<i>c_p</i> ,s - real part
Ar	[10]	[11]
Ne	[10]	-
N ₂	[10]	[12]
O ₂	[10]	[13]
CO	[10]	-
CO ₂	[10]	[14]
H ₂ O	[10]	[15]
SO ₂	[10]	-

Specific Isochoric Heat Capacity $c_v = f(p, t, type, comp)$

Name in Fortran:

REAL*8 FUNCTION CV_PT _HUGAS (REAL*8 P, REAL*8 T, INTEGER*4 TYPE, REAL*8 COMP)

Input values:

P - Pressure p ir	ו bar
-------------------	-------

Т	- Temperature	t in	°C
---	---------------	------	----

TYPE	- composition:
	TYPE=1 for composition as mass fraction ξ
	TYPE=0 for composition as mole fraction ψ
COMP(0:8)	- composition as mass fraction $\xi_1\xi_8$ in kg/kg when TYPE=1
	- composition as mole fraction ψ_1 ψ_8 in kmol/kmol when TYPE=0
	COMP(0) - Dummy
	COMP(1)COMP(8) mass or mole fraction of mixture components

Result:

cv_pt_HuGas - Specific isochoric heat capacity in kJ/(kg K)

Range of validity:

Temperature t:	- 70 °C $\leq t \leq$ 3026.85 °C
Pressure <i>p</i> :	0.01 bar $\le p \le 1000$ bar
Partial pressures of CO ₂ and	d SO ₂ less than saturation pressures

Comments:

Calculation:

- Valid only for unsaturated humid gas ($\psi_{w} \leq \psi_{w,sat}$)

- Effects of dissociation are considered for temperatures higher than 500 °C

Result for incorrect input values:

 $cv_pt_HuGas = -1.10^{100}$

Gas	c_{v} - ideal part	c_v - real part
Ar	[10]	[11]
Ne	[10]	-
N ₂	[10]	[12]
0 ₂	[10]	[13]
CO	[10]	-
CO ₂	[10]	[14]
H ₂ O	[10]	[15]

REAL*8 FUNCTION ETA_PT_HUGAS (REAL*8 P, REAL*8 T, INTEGER*4 TYPE, REAL*8 COMP)

Input values:

P - Pressure <i>p</i> in bar		
T - Tem	perature t in °C	
TYPE	- composition: TYPE=1 for composition as mass fraction ξ TYPE=0 for composition as mole fraction ψ	
COMP(0:8)	 composition as mass fraction ξ₁ξ₈ in kg/kg when TYPE=1 composition as mole fraction ψ₁ ψ₈ in kmol/kmol when TYPE=0 COMP(0) - Dummy COMP(1)COMP(8) mass or mole fraction of mixture components 	

Result:

eta_pt_HuGas	- Dynamic viscosity in Pa s
--------------	-----------------------------

Range of validity:

Temperature t:	$-70 ^{\circ}\text{C} \leq t \leq 3026.85 ^{\circ}\text{C}$
Pressure <i>p</i> :	0.01 bar $\le p \le 1000$ bar
Partial pressures of CO ₂ and	d SO_2 less than saturation pressures

Comments:

Calculation:

- for unsaturated and saturated humid gas ($\psi_w \leq \psi_{w,sat}$) as ideal mixture of real fluids
- for liquid fog ($\psi_w > \psi_{w,sat}$) as ideal mixture of saturated humid gas and liquid water
- for ice fog ($\psi_w > \psi_{w,sat}$, t < 0.01 °C) as saturated humid gas mixture

Result for incorrect input values:

eta_pt_HuGas = -1.10^{100}

Gas	η
Ar	[17]
Ne	[18]
N ₂	[20]
O ₂	[21]
CO	[22]
CO ₂	[23]
H ₂ O	[7]
SO ₂	[18]

REAL*8 FUNCTION H_PS_HUGAS (REAL*8 P, REAL*8 S, INTEGER*4 TYPE, REAL*8 COMP) Input values:

Ρ - Pressure p in bar - Entropy s in kJ/(kg K) S TYPE - composition: TYPE=1 for composition as mass fraction ξ TYPE=0 for composition as mole fraction ψ - composition as mass fraction $\xi_1...\xi_8$ in kg/kg when TYPE=1 COMP(0:8) - composition as mole fraction $\psi_1 \dots \psi_8$ in kmol/kmol when TYPE=0 COMP(0) - Dummy COMP(1)...COMP(8) mass or mole fraction of mixture components **Result:** h_ps_HuGas - Specific enthalpy in kJ/kg Range of validity: 2026 05 00

l'emperature t:	-70 °C $\leq t \leq 3026.85$ °C
Pressure <i>p</i> :	0.01 bar $\le p \le 1000$ bar
Partial pressures of CO ₂ and	d SO ₂ less than saturation pressures

Comments:

Iteration of *t* from s(p,t,type,comp) and calculation of *h* from h(p,t,type,comp) Calculation:

- for unsaturated and saturated humid gas ($\psi_w \leq \psi_{w,sat}$) as ideal mixture of real fluids

- for fog ($\psi_w > \psi_{w,sat}$) as ideal mixture of saturated humid gas and liquid water or water ice
- Effects of dissociation are considered for temperatures higher than 500 °C

Result for incorrect input values:

 $h_ps_HuGas = -1.10^{100}$

Gas	h,s - ideal part	h,s - real part	Ice
Ar	[10]	[11]	-
Ne	[10]	-	-
N ₂	[10]	[12]	-
0 ₂	[10]	[13]	-
CO	[10]	-	-
CO ₂	[10]	[14]	-
H ₂ O	[10]	[15]	[9]
SO ₂	[10]	-	-

Specific Enthalpy *h* = f(*p*,*t*,type,comp)

Name in Fortran:

REAL*8 FUNCTION H_PT_HUGAS (REAL*8 P, REAL*8 T, INTEGER*4 TYPE, REAL*8 COMP)

Input values:

P - P	ressure p	in bar
-------	-----------	--------

Т	- Temperature t in °C	

TYPE	- composition:
	TYPE=1 for composition as mass fraction ξ
	TYPE=0 for composition as mole fraction ψ
COMP(0:8)	- composition as mass fraction $\xi_1\xi_8$ in kg/kg when TYPE=1
	- composition as mole fraction ψ_1 ψ_8 in kmol/kmol when TYPE=0
	COMP(0) - Dummy
	COMP(1)COMP(8) mass or mole fraction of mixture components
14.	

Result:

h_pt_HuGas	 Specific enthalpy in kJ/kg
n_pt_nuGas	- Specific entitalpy in KJ/Kg

Range of validity:

Temperature t:	- 70 °C $\leq t \leq$ 3026.85 °C
Pressure <i>p</i> :	0.01 bar $\leq p \leq 1000$ bar
Partial pressures of CO ₂ an	d SO ₂ less than saturation pressures

Comments:

Calculation:

- for unsaturated and saturated humid gas ($\psi_w \leq \psi_{w,sat}$) as ideal mixture of real fluids

- for fog (ψ_w > $\psi_{w,sat}$) as ideal mixture of saturated humid gas and liquid water or water ice
- Effects of dissociation are considered for temperatures higher than 500 °C

Result for incorrect input values:

 $h_{t_{100}}$ h_pt_HuGas = -1.10¹⁰⁰

Gas	h - ideal part	h - real part	ice
Ar	[10]	[11]	-
Ne	[10]	-	-
N ₂	[10]	[12]	-
O ₂	[10]	[13]	-
CO	[10]	-	-
CO ₂	[10]	[14]	-
H ₂ O	[10]	[15]	[9]
SO ₂	[10]	-	-

Specific Enthalpy *h* = f(*t*, *s*, type, comp)

Name in Fortran:

REAL*8 FUNCTION H_TS_HUGAS (REAL*8 T, REAL*8 S, INTEGER*4 TYPE, REAL*8 COMP) Input values:

T - Temperature t in °C S - Entropy s in kJ/(kg K) TYPE - composition: TYPE=1 for composition as mass fraction ξ TYPE=0 for composition as mole fraction ψ COMP(0:8) - composition as mass fraction ξ1...ξ8 in kg/kg when TYPE=1 - composition as mole fraction ψ1... ψ8 in kmol/kmol when TYPE=0 COMP(0) - Dummy COMP(0) - Dummy COMP(1)...COMP(8) mass or mole fraction of mixture components

Result:

h_ts_HuGas - Specific enthalpy in kJ/kg

Range of validity:

Temperature t:	$-70 ^{\circ}\text{C} \leq t \leq 3026.85 ^{\circ}\text{C}$
Pressure <i>p</i> :	0.01 bar $\leq p \leq 1000$ bar
Partial pressures of CO ₂ an	d SO ₂ less than saturation pressures

Comments:

Iteration of *p* from s(p,t,type,comp) and calculation h from h(p,t,type,comp) Calculation:

- for unsaturated and saturated humid gas ($\psi_w \leq \psi_{w,sat}$) as ideal mixture of real gases (dry gas and steam)
- for fog ($\psi_w > \psi_{w,sat}$) as ideal mixture of saturated humid gas and liquid water or water ice, calculation is not possible for liquid-ice fog at 0.01 °C
- Effects of dissociation are considered for temperatures higher than 500 °C

Result for incorrect input values:

h_ts_HuGas = -1.10^{100}

Gas	h,s - ideal part	h,s - real part	ice	
Ar	[10]	[11]	-	_
Ne	[10]	-	-	
N ₂	[10]	[12]	-	
0 ₂	[10]	[13]	-	
CO	[10]	-	-	
CO ₂	[10]	[14]	-	
H ₂ O	[10]	[15]	[9]	
SO ₂	[10]	-	-	

Isentropic Exponent $\kappa = f(p, t, type, comp)$

Name in Fortran:

REAL*8 FUNCTION KAPPA_PT_HUGAS (REAL*8 P, REAL*8 T, INTEGER*4 TYPE,

REAL*8 COMP)

Input values:

- P Pressure *p* in bar
- T Temperature *t* in °C

TYPE - composition:

TYPE=1 for composition as mass fraction ξ

TYPE=0 for composition as mole fraction ψ

- COMP(0:8) composition as mass fraction ξ1...ξ8 in kg/kg when TYPE=1
 composition as mole fraction ψ1... ψ8 in kmol/kmol when TYPE=0
 COMP(0) Dummy
 - COMP(1)...COMP(8) mass or mole fraction of mixture components

Result:

Kappa_pt_HuGas - Isentropic exponent

Range of validity:

Temperature <i>t</i> :	$-70 ^{\circ}\text{C} \leq t \leq 3026.85 ^{\circ}\text{C}$
Pressure <i>p</i> :	0.01 bar $\leq p \leq 1000$ bar

Partial pressures of CO_2 and SO_2 less than saturation pressures

Comments:

Calculation:

- for unsaturated and saturated humid gas ($\psi_w \leq \psi_{w,sat}$)

$$\kappa = -\frac{v}{p} \cdot \left(\frac{\partial p}{\partial v}\right)_T \cdot \frac{c_p}{c_v}$$

- for liquid fog ($\psi_w > \psi_{w,sat}$) as ideal mixture of saturated humid gas and liquid water

- for ice fog ($\psi_w > \psi_{w,sat}$, t < 0.01 °C) as saturated humid gas mixture

Result for incorrect input values:

Kappa_pt_HuGas = -1.10^{100}

Gas	v, c_p , c_v - ideal part	v, c_p , c_v - real part
Ar	[10]	[11]
Ne	[10]	-
N ₂	[10]	[12]
O ₂	[10]	[13]
CO	[10]	-
CO ₂	[10]	[14]
H ₂ O	[10]	[15]
SO ₂	[10]	-

Isentropic Exponent $\kappa = f(p, s, type, comp)$

Name in Fortran:

REAL*8 FUNCTION KAPPA_PS_HUGAS (REAL*8 P, REAL*8 S, INTEGER*4 TYPE,

REAL*8 COMP)

Input values:

- P Pressure *p* in bar
- S Entropy s in kJ/(kg K)

TYPE - composition:

TYPE=1 for composition as mass fraction ξ

TYPE=0 for composition as mole fraction ψ

- COMP(0:8) composition as mass fraction $\xi_1...\xi_8$ in kg/kg when TYPE=1
 - composition as mole fraction $\psi_1...$ ψ_8 in kmol/kmol when TYPE=0 COMP(0) - Dummy
 - COMP(1)...COMP(8) mass or mole fraction of mixture components

Result:

Kappa_ps_HuGas - Isentropic exponent

Range of validity:

Temperature t:	- 70 °C $\leq t \leq$ 3026.85 °C
Pressure <i>p</i> :	0.01 bar $\le p \le 1000$ bar

Partial pressures of CO_2 and SO_2 less than saturation pressures

Comments:

Iteration of t from s(p,t,type,comp) and calculation of κ from kappa(p,t,type,comp):

- for unsaturated and saturated humidity gas ($\psi_w \leq \psi_{w,sat}$)

$$\kappa = -\frac{v}{\rho} \cdot \left(\frac{\partial \rho}{\partial v}\right)_{T} \cdot \frac{c_{\rho}}{c_{v}}$$

- for liquid fog ($\psi_w > \psi_{w,sat}$) as ideal mixture of saturated humid gas and liquid water

- for ice fog ($\psi_w > \psi_{w,sat}$, t < 0.01 °C) as saturated humid gas mixture

Result for incorrect input values:

Kappa_ps_HuGas = -1.10¹⁰⁰

Gas	v, c_p , c_v , s - ideal part	<i>v</i> , <i>c_p, c_v, s</i> - real part
Ar	[10]	[11]
Ne	[10]	-
N ₂	[10]	[12]
O ₂	[10]	[13]
CO	[10]	-
CO ₂	[10]	[14]
H ₂ O	[10]	[15]
SO ₂	[10]	-

Thermal Conductivity $\lambda = f(p, t, type, comp)$

Name in Fortran:

REAL*8 FUNCTION LAMBDA_PT_HUGAS (REAL*8 P, REAL*8 T, INTEGER*4 TYPE, REAL*8 COMP)

Input values:

P - Pressure p	in	bar
----------------	----	-----

T - Temperature t in °C

TYPE	- composition:
	TYPE=1 for composition as mass fraction ξ
	TYPE=0 for composition as mole fraction ψ
COMP(0:8)	- composition as mass fraction $\xi_1\xi_8$ in kg/kg when TYPE=1
	- composition as mole fraction ψ_1 ψ_8 in kmol/kmol when TYPE=0
	COMP(0) - Dummy
	COMP(1)COMP(8) mass or mole fraction of mixture components

Result:

Lambda_pt_HuGas - Thermal conductivity in W/(m K)

Range of validity:

Temperature t:	- 70 °C $\leq t \leq$ 3026.85 °C		
Pressure <i>p</i> :	0.01 bar $\le p \le 1000$ bar		
Partial pressures of CO_2 and SO_2 less than saturation pressures			

Comments:

- for unsaturated and saturated humid gas ($\psi_w \leq \psi_{w,sat}$) as ideal mixture of real fluids
- for liquid fog ($\psi_w > \psi_{w,sat}$) as ideal mixture of saturated humid gas and liquid water
- for ice fog (ψ_w > $\psi_{w,sat}$, t < 0.01 °C) as saturated humid gas mixture

Result for incorrect input values:

Lambda_pt_HuGas = -1.10^{100}

Gas	λ
Ar	[17]
Ne	[18],[19],[24],[25]
N ₂	[26]
0 ₂	[21]
CO	[22]
CO ₂	[27]
H ₂ O	[6]
SO ₂	[18],[19],[24]

Molar mass *M* = f(type,comp)

Name in Fortran:

REAL*8 FUNCTION M_HUGAS (INTEGER*4 TYPE, REAL*8 COMP)

Input values:

TYPE	- composition:
	TYPE=1 for composition as mass fraction ξ
	TYPE=0 for composition as mole fraction ψ
COMP(0:8)	- composition as mass fraction $\xi_1\xi_8$ in kg/kg when TYPE=1
	- composition as mole fraction $\psi_1 \psi_8$ in kmol/kmol when TYPE=0
	COMP(0) - Dummy
	COMP(1)COMP(8) mass or mole fraction of mixture components
Result:	

M_HuGas - Molar mass in kg/kmol

Result for incorrect input values:

 $M_HuGas = -1.10^{100}$

Kinematic Viscosity v = f(p, t, type, comp)

Name in Fortran:

REAL*8 FUNCTION NY_PT_HUGAS (REAL*8 P, REAL*8 T, INTEGER*4 TYPE, REAL*8 COMP)

Input values:

P - P	ressure <i>p</i> in bar
Т - Т	emperature t in °C
TYPE	- composition:
	TYPE=1 for composition as mass fraction ξ
	TYPE=0 for composition as mole fraction ψ
COMP(0:8) - composition as mass fraction $\xi_1\xi_8$ in kg/kg when TYPE=1
	- composition as mole fraction $\psi_1 \psi_8$ in kmol/kmol when TYPE=0
	COMP(0) - Dummy
	COMP(1)COMP(8) mass or mole fraction of mixture components
Result:	

Ny_pt _HuGas - Kinematic viscosity in m²/s

Range of validity:

Temperature t:	$-70 ^{\circ}\text{C} \leq t \leq 3026.85 ^{\circ}\text{C}$
Pressure <i>p</i> :	0.01 bar $\le p \le 1000$ bar
Partial pressures of CO ₂ and	d SO ₂ less than saturation pressures

Comments:

- Kinematic viscosity $v = \frac{\eta}{\rho} = \eta \cdot v$

- for unsaturated and saturated humid gas ($\psi_w \leq \psi_{w,sat}$) as ideal mixture of real fluids

- for liquid fog ($\psi_w > \psi_{w,sat}$) as ideal mixture of saturated humid gas and liquid water

- for ice fog ($\psi_w > \psi_{w,sat}$, t < 0.01 °C) as saturated humid gas mixture

Result for incorrect input values:

Ny_pt _HuGas = -1.10^{100}

Gas	<i>v</i> - ideal part	<i>v</i> - real part	λ
Ar	[10]	[11]	[17]
Ne	[10]	-	[18],[19],[24],[25]
N ₂	[10]	[12]	[26]
O ₂	[10]	[13]	[21]
CO	[10]	-	[22]
CO ₂	[10]	[14]	[27]
H ₂ O	[10]	[15]	[6]
SO ₂	[10]	-	[18],[19],[24]

Pressure *p* = f(*h*,*s*,type,comp)

Name in Fortran:

REAL*8 FUNCTION P_HS_HUGAS (REAL*8 H, REAL*8 S, INTEGER*4 TYPE, REAL*8 COMP)

Input values:

H - Enthalpy <i>h</i> in kJ/kg			
S - Entro	py s in kJ/(kg K)		
TYPE	- composition:		
	TYPE=1 for composition as mass fraction ξ		
	TYPE=0 for composition as mole fraction ψ		
COMP(0:8)	 composition as mass fraction ξ₁ξ₈ in kg/kg when TYPE=1 composition as mole fraction ψ₁ ψ₈ in kmol/kmol when TYPE=0 COMP(0) - Dummy COMP(1)COMP(8) mass or mole fraction of mixture components 		
Result:			
p_hs_HuGas	- Pressure in bar		

Range of validity:

Temperature t:	- 70 °C $\leq t \leq$ 3026.85 °C		
Pressure <i>p</i> :	0.01 bar $\le p \le 16.5 \cdot 10^6$ bar		
Partial pressures of CO_2 and SO_2 less than saturation pressures			

Comments:

Iteration of *t* and *p* from h(p,t,type,comp) and s(p,t,type,comp) and calculation:

- for unsaturated and saturated humid gas ($\psi_w \leq \psi_{w,sat}$) as ideal mixture of real gases (dry gas and steam)

- for fog ($\psi_{\rm w}\!>\!\psi_{\rm w,sat}$) as ideal mixture of saturated humid gas and

liquid water or water ice, calculation is not possible for liquid-ice fog at 0.01 °C

- Effects of dissociation are considered for temperatures higher than 500 °C

Result for incorrect input values:

 $p_hs_HuGas = -1.10^{100}$

Gas	h, s - ideal part	h, s - real part	ice
Ar	[10]	[11]	-
Ne	[10]	-	-
N ₂	[10]	[12]	-
0 ₂	[10]	[13]	-
CO	[10]	-	-
CO ₂	[10]	[14]	-
H ₂ O	[10]	[15]	[9]
SO ₂	[10]	-	-

Pressure *p* = f(*t*,*s*,type,comp)

Name in Fortran:

REAL*8 FUNCTION P_HS_HUGAS (REAL*8 H, REAL*8 S, INTEGER*4 TYPE, REAL*8 COMP)

Input values:

T - Temperature <i>t</i> in °C		
S - Entro	py s in kJ/(kg K)	
TYPE	- composition:	
	TYPE=1 for composition as mass fraction ξ	
	TYPE=0 for composition as mole fraction ψ	
COMP(0:8)	 composition as mass fraction ξ1ξ8 in kg/kg when TYPE=1 composition as mole fraction ψ1 ψ8 in kmol/kmol when TYPE=0 COMP(0) - Dummy COMP(1)COMP(8) mass or mole fraction of mixture components 	
Result:		
p_t s_HuGas	- Pressure in bar	

Range of validity:

Temperature t:	- 70 °C $\leq t \leq$ 3026.85 °C
Pressure <i>p</i> :	0.01 bar $\le p \le 1000$ bar
Partial pressures of CO ₂ and	d SO ₂ less than saturation pressures

Comments:

Iteration of *p* from s(p,t,type,comp) and calculation:

- for unsaturated and saturated humid gas ($\psi_w \leq \psi_{w,sat}$) as ideal mixture of real gases (dry gas and steam)
- for fog ($\psi_w > \psi_{w,sat}$) as ideal mixture of saturated humid gas and

liquid water or water ice, calculation is not possible for liquid-ice fog at 0.01 °C

- Effects of dissociation are considered for temperatures higher than 500 °C

Result for incorrect input values:

 $p_hs_HuGas = -1.10^{100}$

Gas	s - ideal part	s - real part	ice
Ar	[10]	[11]	-
Ne	[10]	-	-
N ₂	[10]	[12]	-
O ₂	[10]	[13]	-
CO	[10]	-	-
CO ₂	[10]	[14]	-
H ₂ O	[10]	[15]	[9]
SO ₂	[10]	-	-

Saturation Pressure of Water $p_{dsat} = f(p, t)$

Name in Fortran:

REAL*8 FUNCTION PDSAT_PT_HUGAS (REAL*8 P, REAL*8 T)

Input values:

- P Pressure *p* in bar
- T Temperature t in °C

Result:

pdsat_pt_HuGas - Saturation pressure of water in bar

Range of validity:

Temperature t:	- 70 °C $\leq t \leq$ 3026.85 °C
Pressure <i>p</i> :	0.01 bar $\le p \le 1000$ bar

Comments:

 $p_{dsat}(p,t)$ for $t \ge 0.01 \text{ °C} - \text{Vapour pressure of water in gas mixtures}$ for t < 0.01 °C - Sublimation pressure of water in gas mixtures

Result for incorrect input values:

 $pdsat_pt_HuGas = -1.10^{100}$

Reference:

 $p_{dsat}(p,t)$ for $T \ge 273,16$ K from IAPWS-IF97 [1], [2], [3], [4] $p_{dsat}(p,t)$ for T < 273,16 K from IAPWS-92 [8]

Relative Humidity $\varphi = f(p, t, type, comp)$

Name in Fortran:

REAL*8 FUNCTION PHI_PT_HUGAS (REAL*8 P, REAL*8 T, INTEGER*4 TYPE, REAL*8 COMP)

Input values:

P - Pressure <i>p</i> in bar			
T - Tem	T - Temperature <i>t</i> in °C		
TYPE	- composition: TYPE=1 for composition as mass fraction ξ TYPE=0 for composition as mole fraction ψ		
COMP(0:8) - composition as mass fraction $\xi_1\xi_8$ in kg/kg when TYPE=1 - composition as mole fraction $\psi_1 \psi_8$ in kmol/kmol when TYPE=0 COMP(0) - Dummy COMP(1)COMP(8) mass or mole fraction of mixture components			

Result:

Phi_pt_HuGas	- Relative humidity in %
--------------	--------------------------

Range of validity:

Temperature t:	- 70 °C $\leq t \leq$ 3026.85 °C
Pressure <i>p</i> :	0.01 bar $\le p \le 1000$ bar
Partial pressures of CO ₂ and	d SO ₂ less than saturation pressures

Comments:

Relative humidity
$$\varphi = \frac{X_{w}}{\frac{R_{l}}{R_{w}} + X_{w}} \frac{p}{p_{dsat}(p,T)} \cdot 100 \%$$

with $p_{dsat}(p,T)$ for $T \ge 273.16 K$ - Vapour pressure of water in gas mixtures

for T < 273.16 K - Sublimation pressures of water in gas mixtures

Result for incorrect input values:

 $Phi_pt_HuGas = -1.10^{100}$

Reference:

 $p_{dsat}(p,t)$ for $T \ge 273,16$ K from IAPWS-IF97 [1], [2], [3], [4]

 $p_{dsat}(p,t)$ for T < 273,16 K from IAPWS-92 [8]

Prandtl Number *Pr* = f(*p*,*t*,type,comp)

Name in Fortran:

REAL*8 FUNCTION PR_PT_HUGAS (REAL*8 P, REAL*8 T, INTEGER*4 TYPE, REAL*8 COMP)

Input values:

P - Pres	ssure <i>p</i> in bar
T - Tem	iperature <i>t</i> in °C
TYPE	- composition:
	TYPE=1 for composition as mass fraction ξ
	TYPE=0 for composition as mole fraction ψ
COMP(0:8)	- composition as mass fraction $\xi_1\xi_8$ in kg/kg when TYPE=1
	- composition as mole fraction ψ_1 ψ_8 in kmol/kmol when TYPE=0
	COMP(0) - Dummy
	COMP(1)COMP(8) mass or mole fraction of mixture components
14	

Result:

Pr_pt_HuGas - Prandtl-number

Range of validity:

Temperature t:	- 70 °C $\leq t \leq$ 3026.85 °C
Pressure <i>p</i> :	0.01 bar $\le p \le 1000$ bar
Partial pressures of CO ₂ and	d SO ₂ less than saturation pressures

Comments:

- Prandtl-number $Pr = \frac{v}{a} = \frac{\eta \cdot c_p}{\lambda}$

- for unsaturated and saturated humid gas ($\psi_w \leq \psi_{w,sat}$) as ideal mixture of real fluids

- for liquid fog ($\psi_w > \psi_{w,sat}$) as ideal mixture of saturated humid gas and liquid water

- for ice fog ($\psi_w > \psi_{w,sat}$, t < 0.01 °C) as saturated humid gas mixture

Result for incorrect input values:

 $Pr_pt_HuGas = -1.10^{100}$

Gas	<i>c_p</i> - ideal part	<i>c_p</i> - real part	η	λ
 Ar	[10]	[11]	[17]	[17]
Ne	[10]	-	[18]	[18],[19],[24],[25]
N_2	[10]	[12]	[20]	[26]
0 ₂	[10]	[13]	[21]	[21]
CO	[10]	-	[22]	[22]
CO ₂	[10]	[14]	[23]	[27]
H ₂ O	[10]	[15]	[7]	[6]
SO ₂	[10]	-	[18]	[18],[19],[24]

Gas constant *R* = f(type,comp)

Name in Fortran:

REAL*8 FUNCTION R_HUGAS (INTEGER*4 TYPE, REAL*8 COMP)

Input values:

TYPE	- composition:
	TYPE=1 for composition as mass fraction ξ
	TYPE=0 for composition as mole fraction ψ
COMP(0:8)	- composition as mass fraction $\xi_1\xi_8$ in kg/kg when TYPE=1
	- composition as mole fraction $\psi_1 \psi_8$ in kmol/kmol when TYPE=0
	COMP(0) - Dummy
	COMP(1)COMP(8) mass or mole fraction of mixture components
Result:	

R_HuGas - Gas constant in kJ/(kg K)

Result for incorrect input values:

 $R_HuGas = -1.10^{100}$

Reference: [16]

INTEGER*4 FUNCTION REGION_TS_HUGAS (REAL*8 T, REAL*8 S, INTEGER*4 TYPE, REAL*8 COMP)

Input values:

S

H - Enthalpy *h* in kJ/kg

- Entropy s in kJ/(kg °C)

TYPE - composition:

TYPE=1 for composition as mass fraction ξ

TYPE=0 for composition as mole fraction ψ

COMP(0:8) - composition as mass fraction $\xi_1...\xi_8$ in kg/kg when TYPE=1

- composition as mole fraction $\psi_1 \dots \psi_8$ in kmol/kmol when TYPE=0

COMP(0) - Dummy

COMP(1)...COMP(8) mass or mole fraction of mixture components

Result:

Region_hs_HuGas - State point of humid gas mixture

$= 0 \rightarrow$ Out of range of validity	= 6 \rightarrow Pure liquid water
$= 1 \rightarrow$ Dry gas mixture	= 7 \rightarrow Pure water-wet steam
= 2 \rightarrow Unsaturated Gas mixture	= 8 \rightarrow Pure steam
$= 3 \rightarrow \text{Liquid fog}$	= 10 \rightarrow The CO2 in the gas mixture would be
$=4 \rightarrow \text{Ice fog}$	partly liquid. Calculation is terminated.
= 5 \rightarrow Liquid-ice fog at 0.01 °C exactly	= 11 \rightarrow The SO2 in the gas mixture would be
	partly liquid. Calculation is terminated.

Range of validity:

Temperature t: $-70 \ ^{\circ}C \le t \le 3026.85 \ ^{\circ}C$ Pressure p: $0.01 \ \text{bar} \le p \le 1000 \ \text{bar}$ Partial pressures of CO2 and SO2 less than saturation pressures

Comments:

Iteration of p and t from s(p,t,type,comp) and h(p,t,type,comp) and calculation

of Region from Region(p,t ,type,comp)

Result for incorrect input values:

Region_hs_HuGas = 0

Gas	h, s - ideal part	h, s - real part
Ar	[10]	[11]
Ne	[10]	-
N ₂	[10]	[12]
O ₂	[10]	[13]
CO	[10]	-
CO ₂	[10]	[14]
H ₂ O	[10]	[15]
SO ₂	[10]	-

INTEGER*4 FUNCTION REGION_PH_HUGAS (REAL*8 P, REAL*8 H, INTEGER*4 TYPE, REAL*8 COMP)

Input values:

- P Pressure *p* in bar
- H Enthalpy h in kJ/kg
- TYPE composition:

TYPE=1 for composition as mass fraction ξ

TYPE=0 for composition as mole fraction ψ

COMP(0:8) - composition as mass fraction $\xi_1 \dots \xi_8$ in kg/kg when TYPE=1

- composition as mole fraction $\psi_1... \psi_8$ in kmol/kmol when TYPE=0

COMP(0) - Dummy

COMP(1)...COMP(8) mass or mole fraction of mixture components

Result:

Region_ph_HuGas - State point of humid gas mixture

$= 0 \rightarrow \text{Out of range of validity}$	= 6 \rightarrow Pure liquid water
= 1 \rightarrow Dry gas mixture	= 7 \rightarrow Pure water-wet steam
= 2 \rightarrow Unsaturated Gas mixture	$= 8 \rightarrow$ Pure steam
$= 3 \rightarrow \text{Liquid fog}$	= $10 \rightarrow$ The CO2 in the gas mixture would be
$= 4 \rightarrow \text{lce fog}$	partly liquid. Calculation is terminated.
= 5 \rightarrow Liquid-ice fog at 0.01 °C exactly	= 11 \rightarrow The SO2 in the gas mixture would be
	partly liquid. Calculation is terminated.

Range of validity:

Temperature t: $-70 \ ^{\circ}C \le t \le 3026.85 \ ^{\circ}C$ Pressure p: $0.01 \ \text{bar} \le p \le 1000 \ \text{bar}$ Partial pressures of CO2 and SO2 less than saturation pressures

Comments:

Iteration of *t* from h(p,t,type,comp) and calculation of *Region* from Region(p,t,type,comp) **Result for incorrect input values:**

Region_ph_HuGas = 0

Gas	<i>h</i> - ideal part	h - real part
Ar	[10]	[11]
Ne	[10]	-
N ₂	[10]	[12]
O ₂	[10]	[13]
CO	[10]	-
CO ₂	[10]	[14]
H ₂ O	[10]	[15]
SO ₂	[10]	-

INTEGER*4 FUNCTION REGION_PS_HUGAS (REAL*8 P, REAL*8 S, INTEGER*4 TYPE, REAL*8 COMP)

Input values:

- P Pressure *p* in bar
- S Entropy s in kJ/(kg K)

TYPE - composition:

TYPE=1 for composition as mass fraction ξ

TYPE=0 for composition as mole fraction ψ

COMP(0:8) - composition as mass fraction $\xi_1...\xi_8$ in kg/kg when TYPE=1

- composition as mole fraction $\psi_1 \dots \psi_8$ in kmol/kmol when TYPE=0

COMP(0) - Dummy

COMP(1)...COMP(8) mass or mole fraction of mixture components

Result:

Region_ps_HuGas - State point of humid gas mixture

$= 0 \rightarrow \text{Out of range of validity}$	= 6 \rightarrow Pure liquid water
= 1 \rightarrow Dry gas mixture	= 7 \rightarrow Pure water-wet steam
= 2 \rightarrow Unsaturated Gas mixture	$= 8 \rightarrow$ Pure steam
$= 3 \rightarrow \text{Liquid fog}$	= $10 \rightarrow$ The CO2 in the gas mixture would be
$= 4 \rightarrow \text{lce fog}$	partly liquid. Calculation is terminated.
= 5 \rightarrow Liquid-ice fog at 0.01 °C exactly	= 11 \rightarrow The SO2 in the gas mixture would be
	partly liquid. Calculation is terminated.

Range of validity:

Temperature t: $-70 \ ^{\circ}C \le t \le 3026.85 \ ^{\circ}C$ Pressure p: $0.01 \ \text{bar} \le p \le 1000 \ \text{bar}$ Partial pressures of CO2 and SO2 less than saturation pressures

Comments:

Iteration of *t* from s(p,t,type,comp) and calculation of *Region* from Region(p,t,type,comp)

Result for incorrect input values:

Region_ps_HuGas = 0

Gas	s - ideal part	s - real part
Ar	[10]	[11]
Ne	[10]	-
N ₂	[10]	[12]
O ₂	[10]	[13]
CO	[10]	-
CO ₂	[10]	[14]
H ₂ O	[10]	[15]
SO ₂	[10]	-

INTEGER*4 FUNCTION REGION_PT_HUGAS (REAL*8 P, REAL*8 T, INTEGER*4 TYPE, REAL*8 COMP)

Input values:

- P Pressure *p* in bar
- T Temperature t in °C

TYPE - composition:

TYPE=1 for composition as mass fraction ξ

- TYPE=0 for composition as mole fraction ψ
- COMP(0:8) composition as mass fraction \$\xi_1...\$\xi_8\$ in kg/kg when TYPE=1
 composition as mole fraction \$\nu_1...\$\nu_8\$ in kmol/kmol when TYPE=0
 COMP(0) Dummy
 COMP(1)...COMP(8) mass or mole fraction of mixture components

Result:

Region_pt_HuGas - State point of humid gas mixture

$= 0 \rightarrow \text{Out of range of validity}$	= 6 \rightarrow Pure liquid water
= 1 \rightarrow Dry gas mixture	= 7 \rightarrow Pure water-wet steam
$= 2 \rightarrow$ Unsaturated Gas mixture	$= 8 \rightarrow$ Pure steam
$= 3 \rightarrow \text{Liquid fog}$	= 10 \rightarrow The CO2 in the gas mixture would be
$=4 \rightarrow \text{Ice fog}$	partly liquid. Calculation is terminated.
= 5 \rightarrow Liquid-ice fog at 0.01 °C exactly	= 11 \rightarrow The SO2 in the gas mixture would be
	partly liquid. Calculation is terminated.

Range of validity:

Temperature <i>t</i> :	$-70 ^{\circ}\text{C} \leq t \leq 3026.85 ^{\circ}\text{C}$
Pressure <i>p</i> :	0.01 bar $\le p \le 1000$ bar
Partial pressures of CO ₂ and	d SO ₂ less than saturation pressures

Comments:

Calculation:

- for unsaturated and saturated humid gas ($\psi_w \leq \psi_{w,sat}$) as ideal mixture of real fluids

- for fog ($\psi_w > \psi_{w,sat}$) as ideal mixture of saturated humid gas and liquid water or water ice

Result for incorrect input values:

Region_pt_HuGas = 0

INTEGER*4 FUNCTION REGION_TS_HUGAS (REAL*8 T, REAL*8 S, INTEGER*4 TYPE, REAL*8 COMP)

Input values:

- T Temperature t in °C
- S Entropy s in kJ/(kg K)

TYPE - composition:

TYPE=1 for composition as mass fraction ξ

TYPE=0 for composition as mole fraction ψ

COMP(0:8) - composition as mass fraction $\xi_1 \dots \xi_8$ in kg/kg when TYPE=1

- composition as mole fraction $\psi_1 \dots \psi_8$ in kmol/kmol when TYPE=0

COMP(0) - Dummy

COMP(1)...COMP(8) mass or mole fraction of mixture components

Result:

Region_ts_HuGas - State point of humid gas mixture

$= 0 \rightarrow \text{Out of range of validity}$	= 6 \rightarrow Pure liquid water
= 1 \rightarrow Dry gas mixture	= 7 \rightarrow Pure water-wet steam
= 2 \rightarrow Unsaturated Gas mixture	= 8 \rightarrow Pure steam
$= 3 \rightarrow$ Liquid fog	= 10 \rightarrow The CO2 in the gas mixture would be
$= 4 \rightarrow \text{lce fog}$	partly liquid. Calculation is terminated.
= 5 \rightarrow Liquid-ice fog at 0.01 °C exactly	= 11 \rightarrow The SO2 in the gas mixture would be
	partly liquid. Calculation is terminated.

Range of validity:

Temperature t: $-70 \ ^{\circ}C \le t \le 3026.85 \ ^{\circ}C$ Pressure p: $0.01 \ \text{bar} \le p \le 1000 \ \text{bar}$ Partial pressures of CO₂ and SO₂ less than saturation pressures

Comments:

Iteration of *p* from s(p,t,type,comp) and calculation of *Region* from Region(p,t,type,comp)

Result for incorrect input values:

Region_ts_HuGas = 0

Gas	s - ideal part	s - real part
Ar	[10]	[11]
Ne	[10]	-
N ₂	[10]	[12]
O ₂	[10]	[13]
CO	[10]	-
CO ₂	[10]	[14]
H ₂ O	[10]	[15]
SO ₂	[10]	-

Density $\rho = f(p, t, type, comp)$

Name in Fortran:

REAL*8 FUNCTION rho_pTcomp_HuGas (p,T,type,comp (REAL*8 P, REAL*8 T, INTEGER*4 Type, REAL*8 COMP)

Input values:

	P - Pres	ssure <i>p</i> in bar
T - Temperature <i>t</i> in °C		
	TYPE	- composition: TYPE=1 for composition as mass fraction ξ TYPE=0 for composition as mole fraction ψ
	COMP(0:8)	 composition as mass fraction ξ₁ξ₈ in kg/kg when TYPE=1 composition as mole fraction ψ₁ ψ₈ in kmol/kmol when TYPE=0 COMP(0) - Dummy COMP(1)COMP(8) mass or mole fraction of mixture components
	114.	

Result:

Range of validity:

Temperature t:	- 70 °C $\leq t \leq$ 3026.85 °C
Pressure <i>p</i> :	0.01 bar $\le p \le 1000$ bar
Partial pressures of CO ₂ and	d SO ₂ less than saturation pressures

Comments:

Calculation:

- for unsaturated and saturated humid gas ($\psi_w \leq \psi_{w,sat}$) as ideal mixture of real fluids

- for fog ($\psi_{\rm w}\!>\!\psi_{\rm w,sat}$) as ideal mixture of saturated humid gas and liquid water or water ice

Result for incorrect input values:

```
rho_pt_HuGas = -1.10^{100}
```

Gas	ho - ideal part	ho - real part	ice	
Ar	[10]	[11]	-	-
Ne	[10]	-	-	
N ₂	[10]	[12]	-	
O ₂	[10]	[13]	-	
CO	[10]	-	-	
CO ₂	[10]	[14]	-	
H ₂ O	[10]	[15]	[9]	
SO ₂	[10]	-	-	

Specific Entropy *s* = f(*p*,*h*,type,comp)

Name in Fortran:

REAL*8 FUNCTION s_phcomp_HuGas (REAL*8 P, REAL*8 H, INTEGER*4 TYPE, REAL*8 COMP)

Input values:

	P ·	- Pres	ssure <i>p</i> in bar
	Н	- Enth	nalpy h in kJ/kg
	TYPE		- composition:
			TYPE=1 for composition as mass fraction ξ
			TYPE=0 for composition as mole fraction ψ
	COMP((0:8)	- composition as mass fraction $\xi_1\xi_8$ in kg/kg when TYPE=1
			- composition as mole fraction ψ_1 ψ_8 in kmol/kmol when TYPE=0
			COMP(0) - Dummy
			COMP(1)COMP(8) mass or mole fraction of mixture components
u	lt:		

Result:

s_ph_HuGas - Specific entropy in kJ/(kg K)
--

Range of validity:

Temperature t:	$-70 \ ^{\circ}C \le t \le 3026.85 \ ^{\circ}C$
Pressure <i>p</i> :	0.01 bar $\le p \le 1000$ bar
Deutiel and extract of CO	and CO less then acturation press

Partial pressures of CO_2 and SO_2 less than saturation pressures

Comments:

Iteration of *t* from h(p,t,type,comp) and calculation of *s* from s(p,t,type,comp) Calculation:

- for unsaturated and saturated humid gas ($\psi_w \leq \psi_{w,sat}$) as ideal mixture of real fluids
- for fog ($\psi_w > \psi_{w,sat}$) as ideal mixture of saturated humid gas and liquid water or water ice
- Effects of dissociation are considered for temperatures higher than 500 °C

Result for incorrect input values:

 $s_ph_HuGas = -1.10^{100}$

Gas	h, s - ideal part	h, s - real part	ice	
Ar	[10]	[11]	-	
Ne	[10]	-	-	
N ₂	[10]	[12]	-	
0 ₂	[10]	[13]	-	
CO	[10]	-	-	
CO ₂	[10]	[14]	-	
H ₂ O	[10]	[15]	[9]	
SO ₂	[10]	-	-	

Specific Entropy *s* = f(*p*,*t*,type,comp)

- Pressure *p* in bar

Name in Fortran:

REAL*8 FUNCTION s_pTcomp_HuGas (REAL*8 P, REAL*8 T, INTEGER*4 TYPE,

REAL*8 COMP)

Input values:

T - Tem	perature <i>t</i> in °C
TYPE	- composition: TYPE=1 for composition as mass fraction ξ TYPE=0 for composition as mole fraction ψ
COMP(0:8)	 composition as mass fraction ξ₁ξ₈ in kg/kg when TYPE=1 composition as mole fraction ψ₁ ψ₈ in kmol/kmol when TYPE=0 COMP(0) - Dummy COMP(1)COMP(8) mass or mole fraction of mixture components

Result:

s_pt_HuGas	- Specific entropy in kJ/(kg K)
------------	---------------------------------

Range of validity:

Temperature t:	- 70 °C $\leq t \leq$ 3026.85 °C
Pressure <i>p</i> :	0.01 bar $\le p \le 1000$ bar
Partial pressures of CO_2 and SO_2 less than saturation pressures	

Comments:

Calculation:

- for unsaturated and saturated humid gas ($\psi_w \leq \psi_{w,sat}$) as ideal mixture of real fluids
- for fog ($\psi_w > \psi_{w,sat}$) as ideal mixture of saturated humid gas and liquid water or water ice
- Effects of dissociation are considered for temperatures higher than 500 °C

Result for incorrect input values:

 $s_pt_HuGas = -1.10^{100}$

Gas	s - ideal part	s - real part	ice
Ar	[10]	[11]	-
Ne	[10]	-	-
N ₂	[10]	[12]	-
0 ₂	[10]	[13]	-
CO	[10]	-	-
CO ₂	[10]	[14]	-
H ₂ O	[10]	[15]	[9]
SO ₂	[10]	-	-

Surface Tension of Water $\sigma_{w} = f(t,type,comp)$

Name in Fortran:

REAL*8 FUNCTION sigmaw_T_HuGas (REAL*8 T, INTEGER*4 TYPE, REAL*8 COMP)

Input values:

Т	- Temperatur	e <i>t</i> in °C
TYPE	- com	position: TYPE=1 for composition as mass fraction ξ TYPE=0 for composition as mole fraction ψ
COMP(-	position as mass fraction $\xi_1\xi_8$ in kg/kg when TYPE=1 position as mole fraction $\psi_1 \psi_8$ in kmol/kmol when TYPE=0 COMP(0) - Dummy COMP(1)COMP(8) mass or mole fraction of mixture components
Result:		
Sigmaw	/_t_HuGas	- Surface tension of water $\sigma_{\rm w}$ in N/m

Range of validity:

Temperature t: $0 \degree C \le t \le 373.946 \degree C$

Comments:

Calculation for pure water from IAPWS-IF97

Result for incorrect input values:

Sigmaw_t _HuGas = -1.10¹⁰⁰

Reference: [5]

REAL*8 FUNCTION T_hscomp_HuGas (REAL*8 H, REAL*8 S, INTEGER*4 TYPE, REAL*8 COMP)

Input values:

H - Entl	nalpy <i>h</i> in kJ/kg
S - Enti	opy s in kJ/(kg K)
TYPE	- composition: TYPE=1 for composition as mass fraction ξ TYPE=0 for composition as mole fraction ψ
COMP(0:8)	 composition as mass fraction ξ₁ξ₈ in kg/kg when TYPE=1 composition as mole fraction ψ₁ ψ₈ in kmol/kmol when TYPE=0 COMP(0) - Dummy COMP(1)COMP(8) mass or mole fraction of mixture components
ilt.	

Result:

Temperature t in °C

Range of validity:

Temperature t:	- 70 °C $\leq t \leq$ 3026.85 °C
Pressure <i>p</i> :	0.01 bar $\le p \le 1000$ bar
Partial pressures of CO ₂ and	d SO ₂ less than saturation pressures

Comments:

Iteration of *p* and *t* from h(p,t,type,comp) and s(p,t,type,comp) Calculation:

- for unsaturated and saturated humid gas ($\psi_w \leq \psi_{w,sat}$) as ideal mixture of real fluids
- for fog ($\psi_w > \psi_{w,sat}$) as ideal mixture of saturated humid gas and liquid water or water ice
- Effects of dissociation are considered for temperatures higher than 500 °C

Result for incorrect input values:

t_hs_HuGas = -1.10^{100}

Gas	h, s - ideal part	h, s - real part
Ar	[10]	[11]
Ne	[10]	-
N ₂	[10]	[12]
O ₂	[10]	[13]
CO	[10]	-
CO ₂	[10]	[14]
H ₂ O	[10]	[15]
SO ₂	[10]	-

Temperature *t* = f(*p*,*h*,type,comp)

Name in Fortran:

REAL*8 FUNCTION T_phcomp_HuGas (REAL*8 P, REAL*8 H, INTEGER*4 TYPE,

REAL*8 COMP)

Input values:

bar

H - Enthalpy h in kJ/kg

TYPE - composition:

TYPE=1 for composition as mass fraction ξ TYPE=0 for composition as mole fraction ψ

COMP(0:8) - composition as mass fraction ξ1...ξ10 in kg/kg when TYPE=1
 - composition as mole fraction ψ1... ψ10 in kmol/kmol when TYPE=0
 COMP(0) - Dummy
 COMP(1)...COMP(8) mass or mole fraction of mixture components

Result:

t_ph_HuGas	- Temperature in °C
------------	---------------------

Range of validity:

Temperature t:	- 70 °C $\leq t \leq$ 3026.85 °C
Pressure <i>p</i> :	0.01 bar $\leq p \leq 1000$ bar
Partial pressures of CO ₂ and	d SO ₂ less than saturation pressures

Comments:

Iteration of *t* from h(p,t,type,comp)

Calculation:

- for unsaturated and saturated humid gas ($\psi_w \leq \psi_{w,sat}$) as ideal mixture of real fluids
- for fog ($\psi_w > \psi_{w,sat}$) as ideal mixture of saturated humid gas and liquid water or water ice
- Effects of dissociation are considered for temperatures higher than 500 °C

Result for incorrect input values:

 $t_ph_HuGas = -1.10^{100}$

Gas	h - ideal part	h - real part
Ar	[10]	[11]
Ne	[10]	-
N ₂	[10]	[12]
O ₂	[10]	[13]
CO	[10]	-
CO ₂	[10]	[14]
H ₂ O	[10]	[15]
SO ₂	[10]	-

Temperature *t* = f(*p*, s, type, comp)

- Pressure p in bar

Name in Fortran:

REAL*8 FUNCTION T_pscomp_HuGas (REAL*8 P, REAL*8 S, INTEGER*4 TYPE,

REAL*8 COMP)

Input values:

S - Entr	opy s in kJ/(kg K)
TYPE	- composition: TYPE=1 for composition as mass fraction ξ TYPE=0 for composition as mole fraction ψ
COMP(0:8)	 composition as mass fraction ξ1ξ8 in kg/kg when TYPE=1 composition as mole fraction ψ1 ψ8 in kmol/kmol when TYPE=0 COMP(0) - Dummy COMP(1)COMP(8) mass or mole fraction of mixture components

Result:

t_ps_HuGas	- Temperature t in °C
-po_110.000	romporataro em o

Range of validity:

Temperature t:	- 70 °C $\leq t \leq$ 3026.85 °C
Pressure <i>p</i> :	0.01 bar $\le p \le 1000$ bar
Partial pressures of CO ₂ and	d SO ₂ less than saturation pressures

Comments:

Iteration of *t* from s(p,t,type,comp)

Calculation:

- for unsaturated and saturated humid gas ($\psi_w \leq \psi_{w,sat}$) as ideal mixture of real fluids
- for fog ($\psi_w > \psi_{w,sat}$) as ideal mixture of saturated humid gas and liquid water or water ice
- Effects of dissociation are considered for temperatures higher than 500 °C

Result for incorrect input values:

 $t_ps_HuGas = -1.10^{100}$

Gas	h, s - ideal part	h, s - real part
Ar	[10]	[11]
Ne	[10]	-
N ₂	[10]	[12]
O ₂	[10]	[13]
CO	[10]	-
CO ₂	[10]	[14]
H ₂ O	[10]	[15]
SO ₂	[10]	-

Dew Point Temperature of Water $T_{w,dew} = f(p,type,comp)$

Name in Fortran:

REAL*8 FUNCTION Twdew_pcomp_HuGas (REAL*8 P, INTEGER*4 TYPE, REAL*8 COMP) **Input values:**

P - Pres	sure <i>p</i> in bar
TYPE	- composition: TYPE=1 for composition as mass fraction ξ TYPE=0 for composition as mole fraction ψ
COMP(0:8)	 composition as mass fraction ξ₁ξ₈ in kg/kg when TYPE=1 composition as mole fraction ψ₁ ψ₈ in kmol/kmol when TYPE=0 COMP(0) - Dummy COMP(1)COMP(8) mass or mole fraction of mixture components
lt:	

Result:

twdew_p_HuGas - Dew point temperature of water $T_{w,dew}$ in °C

Range of validity:

Pressure <i>p</i> :	0.01 bar $\le p \le 1000$ bar
Partial pressures of CO ₂ and	$d SO_2$ less than saturation pressures

Comments:

Dew point temperature of water	$T_{w,dew} = T_s(\rho, \rho_d)$ for $T \ge 273.16$ K
	$(t_{s} - Boiling temperature of water in gas mixtures)$
	$T_{ m w,dew}=T_{ m sub}(ho, ho_{ m d})$ for $T<$ 273.16 K
	$(t_{sub} - Sublimation temperature of water in gas mixtures)$

Result for incorrect input values:

twdew_p_HuGas = = -1.10^{100}

$T_{\rm s}(p, p_{\rm d})$	for $T \ge 273.16$ K	from IAPWS-IF97 [1], [2], [3], [4]
$T_{sub}(p, p_{d})$)for <i>T</i> < 273.16 K	from IAPWS-92 [8]

Specific Internal Energy *u* = f(*p*,*t*,type,comp)

Name in Fortran:

REAL*8 FUNCTION u_pTcomp_HuGas (REAL*8 P, REAL*8 T, INTEGER*4 TYPE,

REAL*8 COMP)

Input values:

P - Pres	sure <i>p</i> in bar
T - Tem	perature t in °C
TYPE	- composition: TYPE=1 for composition as mass fraction ξ TYPE=0 for composition as mole fraction ψ
COMP(0:8)	 composition as mass fraction ξ₁ξ₈ in kg/kg when TYPE=1 composition as mole fraction ψ₁ ψ₈ in kmol/kmol when TYPE=0 COMP(0) - Dummy COMP(1)COMP(8) mass or mole fraction of mixture components

Result:

u_pt_huGas - Specific internal energy in k	u_pt_HuGas	- Specific internal energy in kJ/kg
--	------------	-------------------------------------

Range of validity:

Temperature t:	- 70 °C $\leq t \leq$ 3026.85 °C
Pressure <i>p</i> :	0.01 bar $\le p \le 1000$ bar
Partial pressures of CO ₂ an	d SO ₂ less than saturation pressures

Comments:

Calculation:

- for unsaturated and saturated humid gas ($\psi_w \leq \psi_{w,sat}$) as ideal mixture of real fluids
- for fog ($\psi_w > \psi_{w,sat}$) as ideal mixture of saturated humid gas and liquid water or water ice
- Effects of dissociation are considered for temperatures higher than 500 °C

Result for incorrect input values:

 $u_{pt}HuGas = -1.10^{100}$

Gas	<i>u</i> - ideal part	<i>u</i> - real part	ice
Ar	[10]	[11]	-
Ne	[10]	-	-
N ₂	[10]	[12]	-
0 ₂	[10]	[13]	-
CO	[10]	-	-
CO ₂	[10]	[14]	-
H ₂ O	[10]	[15]	[9]
SO ₂	[10]	-	-

Specific Volume *v* = f(*h*,s,type,comp)

Name in Fortran:

REAL*8 FUNCTION v_hscomp_HuGas (REAL*8 H, REAL*8 S, INTEGER*4 TYPE,

REAL*8 COMP)

Input values:

Н	- Enthalpy h in kJ/kg
---	-----------------------

S - Entropy s in kJ/(kg K)

TYPE	- composition:
	TYPE=1 for composition as mass fraction ξ
	TYPE=0 for composition as mole fraction ψ
COMP(0:8)	- composition as mass fraction $\xi_1\xi_8$ in kg/kg when TYPE=1
	- composition as mole fraction $\psi_1 \dots \psi_8$ in kmol/kmol when TYPE=0
	COMP(0) - Dummy
	COMP(1)COMP(8) mass or mole fraction of mixture components

Result:

v_hs_HuGas	 Specific volume in m³/kg
------------	---

Range of validity:

Temperature t:	- 70 °C $\leq t \leq$ 3026.85 °C
Pressure <i>p</i> :	0.01 bar $\le p \le 1000$ bar
Partial pressures of CO ₂ and	d SO ₂ less than saturation pressures

Comments:

Iteration of p and t from h(p,t,type,comp) and s(p,t,type,comp) and calculation of v from v(p,t,type,comp)

Calculation:

- for unsaturated and saturated humid gas ($\psi_w \leq \psi_{w,sat}$) as ideal mixture of real fluids

- for fog ($\psi_{\rm w}\!>\!\psi_{\rm w,sat}$) as ideal mixture of saturated humid gas and liquid water or water ice

Result for incorrect input values:

v_hs_HuGas = -1.10^{100}

Gas	v,h,s - ideal part	v,h,s - real part
Ar	[10]	[11]
Ne	[10]	-
N ₂	[10]	[12]
0 ₂	[10]	[13]
CO	[10]	-
CO ₂	[10]	[14]
H ₂ O	[10]	[15]
SO ₂	[10]	-

Specific Volume *v* = f(*p*,*h*,type,comp)

Name in Fortran:

REAL*8 FUNCTION v_phcomp_HuGas (REAL*8 P, REAL*8 H, INTEGER*4 TYPE,

REAL*8 COMP)

Input values:

P - Pre	ssure <i>p</i> in bar
H - Ent	halpy <i>h</i> in kJ/kg
TYPE	- composition: TYPE=1 for composition as mass fraction ξ TYPE=0 for composition as mole fraction ψ
COMP(0:8)	 composition as mass fraction ξ1ξ8 in kg/kg when TYPE=1 composition as mole fraction ψ1 ψ8 in kmol/kmol when TYPE=0 COMP(0) - Dummy COMP(1)COMP(8) mass or mole fraction of mixture components

Result:

v_ph_HuGas	 Specific volume in m³/kg
------------	---

Range of validity:

Temperature t:	- 70 °C $\leq t \leq$ 3026.85 °C	
Pressure <i>p</i> :	0.01 bar $\le p \le 1000$ bar	
Partial pressures of CO_2 and SO_2 less than saturation pressures		

Comments:

Iteration of *t* from h(p,t,type,comp) and calculation of *v* from v(p,t,type,comp)Calculation:

- for unsaturated and saturated humid gas ($\psi_{\rm w} \leq \psi_{\rm w,sat}$) as ideal mixture of real fluids

- for fog ($\psi_{\rm w}\!>\!\psi_{\rm w,sat}$) as ideal mixture of saturated humid gas and liquid water or water ice

Result for incorrect input values:

 $v_ph_HuGas = -1.10^{100}$

Gas	<i>v</i> , <i>h</i> - ideal part	<i>v</i> , <i>h</i> - real part
Ar	[10]	[11]
Ne	[10]	-
N ₂	[10]	[12]
0 ₂	[10]	[13]
CO	[10]	-
CO ₂	[10]	[14]
H ₂ O	[10]	[15]
SO ₂	[10]	-

Specific Volume *v* = f(*p*, *s*, type, comp)

Name in Fortran:

REAL*8 FUNCTION v_pscomp_HuGas (REAL*8 P, REAL*8 S, INTEGER*4 TYPE, REAL*8 COMP)

Input values:

P - Pressure <i>p</i> in bar
S - Entropy s in kJ/(kg K)
TYPE- composition:TYPE=1 for composition as mass fraction ξ TYPE=0 for composition as mole fraction ψ
 COMP(0:8) - composition as mass fraction ξ1ξ8 in kg/kg when TYPE=1 - composition as mole fraction ψ1 ψ8 in kmol/kmol when TYPE=0 COMP(0) - Dummy COMP(1)COMP(8) mass or mole fraction of mixture components
I+-

Result:

v_ps_HuGas	 Specific volume in m³/kg
------------	---

Range of validity:

Temperature t:	$-70 ^{\circ}\text{C} \leq t \leq 3026.85 ^{\circ}\text{C}$
Pressure <i>p</i> :	0.01 bar $\le p \le 1000$ bar
Partial pressures of CO ₂ and	d SO ₂ less than saturation pressures

Comments:

Iteration of *t* from s(p,t,type,comp) and calculation of *v* from v(p,t,type,comp)Calculation:

- for unsaturated and saturated humid gas ($\psi_w \leq \psi_{w,sat}$) as ideal mixture of real fluids

- for fog ($\psi_w > \psi_{w,sat}$) as ideal mixture of saturated humid gas and liquid water or water ice

Result for incorrect input values:

 $v_{ps}HuGas = -1.10^{100}$

Gas	v,s - ideal part	<i>v</i> , <i>s</i> - real part
Ar	[10]	[11]
Ne	[10]	-
N ₂	[10]	[12]
0 ₂	[10]	[13]
CO	[10]	-
CO ₂	[10]	[14]
H ₂ O	[10]	[15]
SO ₂	[10]	-

Specific Volume *v* = f(*p*,*t*,type,comp)

- Pressure p in bar

Name in Fortran:

REAL*8 FUNCTION v_pTcomp_HuGas (REAL*8 P, REAL*8 T, INTEGER*4 TYPE,

REAL*8 COMP)

Input values:

T - Tem	perature <i>t</i> in °C
TYPE	- composition: TYPE=1 for composition as mass fraction ξ TYPE=0 for composition as mole fraction ψ
COMP(0:8)	 composition as mass fraction ξ1ξ8 in kg/kg when TYPE=1 composition as mole fraction ψ1 ψ8 in kmol/kmol when TYPE=0 COMP(0) - Dummy COMP(1)COMP(8) mass or mole fraction of mixture components

Result:

v_pt_HuGas	 Specific volume in m³/kg
· _ p • _ · · • • • • • •	

Range of validity:

Temperature t:	- 70 °C $\leq t \leq$ 3026.85 °C
Pressure <i>p</i> :	0.01 bar $\le p \le 1000$ bar
Partial pressures of CO ₂ an	d SO_2 less than saturation pressures

Comments:

Calculation:

- for unsaturated and saturated humid gas ($\psi_w \leq \psi_{w,sat}$) as ideal mixture of real fluids
- for fog ($\psi_{\rm w}\!>\!\psi_{\rm w,sat}$) as ideal mixture of saturated humid gas and liquid water or water ice

Result for incorrect input values:

 $v_{pt}HuGas = -1.10^{100}$

Gas	v - ideal part	v - real part	ice
Ar	[10]	[11]	-
Ne	[10]	-	-
N ₂	[10]	[12]	-
O ₂	[10]	[13]	-
CO	[10]	-	-
CO ₂	[10]	[14]	-
H ₂ O	[10]	[15]	[9]
SO ₂	[10]	-	-

Specific Volume *v* = f(*t*,*s*,type,comp)

Name in Fortran:

REAL*8 FUNCTION v_Tscomp_HuGas (REAL*8 T, REAL*8 S, INTEGER*4 TYPE, REAL*8 COMP)

Input values:

•	perature <i>t</i> in °C ppy <i>s</i> in kJ/(kg K)
TYPE	- composition: TYPE=1 for composition as mass fraction ξ TYPE=0 for composition as mole fraction ψ
COMP(0:8)	 composition as mass fraction ξ₁ξ₈ in kg/kg when TYPE=1 composition as mole fraction ψ₁ ψ₈ in kmol/kmol when TYPE=0 COMP(0) - Dummy COMP(1)COMP(8) mass or mole fraction of mixture components
Result:	
v_ts_HuGas	 Specific volume in m³/kg

Range of validity:

Temperature t:	- 70 °C $\leq t \leq$ 3026.85 °C
Pressure <i>p</i> :	0.01 bar $\le p \le 1000$ bar

Partial pressures of CO₂ and SO₂ less than saturation pressures

Comments:

Iteration of p from s(p,t,type,comp) and calculation v from v(p,t,type,comp) Calculation:

- for unsaturated and saturated humid gas ($\psi_w \leq \psi_{w,sat}$) as ideal mixture of real gases

(dry gas and steam)

- for fog ($\psi_w > \psi_{w,sat}$) as ideal mixture of saturated humid gas and

liquid water or water ice, calculation is not possible for liquid-ice fog at 0.01 °C

Result for incorrect input values:

v_ts_HuGas = -1.10^{100}

Gas	v,s ideal part	<i>v</i> , <i>s</i> real part	ice
Ar	[10]	[11]	-
Ne	[10]	-	-
N ₂	[10]	[12]	-
O ₂	[10]	[13]	-
CO	[10]	-	-
CO ₂	[10]	[14]	-
H ₂ O	[10]	[15]	[9]
SO ₂	[10]	-	-

Isentropic Speed of Sound *w* = f(*p*,*t*,type,comp)

Name in Fortran:

REAL*8 FUNCTION w_pTcomp_HuGas (REAL*8 P, REAL*8 T, INTEGER*4 TYPE, REAL*8 COMP)

Input values:

 P - Pressure *p* in bar
 T - Temperature *t* in °C
 TYPE - composition: TYPE=1 for composition as mass fraction *ξ* TYPE=0 for composition as mole fraction *ψ* COMP(0:8) - composition as mass fraction *ξ*₁...*ξ*₈ in kg/kg when TYPE=1 - composition as mole fraction *ψ*₁... *ψ*₈ in kmol/kmol when TYPE=0 COMP(0) - Dummy COMP(1)...COMP(8) mass or mole fraction of mixture components

Result:

w_pt_HuGas - Speed of sound in m/s

Range of validity:

Temperature t:	- 70 °C $\leq t \leq$ 3026.85 °C
Pressure <i>p</i> :	0.01 bar $\le p \le 1000$ bar

Partial pressures of CO₂ and SO₂ less than saturation pressures

Comments:

Calculation:

- for unsaturated and saturated humid gas ($\psi_w \leq \psi_{w,sat}$)

$$W = \sqrt{-v^2 \cdot \left(\frac{\partial p}{\partial v}\right)_T \cdot \frac{c_p}{c_v}}$$

- for liquid fog ($\psi_w > \psi_{w,sat}$) as ideal mixture of saturated humid gas and liquid water

- for ice fog ($\psi_w > \psi_{w,sat}$, t < 0.01 °C) as saturated humid gas mixture

Result for incorrect input values:

 $w_{pt}_{HuGas} = -1.10^{100}$

Gas	v, c_p , c_v - ideal part	<i>v, c_p, c_v</i> - real part
Ar	[10]	[11]
Ne	[10]	-
N ₂	[10]	[12]
O ₂	[10]	[13]
CO	[10]	-
CO ₂	[10]	[14]
H ₂ O	[10]	[15]
SO ₂	[10]	-

Humidity Ratio (Absolute Humidity) x_w = f(type,comp)

Name in Fortran:

REAL*8 FUNCTION xw_comp_HuGas (INTEGER*4 TYPE, REAL*8 COMP)

Input values:

TYPE	- composition:
	TYPE=1 for composition as mass fraction ξ
	TYPE=0 for composition as mole fraction ψ
COMP(0:8)	- composition as mass fraction $\xi_1\xi_8$ in kg/kg when TYPE=1
	- composition as mole fraction ψ_1 ψ_8 in kmol/kmol when TYPE=0
	COMP(0) - Dummy
	COMP(1)COMP(8) mass or mole fraction of mixture components
14.	

Result:

xw_HuGas - Humidity ratio in g water / kg gas

Comments:

Humidity ratio of water
$$x_{w} = \frac{\psi_{w}}{\frac{R_{w}}{R_{mix}} - \psi_{w}}$$

Result for incorrect input values:

xw_HuGas = -1.10^{100}

Mole Fraction of Liquid Water $\psi_{wl} = f(p, t, type, comp)$

Name in Fortran:

REAL*8 FUNCTION PSIWL_PT_HUGAS (REAL*8 P, REAL*8 T, INTEGER*4 TYPE,

REAL*8 COMP)

Input values:

- P Pressure *p* in bar
- T Temperature t in °C

TYPE	- composition:
	TYPE=1 for composition as mass fraction ξ
	TYPE=0 for composition as mole fraction ψ
COMP(0:8)	- composition as mass fraction $\xi_1\xi_8$ in kg/kg when TYPE=1
	- composition as mole fraction $\psi_1 \psi_8$ in kmol/kmol when TYPE=0
	COMP(0) - Dummy
	COMP(1)COMP(8) mass or mole fraction of mixture components

Result:

Psiwl_pt_HuGas - Mole fraction of water in kmol/kmol

Range of validity:

Temperature t:	t_{τ} (p,type,comp) $\leq t \leq t_{s}(p,p_{d})$
	$(t_{s} - Boiling temperature of water in gas mixtures)$
Pressure <i>p</i> :	0.01 bar $\leq p \leq 1000$ bar

Comments:

Mole fraction of liquid water:

$$\psi_{\rm wl} = \psi_{\rm w} - \psi_{\rm wsat}$$

with
$$\psi_{\text{wsat}} = \frac{p_{\text{dsat}}(p,T)}{p}$$

with $p_{dsat}(p,t)$ for $t \ge 0.01 \text{ °C} - \text{Vapour pressure of water in gas mixtures}$

for t < 0.01 °C – Sublimation pressure of water in gas mixtures

Result for incorrect input values:

 $Psiwl_pt_HuGas = -1.10^{100}$

Reference:

 $p_{dsat}(p,t)$ for $T \ge 273,16$ K from IAPWS-IF97 [1], [2], [3], [4] $p_{dsat}(p,t)$ for T < 273,16 K from IAPWS-92 [8]

Mole Fraction of Water of Saturated Gas $\psi_{w,sat} = f(p, t, type, comp)$

Name in Fortran:

REAL*8 FUNCTION PSIWSAT_PT_HUGAS (REAL*8 P, REAL*8 T, INTEGER*4 TYPE, REAL*8 COMP)

Input values:

P - Pressure	р	in	bar
--------------	---	----	-----

T - Temperature t in °C

TYPE	- composition:
	TYPE=1 for composition as mass fraction ξ
	TYPE=0 for composition as mole fraction ψ
COMP(0:8)	- composition as mass fraction $\xi_1\xi_8$ in kg/kg when TYPE=1
	- composition as mole fraction $\psi_1 \psi_8$ in kmol/kmol when TYPE=0
	COMP(0) - Dummy
	COMP(1)COMP(8) mass or mole fraction of mixture components

Result:

Psiwsat_pt_HuGas - Mole fraction of water of saturated gas $\psi_{w,sat}$ in kmol/ kmol

Range of validity:

Temperature t:	$-70 \ ^{\circ}C \ \leq \ t \ \leq \ T_{s}(\rho, \rho_{d})$
	$(t_{s} - Boiling temperature of water in gas mixtures)$
Pressure <i>p</i> :	0.01 bar $\le p \le 1000$ bar

Comments:

Mole fraction of water of saturated gas: $\psi_{wsat} = \frac{p_{dsat}(p,T)}{p}$

with $p_{dsat}(p,t)$ for $t \ge 0.01 \text{ °C}$ – Vapour pressure of water in gas mixtures for t < 0.01 °C – Sublimation pressure of water in gas mixtures

Result for incorrect input values:

 $Psiwsat_pt_HuGas = -1.10^{100}$

Reference:

 $p_{dsat}(p,t)$ for $T \ge 273,16$ K from IAPWS-IF97 [1], [2], [3], [4]

 $p_{dsat}(p,t)$ for T < 273,16 K from IAPWS-92 [8]

KCE-ThermoFluidProperties www.thermofluidprop.com

Property Libraries for Calculating Heat Cycles, Boilers, Turbines and Refrigerators

Water and Steam

Library LiblF97

- Industrial Formulation IAPWS-IF97 (Revision 2007)
- Supplementary Standards IAPWS-IF97-S01, -S03rev, -S04, and -S05
- IAPWS Revised Advisory Note No. 3 on Thermodynamic Derivatives (2008)

Library LibIF97_META

 Industrial Formulation IAPWS-IF97 (Revision 2007) for metastable steam

Humid Combustion Gas Mixtures

Library LibHuGas

Model: Ideal mixture of the real fluids: CO₂ - Span, Wagner H₂O - IAPWS-95

- O_2 Schmidt, Wagner N₂ Span et al. Ar - Tegeler et al.
 - and of the ideal gases: SO₂, CO, Ne
- (Scientific Formulation of Bücker et al.) Consideration of:
 - Dissociation from VDI 4670
 - Poynting effect

Humid Air

Library LibHuAir

Model: Ideal mixture of the real fluids:

 Dry air from Lemmon et al.
 Steam, water and ice from IAPWS-IF97 and IAPWS-06

Consideration of:

- Condensation and freezing of steam
- Dissociation from VDI 4670
 Poynting effect from
- ASHRAE RP-1485

Extremely Fast Property Calculations

Spline-Based Table Look-up Method (SBTL)

Library LibSBTL_IF97 Library LibSBTL_95 Library LibSBTL_HuAir

For steam, water, humid air, carbon dioxide and other fluids and mixtures according IAPWS Guideline 2015 for Computational Fluid Dynamics (CFD), real-time and non-stationary simulations

Carbon Dioxide Including Dry Ice

Library LibCO2

Formulation of Span and Wagner (1996)

Seawater

Library LibSeaWa

IAPWS Industrial Formulation 2013

lce

Library LibICE

Ice from IAPWS-06, Melting and sublimation pressures from IAPWS-08, Water from IAPWS-IF97, Steam from IAPWS-95 and -IF97

Ideal Gas Mixtures

Library LibIdGasMix

Model: Ideal mixture of the ideal gases:

			•
Ar	NO	He	Propylene
Ne	H ₂ O	F ₂	Propane
N ₂	SO ₂	NH ₃	Iso-Butane
0 ₂	H ₂	Methane	n-Butane
CO	H₂S	Ethane	Benzene
CO ₂	ОН	Ethylene	Methanol
Air			

Consideration of: • Dissociation from the VDI Guideline 4670

Library LibIDGAS

Model: Ideal gas mixture from VDI Guideline 4670

Consideration of: • Dissociation from the VDI Guideline 4670

Humid Air

Library ASHRAE LibHuAirProp

Model: Virial equation from ASHRAE Report RP-1485 for real mixture of the real fluids:

- Dry air
- Steam
- Consideration of
- Enhancement of the partial
- saturation pressure of water vapor at elevated total pressures
 - www.ashrae.org/bookstore

Dry Air Including Liquid Air

Library LibRealAir

Formulation of Lemmon et al. (2000)

Refrigerants

Ammonia

Library LibNH3

Formulation of Tillner-Roth et al. (1993)

R134a

Library LibR134a

Formulation of Tillner-Roth and Baehr (1994)

Iso-Butane

Library LibButane_Iso

Formulation of Bücker and Wagner (2006)

n-Butane

Library LibButane_n

Formulation of Bücker and Wagner (2006)

Mixtures for Absorption Processes

Ammonia/Water Mixtures

Library LibAmWa

IAPWS Guideline 2001 of Tillner-Roth and Friend (1998) Helmholtz energy equation for the mixing term (also useable for calculating the Kalina Cycle)

Water/Lithium Bromide Mixtures

Library LibWaLi

Formulation of Kim and Infante Ferreira (2004) Gibbs energy equation for the mixing term

Liquid Coolants

Liquid Secondary Refrigerants

Library LibSecRef

Liquid solutions of water with			
$C_2H_6O_2$	Ethylene glycol		
C ₃ H ₈ O ₂	Propylene glycol		
C₂H₅OH	Ethanol		
CH₃OH	Methanol		
C ₃ H ₈ O ₃	Glycerol		
K ₂ CO ₃	Potassium carbonate		
CaCl ₂	Calcium chloride		
MgCl ₂	Magnesium chloride		
NaCl	Sodium chloride		
$C_2H_3KO_2$	Potassium acetate		
CHKO ₂	Potassium formate		
LiCl	Lithium chloride		
NH ₃	Ammonia		

Formulation of the International Institute of Refrigeration (IIR 2010)

Ethanol

Library LibC2H5OH

Formulation of Schroeder et al. (2014)

Methanol

Library LibCH3OH

Formulation of de Reuck and Craven (1993)

Propane

Library LibPropane

Formulation of Lemmon et al. (2009)

Siloxanes as ORC Working Fluids

Octamethylcyclotetrasiloxane $C_8H_{24}O_4Si_4$ Library LibD4 Decamethylcyclopentasiloxane $C_{10}H_{30}O_5Si_5$ Library LibD5 Tetradecamethylhexasiloxane $C_{14}H_{42}O_5Si_6$ Library LibMD4M Hexamethyldisiloxane $C_6H_{18}OSi_2$ Library LibMM Formulation of Colonna et al. (2006)

Dodecamethylcyclohexasiloxane $C_{12}H_{36}O_6Si_6$ Library LibD6 Decamethyltetrasiloxane $C_{10}H_{30}O_3Si_4$ Library LibMD2M Dodecamethylpentasiloxane $C_{12}H_{36}O_4Si_5$ Library LibMD3M Octamethyltrisiloxane $C_8H_{24}O_2Si_3$ Library LibMDM Formulation of Colonna et al. (2008)

Nitrogen and Oxygen

Libraries LibN2 and LibO2

Formulations of Span et al. (2000) and Schmidt and Wagner (1985)

Hydrogen

Library LibH2

Formulation of Leachman et al. (2009)

Helium

Library LibHe Formulation of Arp et al. (1998)

Hydrocarbons

Decane $C_{10}H_{22}$ Library LibC10H22 Isopentane C_5H_{12} Library LibC5H12_Iso Neopentane C_5H_{12} Library LibC5H12_Neo Isohexane C_6H_{14} Library LibC6H14 Toluene C_7H_8 Library LibC7H8 Formulation of Lemmon and Span (2006)

Further Fluids

Carbon monoxide CO Library LibCO Carbonyl sulfide COS Library LibCOS Hydrogen sulfide H_2S Library LibH2S Nitrous oxide N_2O Library LibN2O Sulfur dioxide SO₂ Library LibSO2 Acetone C_3H_6O Library LibC3H6O Formulation of Lemmon and Span (2006)

For more information please contact:

KCE-ThermoFluidProperties UG & Co. KG Prof. Dr. Hans-Joachim Kretzschmar Wallotstr. 3 01307 Dresden, Germany

Internet: www.thermofluidprop.com Email: info@thermofluidprop.com Phone: +49-351-27597860 Mobile: +49-172-7914607 Fax: +49-3222-1095810

The following thermodynamic and transport properties can be calculated^a:

Thermodynamic Properties

- Vapor pressure p_s
- Saturation temperature T_s
- Density ρ
- Specific volume v
- Enthalpy h
- Internal energy u
- Entropy s
- Exergy e
- Isobaric heat capacity c_p
- Isochoric heat capacity c_v
- Isentropic exponent κ
- Speed of sound w
- Surface tension σ

Transport Properties

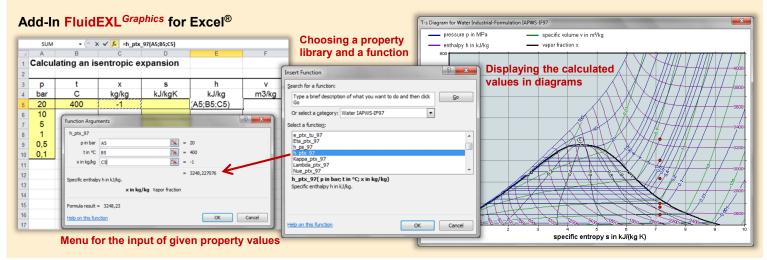
- Dynamic viscosity η
- Kinematic viscosity v
- Thermal conductivity λ
- Prandtl number Pr
- Thermal diffusivity a

Backward Functions

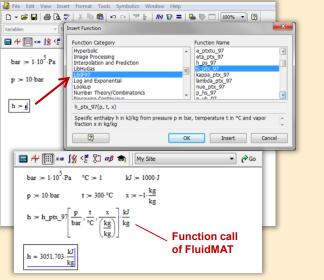
- *T*, *v*, *s* (*p*,*h*)
- *T*, *v*, *h* (*p*,*s*)
- *p*, *T*, *v* (*h*,*s*)
- p, T (v,h)
- p, T (v,u)

Thermodynamic Derivatives

 Partial derivatives used in process modeling can be calculated.


a Not all of these property functions are available in all property libraries.

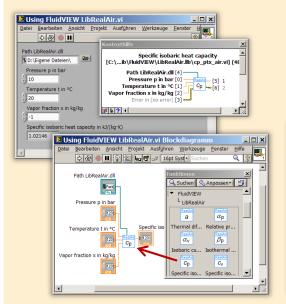
KCE-ThermoFluidProperties www.thermofluidprop.com



Property Software for Calculating Heat Cycles, Boilers, Turbines and Refrigerators

Add-On FluidMAT for Mathcad[®] Add-On FluidPRIME for Mathcad Prime[®]

The property libraries can be used in Mathcad[®] and Mathcad Prime[®].


Add-On FluidLAB for MATLAB[®] and SIMULINK[®]

Using the Add-In FluidLAB the property functions can be called in $\text{MATLAB}^{\circledast}$ and $\text{SIMULINK}^{\circledast}.$

Imail Lab 7.3.0 (R2006b) Imail Control Contro Control Control Control Control Contro Control Control Con			
Current Directory - C:\Programme\FluidLAB\LibHuAir_Example * ×			Editor - C:\Programme\FluidLAB\LibHuAir_Example\Example_hl ?
Al Files Bi hi_ ptxy_HuAir.mexw32 bi LibHuAir.dll bi libmmdd.dll bi libmmdd.dll bi msyc71.d.dll Example_hi_ptxw_HuAir.m Workspace_current.Directory Command History - % 20.06.07 10:50	File Type MEX-file DLL File DLL File DLL File DLL File DLL File DLL File M-file	Description hl_ptxw_HuAir.m	I * i i i i i x %* % Q 1 * h1 ptx Builtrim x %* % Q 1 * h1 ptx Builtrim x %* % Q 1 * * pt: * ptessure in bar * * 2 * * * * * * * 3 - pt: *
Start Click and drag to move Com	nand History		OVR

Add-On FluidVIEW for LabVIEW™

The property functions can be calculated in LabVIEW[™].

File Edit 🖻 🖬 🔍 🖨 ○ 🎸 A 🔳 🚣 • 🏝 • 🛱 🍡 🖾 • 🖏 • 🔶 ቅ 🖨 🖪 🛃 🛃 100% 💌 ₩ 1/ □ fluidDYM_LibSeaWa_Input in FluidDYM_SeaWa.TestMo ackage Browser Packages 🖲 🕕 Modelica Rei Add modifiers Modelica k=1 Name fluidDYM LibSeaWa Inpu FluidDYM_SeaWa Interfaces FluidDYM_Lib luidDYM_LibSeaVVa_Input FluidDYM_SeaWa.FluidDYM_LibSeaWa_Inpu TestModelle

The property functions can be called in DYMOLA® and SimulationX®.

Add-On FluidDYM for DYMOLA® (Modelica) and SimulationX®

Add-On FluidEES for Engineering Equation Solver[®]

?× Function Informatio C EES library routines Math functions Fluid properties External routines ○ Boiling and Condensation 💌 C Solid/liquid properties CIENCONTINO uer_EES\HuAirProp_SI\Be Tables Plots Windows Help Exa E_{ES} Equ ulating the Enthalpy - h_ptWHuAirPi p=11 Main t=20 Unit Settings: [kJ]/[C]/[kPa]/[kg]/[degrees] W=(h = 45.4866 [kJ/kg] p = 101.3 [kPa] t = 20 [C] W = 0.01 [kg/kg] CAL No unit problems were detected. Calculation time = .1 sec.

App International Steam Tables for iPhone, iPad, iPod touch, Android Smartphones and Tablets

International Steam Tables

IAPWS-IF97

p,x t,x p,h p,s

Spe Den

Enth

Ent

Online Property Calculator at www.thermofluidprop.com

luid:	Water and Steam IAPWS-	F97 - LiblF97 💌		
unction:	Specific enthalpy h(p.t,x)	• 4/		
Init System:	SI 👤			
nter given	values: Range of validity			
Pressure p		100	bar	- X X
Temperature	et	400	.c	-
				XX
Vapor fracti	on x	-1	kg/kg	-
	he vapor fraction x		KATTY	XY
	Calculat	te / Recalculate		
Result:		BARKER	HALLEN	XV
Result: Specific ent	thalpy h	= 3097.38	kJ/kg	•
Specific ent	3/1/18/2	THEN	ELT ELEL	Jett.
Specific ent	formation on property librarie	s available for EXCEL®	MATLAB®, Mathc	ad®,
Specific ent or further inf	3/1/18/2	s available for EXCEL®	MATLAB®, Mathc	ad®,
Specific ent or further inf ingineering E ere.	formation on property librarie Equation Sofver®, DYMOLA	s available for EXCEL® (Modelica), Simulation	, MATLAB®, Mathc X®, and LabView®	ad®, click
Specific ent or further inf ingineering E ere. In App for ca	formation on property librarie Equation Solver®, DYMOLAG	s available for EXCEL® (Modelica), Simulation	, MATLAB®, Mathc X®, and LabView®	ad®, click
Specific ent or further inf ingineering E ere. In App for ca	formation on property librarie Equation Solver®, DYMOLAG	s available for EXCEL® (Modelica), Simulation	, MATLAB®, Mathc X®, and LabView®	ad®, click
Specific ent or further int ingineering B <u>ere.</u> In App for ca 'DF with the D Zittau/Goerit	formation on property librarie Equation Solver®, DYMOLA liculating steam properties o description. 2 University of Applied Sciences	s available for EXCEL® 9 (Modelica), Simulation n iPhone, iPad, and iPoo Tel.: +49-3583-61-184	, MATLAB®, Mathc X®, and LabView® d touch can be four 6 or -1881	ad®, click
Specific ent or further int ingineering B ere. In App for ca 'DF with the D Zittau/Goerit Faculty of Me	formation on property librarie Equation Solver®, DYMOLAI liculating steam properties o description. University of Applied Sciences chanical Engineering	s available for EXCEL® (Modelica), Simulation n iPhone, iPad, and iPor Tel. +49-3583-61-184 Fax +49-3583-61-184	MATLAB®, Mathc X®, and LabView® I touch can be four 6 or -1881	ad®, click
Specific ent or further int ingineering E ere. In App for ca DF with the Statuty of Me Department	formation on property librarie Equation Solver®, DYMOLAt liculating steam properties o description. 2 University of Applied Sciences ichanical Engineering of Technical Thermodynamics	s available for EXCEL® 9 (Modelica), Simulation n iPhone, iPad, and iPor Tel: +49-3583-61-184 Fax +49-3583-61-184 E-mail: info@thermod	MATLAB®, Mathc X®, and LabView® d touch can be four 6 or -1881 6 mamics-cittau de	ad®, click
Specific ent or further int ingineering B ere n App for ca 'DF with the DE with the Eacuty of Me Department Prof. Hans-J	formation on property Ibrane Equation Solver®, DYMOLAI Idulating steam properties o description 2 University of Applied Sciences chancal Engineering of Technical Thermodynamics achim Kretschmar	is available for EXCEL® 6 (Modelica), Simulation n iPhone, iPad, and iPoo Tel. +49-3583-61-184 Fax, +49-3583-61-184 E-mail: info@hermod www.hermodn.amica	MATLAB®, Mathc X®, and LabView® d touch can be four 6 or -1881 6 	ad®, click
Specific ent or further inl ingineering E ere n App for ca 'DF with the DF with the Department Prof. Hans-J Dr. Ines Stoe	formation on property Ibrane Equation Solver®, DYMOLAI Idulating steam properties o description 2 University of Applied Sciences chancal Engineering of Technical Thermodynamics achim Kretschmar	s available for EXCEL® 9 (Modelica), Simulation n iPhone, iPad, and iPor Tel: +49-3583-61-184 Fax +49-3583-61-184 E-mail: info@thermod	MATLAB®, Mathc X®, and LabView® d touch can be four 6 or -1881 6 	ad®, click

Property Software for Pocket Calculators

For more information please contact:

KCE-ThermoFluidProperties UG & Co. KG Prof. Dr. Hans-Joachim Kretzschmar Wallotstr. 3 01307 Dresden, Germany Internet: www.thermofluidprop.com Email: info@thermofluidprop.com Phone: +49-351-27597860 Mobile: +49-172-7914607 Fax: +49-3222-1095810

The following thermodynamic and transport properties^a can be calculated in Excel[®], MATLAB[®], Mathcad[®], Engineering Equation Solver[®] (EES), DYMOLA[®] (Modelica), SimulationX[®] and LabVIEW™:

Thermodynamic Properties

- Vapor pressure p_s
- Saturation temperature $T_{\rm s}$
- Density ρ
- Specific volume v
- Enthalpy h
- Internal energy u
- Entropy s
- Exergy e
- Isobaric heat capacity c_p
- Isochoric heat capacity c_v
- Isentropic exponent κ
- Speed of sound w
- Surface tension σ

Transport Properties

- Dynamic viscosity η
- Kinematic viscosity v
- Thermal conductivity λ
- Prandtl number Pr
- Thermal diffusivity a

Backward Functions

- T, v, s (p,h)
- T, v, h (p,s)
- p, T, v (h,s)
- p, T (v,h)
- p, T (v,u)

Thermodynamic Derivatives

 Partial derivatives used in process modeling can be calculated.

a Not all of these property functions are available in all property libraries.

5. References

- [1] Release on the IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam IAPWS-IF97.
 IAPWS Sekretariat, Dooley, B, EPRI, Palo Alto CA (1997)
- [2] Wagner, W.; Kruse, A.:
 Zustandsgrößen von Wasser und Wasserdampf.
 Springer-Verlag, Berlin (1998)
- [3] Wagner, W.; Cooper, J.R.; Dittmann, A.; Kijima, J.; Kretzschmar, H.-J.; Kruse, A.; Mares, R.; Oguchi, K.; Sato, H.; Stöcker, I.; Sifner, O.; Takaishi, Y.; Tanishita, I.; Trübenbach, J.; Willkommen, Th.: The IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam. ASME Journal of Eng. for Gas Turbines and Power 122 (2000) Nr. 1, S. 150-182
- Kretzschmar, H.-J.; Stöcker, I.; Klinger, J.; Dittmann, A.: Calculation of Thermodynamic Derivatives for Water and Steam Using the New Industrial Formulation IAPWS-IF97.
 in: Steam, Water and Hydrothermal Systems: Physics and Chemistry Meeting the Needs of Industry, Proceedings of the 13th International Conference on the Properties of Water and Steam, Eds. P.G. Hill et al., NRC Press, Ottawa, 2000
- [5] IAPWS Release on Surface Tension of Ordinary Water Substance 1994. IAPWS Sekretariat, Dooley, B., EPRI, Palo Alto CA, (1994)
- [6] Release on the IAPS Formulation 1985 for the Thermal Conductivity of Ordinary Water Substance.
 IAPWS Sekretariat, Dooley, B., EPRI, Palo Alto CA, (1985)
- [7] Release on the IAPS Formulation 1985 for the Viscosity of Ordinary Water Substance. IAPWS Secretariat, Dooley, B., EPRI, Palo Alto CA, (1985)
- [8] Revised Release on Pressure along the Melting and Sublimation Curves of Ordinary Water Substance.
 IAPWS Sekretariat, Dooley, B., EPRI, Palo Alto CA (1993)
- [9] Hyland, R. W.; Wexler, A.: Formulations for the Thermodynamic Properties of Saturated Phases of H₂O from 173.15 K to 473.15 K. Report No. 2793 (RP-216), National Bureau of Standards, Washington, D.C. (1983)
- [10] Bücker, D.; Span, R.; Wagner, W.: Thermodynamic Property Models for Moist Air and Combustion Gases. J. Eng. Gas Turb. Power 125 (2003) 374-383.
- Tegeler, Ch.; Span, R.; Wagner, W.: A New Equation of State for Argon Covering the Fluid Region for Temperatures From the Melting Line to 700 K at Pressure up to 1000 MPa. J. Phys. Chem. Ref. Data 28 (1999) 779-850.
- Span, R.; Lemmon, E. W.; Jacobsen, R. T.; Wagner, W.; Yokozeki, A.: A Reference Equation of State for the Thermodynamic Properties of Nitrogen for Temperatures from 63.151 to 1000 K and Pressures to 2200 MPa.
 J. Phys. Chem. Ref. Data 29 (2000) 1361-1433.

- [13] de Reuck, K. M.; Wagner, W.:
 Oxygen International Thermodynamic Tables of the Fluid State 9.
 IUPAC Thermodynamic Tables Project, Blackwell Scientific Publications, Oxford, UK, 1987.
- [14] Span, R.; Wagner, W.:
 A New Equation of State for Carbon Dioxide Covering the Fluid Region from the Triple-Point Temperature to 1100 K at Pressures up to 800 MPa.
 J. Phys. Chem. Ref. Data 25 (1996) 1509-1596.
- [15] Release on the IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use. The Internal Association for the Properties of Water and Steam, Fredericia (1996)
- [16] Verein Deutscher Ingenieure
 Thermodynamische Stoffwerte von feuchter Luft und Verbrennungsgasen.
 VDI 4670, Entwurf (2000)
- [17] Lemmon, E. W.; Jacobsen, R. T.: Preliminary equation for viscosity and thermal conductivity of argon. NIST (2001)
- Klein, S. A.; Mc Linden, M. O.; Laesecke, A.: An improved extended corresponding states method for estimation of viscosity of pure refrigerants and mixtures. International Journal of Refrigeration 20 (1997) p. 208-217
- [19] McLinden, M. O.; Klein, S. A.; and Perkins, R. A.: An extended corresponding states model for the thermal conductivity of refrigerants and refrigerant mixtures. Int. J. Refrigeration, 23 (2000) p. 43-63
- [20] Lemmon, E. W.; Jacobsen, R. T.: Preliminary equation for viscosity of nitrogen. NIST (1999)
- [21] Lemmon, E. W.; Jacobsen, R. T.: Preliminary equation for viscosity and thermal conductivity of oxygen. NIST (2001)
- [22] National Institute of Standards and Technology Viscosity and thermal conductivity of carbon monoxide. Coefficients are taken from NIST14, Version 9.08
- [23] Fenghour, A.; Wakeham, W. A.; Vesovic, V.: The viscosity of carbon dioxide. Journal of Physical and Chemical Reference Data 27 (1998) No. 1
- [24] Reid, R. C.; Prausnitz, J. M.; Poling, B. E.: The Properties of Gases and Liquids.
 4th edition, McGraw-Hill Book Company, New York (1987)
- [25] Rabinovich, V. A.; Vasserman, A. A.; Nedostup, V. I.; Veksler, L. S.: Thermophysical Properties of Neon, Argon, Krypton, and Xenon. Hemisphere Publishing Corp., New York (1988)
- [26] Lemmon, E. W.; Jacobsen, R. T.: Preliminary equation for thermal conductivity of nitrogen. NIST (1999)

 [27] Vesovic, V.; Wakeham, W. A.; Olchowy, G. A.; Sengers, J. V.; Watson, J. T. R.; Millat, J.: The transport properties of carbon dioxide. J. Phys. Chem. Ref. Data, 19 (1990) p. 763-808

6. Satisfied Customers

Period from 2018 to 2022

The following companies and institutions use the property libraries:

- FluidEXL^{Graphics} for Excel[®] incl. VBA
- FluidLAB for $\ensuremath{\mathsf{MATLAB}}\xspace^{\ensuremath{\mathbb{R}}}$ and $\ensuremath{\mathsf{Simulink}}\xspace$
- FluidMAT for Mathcad®
- FluidPRIME for Mathcad Prime®
- FluidEES for Engineering Equation Solver[®] EES
- FluidDYM for Dymola $^{I\!\!R}$ (Modelica) and Simulation $X^{I\!\!R}$
- FluidVIEW for LabVIEW[™]
- FluidPYT for Python
- FluidJAVA for Java
- DLLs for Windows Applications
- Shared Objects for Linux
- Shared Objects for macOS.

2022

ASTG, Graz, Austria	12/2022
Wandschneider + Gutjahr, Hamburg	
RWE Supply & Trading, Essen	11/2022
Stadtwerke Rosenheim	
CEA, Saclay, France	10/2022
RWE Supply & Trading, Essen	
SEEC Saudi Energy Efficiency Center, Riyadh, Saudi Arabia	
MAN, Copenhagen, Denmark	
Hermeler & Partner Consulting Engineers, Sassenberg	09/2022
Envi Con, Nürnberg	
Drill Cool Systems, Bakersfield CA, USA	
RWE Supply & Trading, Essen	
Maerz Ofenbau, Zürich, Switzerland	
Saale Energie, Schkopau	
ERGO, Dresden	
Mainova, Frankfurt/Main	
Bundeswehr, Koblenz	08/2022
RWE Supply & Trading, Essen	
Grenzebach Corporation, Newnan GE, USA	
AGRANA, Gmuend, Austria	07/2022
MIBRAG, Zeitz	
Hochschule Niederrhein, Krefeld	
ULT, Löbau	06/2022
LEAG, Cottbus	
VPC Group, Vetschau	

Wärme, Hamburg	
ILK, Dresden	
Stricker IB, Küssnacht a. Rigi, Switzerland	
LEAG, Cottbus	05/2022
RWE Supply & Trading, Essen	
IGT Tomalla, Kreuztal	
B+T Engineering, Dübendorf, Switzerland	
Stricker IB, Küssnacht a. Rigi, Switzerland	
Vogelsang & Benning, Bochum	04/2022
Frischli, Rehburg-Loccum	
BPS Consulting, Sprenge	03/2022
HS Hannover, Maschinenbau & BioVT	
M+M Turbinentechnik, Bad Salzuflen	
Uni. Strathclyde, Glasgow, UK	02/2022
Delta Energy Group, Jiaozhou City, Qingdao, China	
Wetzel IB, Guben	
Wijbenga, PC Geldermalsen, The Netherlands	
Voith Paper, Heidenheim	
HS Zittau/Görlitz, Maschinenwesen	01/2022
Thermische Abfallbehandlung, Lauta	
Webb Institute, Glen Cove NY, USA	
TU Berlin, Umweltverfahrenstechnik	
SachsenEnergie, Dresden	
Doosan, Chang-won-si, Gyeongsangnam-do, South Korea	
KW3, LH Veenendaal, The Netherlands	
Université du Luxembourg, Esch-sur-Alzette	
Enseleit IB, Mansfeld	
Caliqua/Equans, Zürich, Switzerland	
Rudnick & Enners, Alpenrod	
2024	
2021	
Wenisch IB, Vetschau	12/2021
PPCHEM, Hinwil, Switzerland	
KW3, The Netherlands	
BASF Ludwigshafen	
Air-Consult, Jena	
Sjerp & Jongeneel, RB Zoetermeer, The Netherlands	11/2021
Maerz Ofenbau, Zürich, Switzerland	
RWE Supply & Trading, Essen	
Hahn IB, Dresden	10/2021
Therm, South Africa	
RWE Supply & Trading, Essen	
TH Nürnberg, Verfahrenstechnik	09/2021
RWE Supply & Trading, Essen	
Enseleit IB, Mansfeld	
SachsenEnergie, Dresden	

BSH Hausgeräte, Berlin

Norsk Energi, Oslo, Norway	08/2021
AKM Industrieanlagen, Haltern	
Drill Cool Systems, Bakersfield CA, USA	
Siemens Energy Global, Erlangen	07/2021
Wulff & Umag, Husum	
Planungsbüro Waidhas, Chemnitz	
Burkhardt Energie Technik, Mühlhausen	
Lücke IB, Paderborn	06/2021
TU Dresden, Energieverfahrenstechnik	
Wärme, Hamburg	
AL-KO Therm, Kötz	
PCK Raffinerie, Schwedt	
Vogelsang & Benning, Bochum	05/2021
MTU, München	
VPC Group, Vetschau	
AVG, Köln	04/2021
TH Ulm, Institut für Fahrzeugtechnik	
Marty IB, Oberwil, Switzerland	
HypTec, Lebring, Austria	
Lopez IB, Getxo, Bizkaia, Spain	03/2021
GM Remediation Systems, Leoben, Austria	
Jager Kältetechnik, Osnabrück	
T&M Automation, GR Leidschendam, The Netherlands	
RWE Supply & Trading, Essen	
Stadtwerke Leipzig	
Beuth Hochschule für Technik, Berlin	
Beleth IB, Woeth	02/2021
ZTL, Thal, Austria	
ETABO Bochum	
RWE Supply & Trading, Essen	
Onyx Germany, Berlin	
TU Dresden, Kältetechnik	
GOHL-KTK, Durmersheim	
Therm Development, South Africa	
thermofin, Heinsdorfergrund	
RWE Supply & Trading, Essen	01/2021
STEAG, Essen	
ETA Energieberatung, Pfaffenhofen	
Enex Power, Kirchseeon	
2020	
Drill Cool, Bakersfield CA, USA	12/2020
Manders, The Netherlands	12/2020
RWE Supply & Tranding, Essen	
NEOWAT Lodz, Poland	
University of Duisburg-Essen, Duisburg	11/2020
	11/2020

University of Duisburg-Essen, Duisburg Stellenbosch University, South Africa 6/3

University De France-COMTe, France	
RWE, Essen	
STEAG, Herne	
Isenmann Ingenierbüro	
University of Stuttgart, ITLR, Stuttgart	
Norsk Energi, Oslo, Norway	
TGM Kanis, Nürnberg	
Stadtwerke Neuburg	10/2020
Smurfit Kappa, Roermond, The Netherlands	
RWE, Essen	
Hochschule Zittau/Görlitz, Wirtschaftsingenieurwesen	
Stadtwerke, Neuburg	
ILK, Dresden	
ATESTEO, Alsdorf	
Hochschule Zittau/Görlitz, Maschinenwesen	
TH Nürnberg, Verfahrenstechnik	
Drill Cool, Bakersfield CA,USA	09/2020
RWE, Essen	
2Meyers Ingenieurbüro, Nürnberg	
FELUWA, Mürlenbach	
Stadtwerke Neuburg	
Caverion, Wien, Austria	
GMVA Niederrhein, Oberhausen	
INWAT Lodz, Poland	
Troche Ingenieurbüro, Hayingen	08/2020
CEA Saclay, France	
VPC, Vetschau	07/2020
FSK System-Kälte-Klima, Dortmund	
Exergie Etudes, Sarl, Switzerland	
AWG Wuppertal	
STEAG Energy Services, Zwingenberg	
Hochschule Braunschweig	06/2020
DBI, Leipzig	
GOHL-KTK, Dumersheim	
TU Dresden, Energieverfahrenstechnik	
BASF SE, ESI/EE, Ludwigshafen	
Wärme Hamburg	
Ruchti Ingenieurbüro, Uster, Switzerland	
IWB, Basel, Switzerland	
Midiplan, Bietingen-Bissingen	05/2020
Knieschke, Ingenieurbüro	
RWE, Essen	
Leser, Hamburg	
AGRANA, Gmünd, Austria	
EWT Wassertechnik, Celle	
Hochschule Darmstadt	04/2020
MTU München CCP	
HAW Hamburg	03/2020
-	

Hanon, Novi Jicin, Czech Republic TU Dresden, Kältetechnik	
MAN, Copenhagen, Denmark	
EnerTech, Radebeul	02/2020
LEAG, Cottbus	
B+B Enginering Magdeburg	
Hochschule Offenburg	
WIB, Dennheritz	01/2020
Universität Duisburg-Essen, Strömungsmaschinen	
Kältetechnik Dresen-Bremen	
TH Ingolstadt	
Vattenfall AB, Jokkmokk, Sweden	
Fraunhofer UMSICHT	

2019

PEU Leipzig, Rötha	12/2019
MB-Holding, Vestenbergsgreuth	
RWE, Essen	
Georg-Büchner-Hochschule, Darmstadt	11/2019
EEB ENERKO, Aldenhoven	
Robert Benoufa Energietechnik, Wiesloch	
Kehrein & Kubanek Klimatechnik, Moers	10/2019
Hanon Systems Autopal Services, Hluk, Czech Republic	
CEA Saclay, Gif Sur Yvette cedex, France	
Saudi Energy Efficiency Center SEEC, Riyadh, Saudi Arabia	
VPC, Vetschau	09/2019
jGanser PM + Engineering, Forchheim	
Endress+Hauser Flowtec AG, Reinach, Switzerland	
Ruchti IB, Uster, Switzerland	
ZWILAG Zwischenlager Würenlingen, Switzerland	08/2019
Hochschule Zittau/Görlitz, Faculty Maschinenwesen	
Stadtwerke Neubrandenburg	
Physikalisch Technische Bundesanstalt PTB, Braunschweig	
GMVA Oberhausen	07/2019
Endress+Hauser Flowtec AG, Reinach, Switzerland	
WARNICA, Waterloo, Canada	
MIBRAG, Zeitz	06/2019
Pöyry, Zürich, Switzerland	
RWTH Aachen, Institut für Strahlantriebe und Turbomaschinen	
Midiplan, Bietigheim-Bissingen	
GKS Schweinfurt	
HS Zittau/Görlitz, Wirtschaftswissenschaften und Wirtschaftsingenieurwesen	
ILK Dresden	
HZDR Helmholtz Zentrum Dresden-Rossendorf	
TH Köln, Technische Gebäudeausrüstung	05/2019
IB Knittel, Braunschweig	
Norsk Energi, Oslo, Norway	

STEAG, Essen Stora Enso, Eilenburg IB Lücke, Paderborn Haarslev, Sonderso, Denmark MAN Augsburg Wieland Werke, Ulm 04/2019 Fels-Werke, Elbingerode Univ. Luxembourg, Luxembourg BTU Cottbus, Power Engineering 03/2009 Eins-Energie Sachsen, Schwarzenberg TU Dresden, Kälte- und Kryotechnik ITER, St. Paul Lez Durance Cedex, France Fraunhofer UMSICHT, Oberhausen Comparex Leipzig for Spedition Thiele HEMMERSBACH Rückert NaturGas, Lauf/Pegnitz BASF, Basel, Switzerland 02/2019 Stadtwerke Leipzig Maerz Ofenbau Zürich, Switzerland Hanon Systems Germany, Kerpen Thermofin, Heinsdorfergrund 01/2019 **BSH Berlin** 2018 Jaguar Energy, Guatemala 12/2018 WEBASTO, Gilching Smurfit Kappa, Oosterhout, Netherlands Univ. BW München RAIV, Liberec for VALEO, Prague, Czech Republic 11/2018 VPC Group Vetschau SEITZ, Wetzikon, Switzerland MVV, Mannheim 10/2018 **IB** Troche KANIS Turbinen, Nürnberg TH Ingolstadt, Institut für neue Energiesysteme IB Kristl & Seibt, Graz, Austria 09/2018 INEOS, Köln IB Lücke, Paderborn 08/2018 Südzucker, Ochsenfurt K&K Turbinenservice, Bielefeld 07/2018 OTH Regensburg, Elektrotechnik Comparex Leipzig for LEAG, Berlin 06/2018 Münstermann, Telgte 05/2018 TH Nürnberg, Verfahrenstechnik Universität Madrid, Madrid, Spanien HS Zittau/Görlitz, Wirtschaftsingenieurwesen HS Niederrhein, Krefeld

Wilhelm-Büchner HS, Pfungstadt

03/2018

GRS, Köln WIB, Dennheritz RONAL AG, Härklingen, Schweiz Ingenieurbüro Leipert, Riegelsberg AIXPROCESS, Aachen KRONES, Neutraubling Doosan Lentjes, Ratingen

02/2018

01/2018