

Property Library for Carbon Dioxide

FluidEXL Graphics
with LibCO2
for Excel®

Prof. Dr. Hans-Joachim Kretzschmar
Prof. Dr. Matthias Kunick
Dr. Sebastian Herrmann
M.Eng Martin Suender
Ines Jaehne
S. Hasch
F. Elschner

Software for the Calculation of the Properties of Carbon Dioxide Including DLL and Add-In for Excel® FluidEXL Graphics LibCO2

Contents

- 0. Package Contents
 - 0.1 Zip-files for 32-bit Office®
 - 0.2 Zip-files for 64-bit Office®
- 1. Property Functions
- 2. Application of FluidEXL in Excel®
 - 2.1 Installing FluidEXL
 - 2.2 Registering FluidEXL as Add-In in Excel®
 - 2.3 Licensing the LibCO2 Property Library
 - 2.4 Example calculation
 - 2.5 The FluidEXL Help System
 - 2.6 Removing FluidEXL
- 3. Program Documentation
- 4. Property Libraries for Calculating Heat Cycles, Boilers, Turbines, and Refrigerators
- 5. References
- 6. Satisfied Customers

© KCE-ThermoFluidProperties

Prof. Dr. Hans-Joachim Kretzschmar Haager Weg 6, 92224 Amberg, Germany

Phone: +49-9621-1762047 Mobile: +49-172-7914607 Fax: +49-3222-1095810

Email: info@thermofluidprop.com Internet: www.thermofluidprop.com

0 Package Contents

0.1 Zip files for 64-bit Office®

```
The following zip file has been delivered for your computer running a 64-bit Office® version: CD_FluidEXL_Graphics_Eng_LibCO2_x64.zip including the following folders an files:
```

```
\FLUFT\
\Formulation97\
FluidEXL_Graphics_LibCO2_Docu_Eng.pdf
FluidEXL_Graphics_Eng.xla
LC.dll
LibCO2.dll
```

LibCO2.chm.

0.2 Zip files for 32-bit Office®

The following zip file has been delivered for your computer running a 32-bit Office® version: CD_FluidEXL_Graphics_Eng_LibCO2.zip

including the following folders and files:

\FLUFT\

\Formulation97\

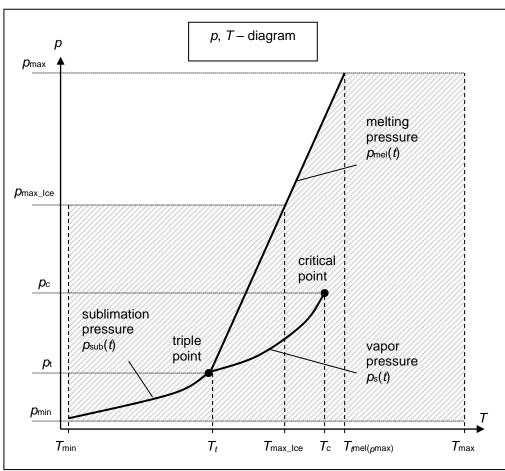
FluidEXL_Graphics_LibCO2_Docu_Eng.pdf

FluidEXL_Graphics_Eng.xla

LC.dll

LibCO2.dll

LibCO2.chm.


1. Property Functions

Units: $t \text{ in } {}^{\circ}\text{C}$

p in bar

x in kg /kg (Phase fraction, see the following explanations)

Range of Validity:

Reference State:

At p = 1.01325 bar and T = 298.15 K (25 °C):

h = -0.938457860 kJ/kg and s = -0.00219606205 kJ/(kg K)

Factor	Abbreviation	Value and Unit
Minimum temperature	T _{min} (t _{min})	85 K (–188.15 °C)
Maximum temperature	T _{max} (t _{max})	1500 K (1226.85 °C)
Triple temperature	T _t (t _t)	216.592 K (-56.558 °C)
Temperature at the critical point	$T_{c}(t_{c})$	304.1282 K (30.9782 °C)
Maximum temperature of solid region	T _{max_lce} (t _{miax_lce})	236.0309 K (-37.119 °C)
Maximum temperature of melting pressure curve	$T_{\text{mel}}(p_{\text{max}}) \ (t_{\text{mel}}(p_{\text{max}}))$	327.671 K (54.521 °C)
Minimum pressure	$p_{\min} = p_{\text{sub}}(T_{\min})$	2.9081875815·10 ⁻¹⁰ bar
Maximum pressure	<i>p</i> _{max}	8000 bar
Triple pressure	$p_{\rm t}$	5.179618369088 bar
Pressure at the critical point	$ ho_{ m c}$	73.773 bar
Maximum pressure of solid region	<i>P</i> max_lce	1000 bar

General Property Functions

Functional Dependence	Function Name	Call from Fortran program	Property or Function	Unit of the Result
a = f(p,t,x)	a_ptx_CO2	APTXCO2(P,T,X)	Thermal diffusivity	m ² /s
$c_p = f(p, t, x)$	cp_ptx_CO2	CPPTXCO2(P,T,X)	Specific isobaric heat capacity	kJ/(kg K)
$c_V = f(p, t, x)$	cv_ptx_CO2	CVPTXCO2(P,T,X)	Specific isochoric heat capacity	kJ/(kg K)
$\eta = f(p,t,x)$	eta_ptx_CO2	ETAPTCO2(P,T,X)	Dynamic viscosity	Pa s
h = f(p,t,x)	h_ptx_CO2	HPTXCO2(P,T,X)	Specific enthalpy	kJ/kg
$\kappa = f(p, t, x)$	kappa_ptx_CO2	KAPTXCO2(P,T,X)	Isentropic exponent	-
$\lambda = f(p,t,x)$	lambda_ptx_CO2	LAMPTCO2(P,T,X)	Thermal conductivity	W/(m K)
v = f(p, t, x)	ny_ptx_CO2	NYPTXCO2(P,T,X)	Kinematic viscosity	m ² /s
$p_{\text{mel}} = f(t)$	pmel_t_CO2	PMELCO2(T)	Melting pressure from temperature	bar
$p_{\text{sub}} = f(t)$	psub_t_CO2	PSUBCO2(T)	Sublimation pressure from temperature	bar
$p_{\rm S} = f(t)$	ps_t_CO2	PSTCO2(T)	Vapor pressure from temperature	bar
Pr = f(p,t,x)	Pr_ptx_CO2	PRPTXCO2(P,T,X)	Prandtl-Number	-
$\rho = f(p,t,x)$	rho_ptx_CO2	ROPTXCO2(P,T,X)	Density	kg/ m³
s = f(p, t, x)	s_ptx_CO2	SPTXCO2(P,T,X)	Specific entropy	kJ/(kg K)
t = f(p,h)	t_ph_CO2	TPHCO2(P,H)	Backward function: Temperature from pressure and enthalpy	°C

Functional Dependence	Function Name	Call from Fortran program	Property or Function	Unit of the Result
t = f(p,s)	t_ps_CO2	TPSCO2(P,S)	Backward function: Temperature from pressure and entropy	°C
$t_{\text{mel}} = f(p)$	tmel_p_CO2	TMELCO2(P)	Melting temperature from pressure	°C
$t_{\text{sub}} = f(p)$	tsub_p_CO2	TSUBCO2(P)	Sublimation temperature from pressure	°C
$t_{\rm S} = f(p)$	ts_p_CO2	TSPCO2(P)	Saturation temperature from pressure	°C
V = f(p,t,x)	v_ptx_CO2	VPTXCO2(P,T,X)	Specific volume	m³/kg
w = f(p, t, x)	w_ptx_CO2	WPTXCO2(P,T,X)	Isentropic speed of sound	m/s
x = f(p,h)	x_ph_CO2	XPHCO2(P,H)	Backward function: Phase fraction from pressure and enthalpy	kg/kg
x = f(p,s)	x_ps_CO2	XPSCO2(P,S)	Backward function: Phase fraction from pressure and entropy	kg/kg
z = f(p,t,x)	z_ptx_CO2	ZPTXCO2(P,T,X)	Compression factor	-

Property Functions for Solid Carbon Dioxide (Dry Ice)

Functional Dependence	Function Name	Call from Fortran program	Call from the DLL LibCO2 as Parameter	Property or Function	Unit of the Result
a = f(p,t)	alCE_pt_CO2	APICETCO2(P,T)	C_APICEPTCO2 (A, P, T)	Thermal diffusivity	m²/s
$c_p = f(p, t)$	cpICE_pt_CO2	CPICETCO2(P,T)	C_CPICEPTCO2 (CP, P, T)	Specific isobaric heat capacity	kJ/(kg K)
h = f(p,t)	hICE_pt_CO2	HICETCO2(P,T)	C_HICEPTCO2 (H, P, T)	Specific enthalpy	kJ/ kg
$\lambda = f(t)$	lambdalCE_t_CO2	LAMICETCO2(T)	C_LAMICETCO2 (LAM,T)	Thermal conductivity	W/(m K)

Functional Dependence	Function Name	Call from Fortran program	Call from the DLL LibCO2 as Parameter	Property or Function	Unit of the Result
$\rho = f(p,t)$	rholCE_pt_CO2	RHOICETCO2(P,T)	C_RHOICEPTCO2 (RHO, P, T)	Density	kg/ m³
s = f(p,t)	sICE_pt_CO2	SICETCO2(P,T)	C_SICEPTCO2 (S, P, T)	Specific entropy	kJ/ (kg K)
V = f(p,t)	vICE_pt_CO2	VICETCO2(P,T)	C_VICEPTCO2 (V, P, T)	Specific volume	m³/kg
t = f(p,h)	tICE_ph_CO2	TICEHCO2(P,H)	C_TICEPHCO2 (T, P, H)	Backward function: Temperature from pressure and enthalpy	°C
t = f(p,s)	tICE_ps_CO2	TICESCO2(P,S)	C_TICEPSCO2 (T, P, S)	Backward function: Temperature from pressure and entropy	°C

Details on the Phase Fraction x

If the state point to be calculated is located in the single phase region (solid, liquid or superheated vapor), x = -1 must be entered as a pro-forma value. Here the backward functions will also result in x = -1.

The two phase regions wet vapor region, melting region and sublimation region (cp. the following lg *p,h*-diagram) are calculated automatically by the subprograms. Please consider the following facts:

1. Wet Vapor Region $(0 \le x \le 1)$:

The phase fraction *x* equates to the vapor fraction *x* in the wet vapor region in (kg dry saturated vapor)/(kg wet vapor).

In this case it is adequate to enter either the given value for t and p = -1000, or the given value for p and t = -1000, plus the value for x between 0 and 1. If values for both p and t are entered when calculating wet vapor, the program will consider p and t to be appropriate to represent the vapour pressure curve. If it is not the case the calculation for the quantity of the chosen function to be calculated results in -1000.

When calculating wet vapor, x results in a value between 0 and 1 (x = 0 for boiling liquid, x = 1 for dry saturated vapor). In this case, the backward functions result in the appropriate value between 0 and 1 for x.

Wet vapor region: Temperature range from $T_{\rm t}$ = 216.592 K ($t_{\rm t}$ =-56.558 °C) to $T_{\rm c}$ = 304.1282 K ($t_{\rm t}$ = 30.9782 °C) Pressure ranges from $p_{\rm t}$ = 5.179618369088 bar to $p_{\rm c}$ = 73.773 bar

2. Melting Region ($10 \le x \le 11$):

The phase fraction x equates to the liquid fraction x in the melting region in (kg solidifying liquid)/(kg melt), whereas melt is a mixture of melting solid and

solidifying liquid.

In this case it is adequate to enter either the given value for t and p = -1000, or the given value for p and t = -1000, plus the value for x between 10 and 11. If values for both p and t are entered, the program will consider p and t to be appropriate to represent the melting pressure curve. If it is not the case the calculation for the quantity of the chosen function to be calculated results in -1000.

When calculating a melt, x results in a value between 10 and 11 (x = 10 for melting solid, x = 11 for solidifying liquid). In this case, the backward functions result in the appropriate value between 10 and 11 for x.

Melting region: Temperature range from $T_{\text{max_lce}} = 236.0309 \text{ K}$ ($t_{\text{max_lce}} = -37.119 ^{\circ}\text{C}$) to $T_{\text{t}} = 216.592 \text{ K}$ ($t_{\text{t}} = -56.558 ^{\circ}\text{C}$)

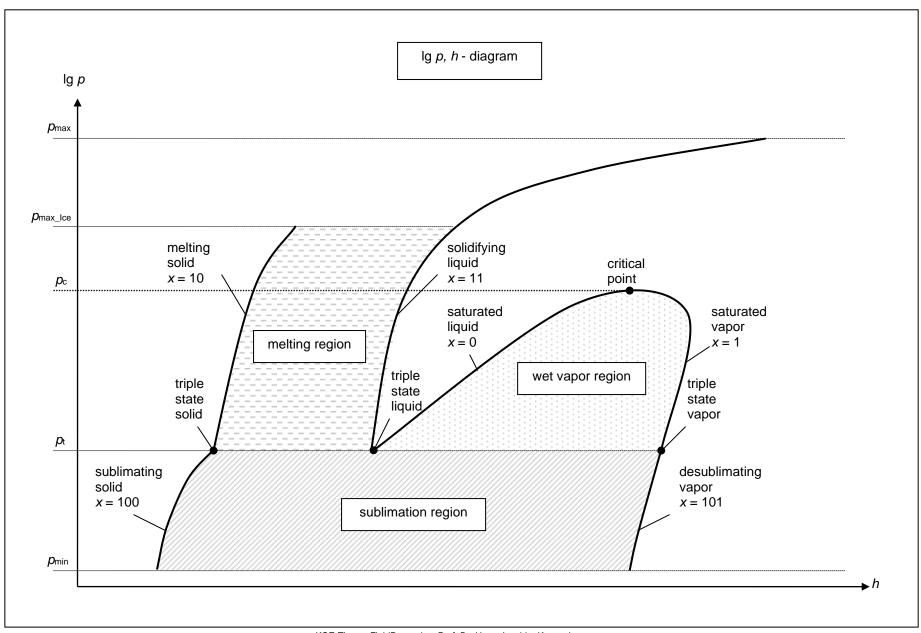
Pressure range from $p_{\text{t}} = 5.179618369088$ bar to $p_{\text{max_lce}} = 1000$ bar

Only the limiting curve on the right hand side, thus solidifying liquid (x = 11) is calculated for pressures p for which applies $p_{\text{max_lce}} .$

3. Sublimation Region (100 \leq x \leq 101):

The phase fraction *x* equates to the vapor fraction *x* in the sublimation region in (kg desublimating vapor)/(kg sublimation powder), whereas sublimation powder is a mixture of sublimating solid and desublimating vapor.

In this case it is adequate to enter either the given value for t and p = -1000, or the given value for p and t = -1000, plus the value for x between 100 and 101. If values for both p and t are entered, the program will consider p and t to be appropriate to represent the sublimation pressure curve. If it is not the case the calculation for the quantity of the chosen function to be calculated results in -1000.


When calculating sublimation powder, x takes a value between 100 and 101 (x = 100 for sublimating solid, x = 101 for desublimating vapor). In this case, the backward functions result in the appropriate value between 100 and 101 for x.

Sublimation region: Temperature range from $T_{\text{min}} = 85 \text{ K}$ ($t_{\text{min}} = -188.15 \,^{\circ}\text{C}$) to $T_{\text{t}} = 216.592 \,^{\circ}\text{K}$ ($t_{\text{t}} = -56.558 \,^{\circ}\text{C}$)

Pressure range from $p_{\text{min}} = 2.9081875815 \cdot 10^{-10} \,^{\circ}$ bar to $p_{\text{t}} = 5.179618369088 \,^{\circ}$ bar

Note:

If the input values are located outside the range of validity, the calculated function will always result in -1000. Please find more exact details on every function and its corresponding range of validity in the enclosed software documentation in Chapter 3. The same information may also be accessed via the online help pages.

KCE-ThermoFluidProperties, Prof. Dr. Hans-Joachim Kretzschmar

2. Application of FluidEXLGraphics in Excel®

The FluidEXL^{Graphics} Add-In has been developed to calculate thermodynamic properties in Excel[®] more conveniently. Within Excel[®], it enables the direct call of functions relating to Water and Steam from the LibCO2 property program library.

2.1 Installing FluidEXL^{Graphics}

Complete the following steps for initial installation of FluidEXLGraphics.

Before you begin, it is best to uninstall any older version of FluidEXLGraphics.

The installation routine for 32-bit and 64-bit versions of Excel is similar. The following instructions are valid for both versions.

After you have downloaded and extracted the zip-file:

```
CD_FluidEXL_Graphics_LibCO2_x64_Eng.zip (for 64 bit version)
or
  CD_FluidEXL_Graphics_LibCO2_Eng.zip" (for 32 bit version).
you will see the folder
  \CD_FluidEXL_Graphics_LibCO2_x64_Eng\ (for 64 bit version)
or
  \CD_FluidEXL_Graphics_LibCO2_Eng\ (for 32 bit version)
in your Windows Explorer, Total Commander etc.
Now, open this folder by double-clicking on it.
Within this folder you will see the following folders and files:
  \FLUFT\
  \Formulation97\
  FluidEXL_Graphics_Eng.xla
  FluidEXL_Graphics_LibCO2_Docu_Eng
  LC.dll
  LibCO2.dll
  LibCO2.chm
  Reg .reg
Now, please copy the following folders and files
  \FLUFT\
  \Formulation97\
  FluidEXL_Graphics_Eng.xla
  LibCO2.dll
  LibCO2.chm
  LC.dll
into the folder
  C:\Users\[your name]\AppData\Roaming\Microsoft\AddIns\,
where [your name] is your name in the Windows system.
```

If this folder is not found, follow the next section anyway.

2.2 Registering FluidEXL^{Graphics} as Add-In in Excel[®]

After installation in Windows[®], FluidEXL Graphics must be registered in Excel[®] as an Add-In. To do this, start Excel[®] and carry out the following steps:

- Click the "File" button in the upper left hand corner of Excel® (see Fig. 2.1)

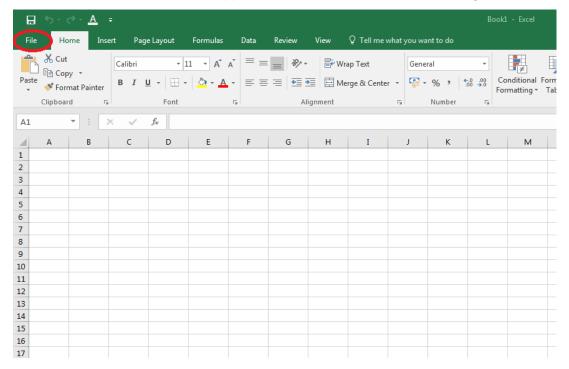


Figure 2.1: Registering FluidEXL Graphics as Add-In in Excel® 2016

- Click on the "Options" button in the menu which appears (see Fig. 2.2)

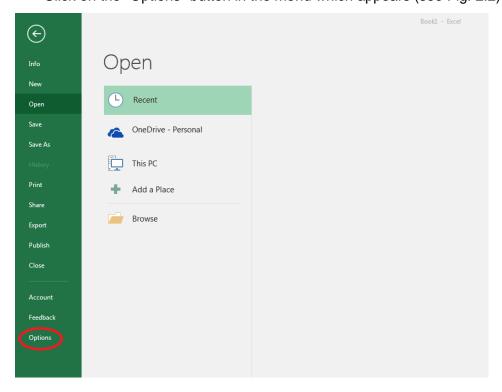


Figure 2.2: Registering FluidEXL Graphics as Add-In in Excel® 2016

Click on "Add-Ins" in the next menu (Fig. 2.3)

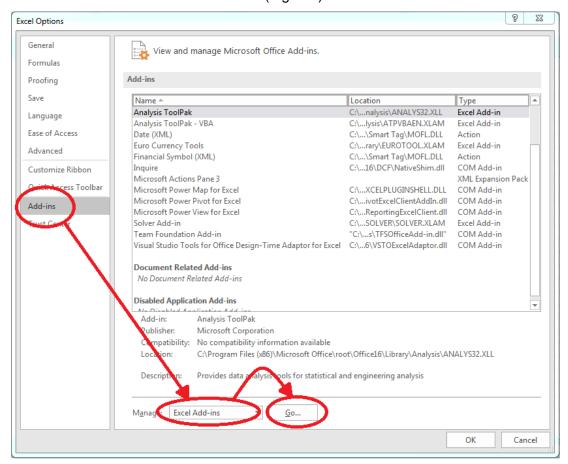


Figure 2.3: Dialog window "Excel Options"

- Select "Excel Add-ins" next to "Manage:" in the lower area of the menu
- Then click the "Go..." button
- Click "Browse" in the following window (Fig. 2.4)

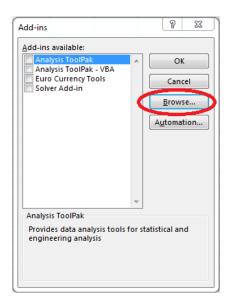


Figure 2.4: Dialog window "Add-ins"

- Excel opens the AddIns folder. This is usually
 C:\Users\[your name]\AppData\Roaming\Microsoft\AddIns\.
- If the FluidEXL files have already been copied to this directory in section 2.1, please skip
 the following indented section. If not, follow the indented instructions to successful paste
 the needed files for the FluidEXL Add-In:

In the upper part of the "Browse" window the correct Add-In path is displayed (see Figure 2.5). Please note that not the entire path is displayed.

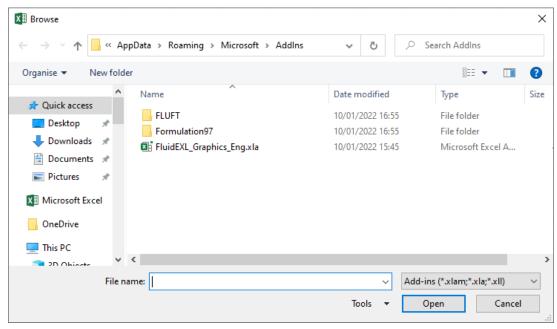


Figure 2.5: "Browse"-Window

Please copy this path and paste it into your file manager.

Now, please copy the following directories and files:

\FLUFT\

\Formulation97\

LC.dll

FluidEXL_Graphics_Eng.xla

LibCO2.dll

LibCO2.chm

from the delivered CD-folder into this folder.

- Click "FluidEXL_Graphics_Eng.xla" in this folder (see Fig. 2.5) and click "OK."
- Now, "FluidEXL Graphics Eng" will be shown in the list of Add-ins (see Fig. 2.6).
 (If a checkmark is in the box next to the name "FluidEXL Graphics Eng", this Add-In will automatically be loaded whenever Excel starts. This will continue to occur unless the checkmark is removed from the box by clicking on it.)
- In order to register the Add-In click the "OK" button in the "Add-ins" window (see Fig. 2.6).

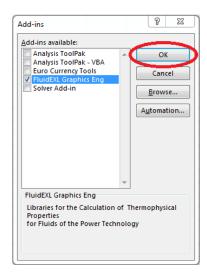


Figure 2.6: Dialog window "Add-Ins"

In order to use FluidEXL^{Graphics} in the following example, click on the menu item "Add-Ins" shown in Fig. 2.7.

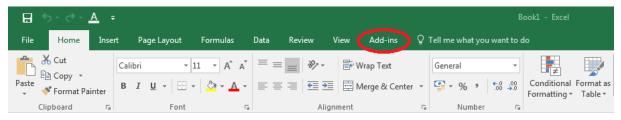


Figure 2.7: Menu item "Add-Ins"

In the upper menu region of Excel[®], the FluidEXL^{Graphics} menu bar will appear as marked with the red circle in Fig. 2.8.

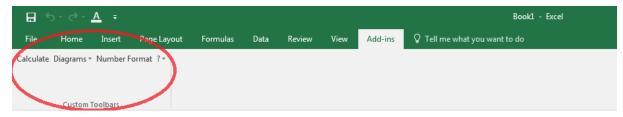


Figure 2.8: FluidEXLGraphics menu bar

The Installation of FluidEXLGraphics in Excel® is now complete.

An example calculation of "LibCO2" DLL library property functions can be found in chapter 2.4.

2.3 Licensing the LibCO2 Property LibCO2rary

The licensing procedure has to be carried out when Excel[®] starts up and a FluidEXL^{Graphics} prompt message appears. In this case, you will see the "License Information" window (see figure below).

Figure 2.12: "License Information" window

Here you will have to type in the license key. You can find contact information on the "Content" page of this User's Guide or by clicking the yellow question mark in the "License Information" window. Then the following window will appear:

Figure 2.13: "Help" window

If you do not enter a valid license it is still possible to start Excel[®] by clicking "Cancel" twice. In this case, the LibCO2 property library will display the result "–11111111" for every calculation. The "License Information" window will appear every time you start Excel[®] unless you uninstall FluidEXL^{Graphics} according to the description in section 2.6 of this User's Guide.

Should you not wish to license the LibCO2 property library, you have to delete the files

LibCO2.dll

LibCO2.chm

in the installation folder of FluidEXLGraphics (the standard being)

C:\Program Files\FluidEXL_Graphics_Eng

using an appropriate program such as Explorer® or Norton Commander.

Note:

The product name "LibCO2____ in Figure 2.12 and 2.13 stands for the LibCO2rary you are installing. In this case it is the LibCO2 library.

2.4 Example calculation

Now we will calculate, step by step, the specific enthalpy h as a function of pressure p, temperature t, and vapor fraction x, using FluidEXL Graphics . Please carry out the following steps:

- Start Excel®
- Enter a value for *p* in bar into a cell (Range of validity: $p = 2.9081875815 \cdot 10^{-10} \text{ bar ... } 8000 \text{ bar}$)

⇒ e.g.: Enter 10 into cell A2.

- Enter a value for t in °C into a cell

(Range of validity: $t = t_{\text{mel}} \dots 826.85 \,^{\circ}\text{C}$)

⇒ e.g.: Enter 25 into cell B2.

Enter a value for x in kg saturated steam/kg wet steam into a cell
 Since the wet steam region is calculated automatically by the subprograms, the following fixed details on the vapor fraction x are to be considered when the value for x is entered:

Single-phase region

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value. Here the backward functions will also result in x = -1.

Wet-steam region

When calculating wet steam, a value between 0 and 1 (x = 0 for boiling liquid, x = 1 for saturated steam) must be entered. In this case, the backward functions result in the appropriate value between 0 and 1 for x. It is adequate to enter either the given value for t = -1000, or the given value for t = -1000, plus the value for t = -1000, plus the value for t = -1000, and 1. When t = -1000 and t = -1000, the program will consider t = -1000 and t = -1000 and t = -1000 and t = -1000.

(CO2 saturation line: $t_{\rm t} = -56.558~{\rm ^{\circ}C}~...~t_{\rm c} = 30.9782~{\rm ^{\circ}C}$ $p_{\rm t} = 5.179618369088~{\rm bar}~...~p_{\rm c} = 73.773~{\rm bar})$

- \Rightarrow e.g. Enter -1 into cell C2.
- Click the cell in which the enthalpy h calculated in kJ/kg is to be displayed.
 - \Rightarrow e.g. Click the cell D2.
- Click "Calculate" in the FluidEXL^{Graphics} menu bar.
 Now, the "Insert Function" window appears (see Figure 2.9).

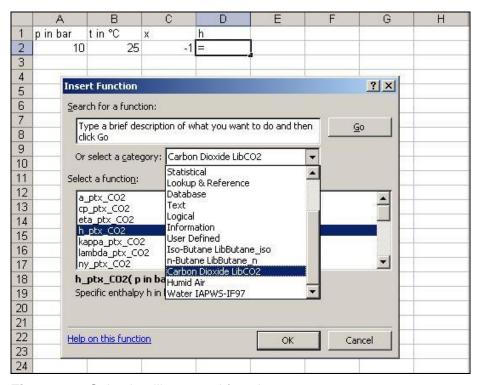


Figure 2.9: Selecting library and function

- Search and click the "Carbon Dioxide LibCO2" library in the upper list box next to "Or select a category:".
- Search and click the "h_ptx_CO2" function in the lower list box under "Select a function:".
 Here it is possible to get more information on range of validity, measuring units, error responses, etc. by clicking the "Help on this function" button.
- Click "OK".
 The window shown in Figure 2.10 appears.

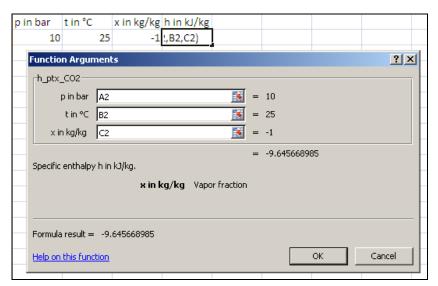


Figure 2.10: Entering the given values for the property calculation

- The cursor is situated on the line next to "p in bar". You can now enter the value for p either by clicking the cell with the value for p, by entering the name of the cell with the value for p, or by entering the value for p directly.

- Situate the cursor next to "t in °C" and enter the value for *t* by clicking the cell with the value for *t*, by entering the name of the cell with the value for *t*, or by entering the value for *t* directly.
- Situate the cursor next to "x in kg/kg" and enter the value for x by clicking the cell with the value for x, by entering the name of the cell with the value for x, or by entering the value for x directly.
- Click the "OK" button.

The result for h in kJ/kg appears in the cell selected above.

 \Rightarrow The result in our sample calculation here is: h = -9.645668985 kJ/kg.

The calculation of h = f(p, t, x) has thus been carried out. You can now arbitrarily change the values for p, t, or x in the appropriate cells. The enthalpy is recalculated and updated every time you change the data. This shows that the Excel[®] data flow and the DLL calculations are working together successfully.

Note:

If the calculation results in –1000, this indicates that the values entered are located outside the range of validity of LibCO2. More detailed information on each function and its range of validity is available in Chapter 3.

For further property functions calculable in FluidEXL^{Graphics}, please see the function table in Chapter 1.

Number Formats

When using FluidEXL*Graphics* you have the option of choosing special number formats in advance.

Changes can be made as follows:

- Click the cell or select and click on the cells you wish to format.
 (In empty cells the new format will be applied once a value has been entered.)
- Click "Number Format" in the FluidEXL Graphics menu bar.
- Select the desired number format in the dialog box which appears:

"STD – Standard": Insignificant zeros behind the decimal point are not

shown.

"FIX – Fixed Number of Digits": All set decimal places are shown, including insignificant

zeros.

"SCI – Scientific Format": Numbers are always shown in the exponential form with

the set number of decimal places.

- Set the "Number of decimal places" by entering the number into the appropriate window.
- Confirm this by clicking the "OK" button.

As an example, the table below shows the three formats for the number 1.230 adjusted for three decimal places:

STD	1.23
FIX	1.230
SCI	1.230E+00

This formatting can also be applied to cells which have already been calculated.

2.5 The FluidEXL Graphics Help System

As mentioned earlier, FluidEXLGraphics also provides detailed help functions.

Information on individual property functions may be accessed via the following steps:

- Click "Calculate" in the FluidEXL Graphics menu bar.
- Click on the "LibCO2" library under "Or select a category:" in the "Insert Function" window which will appear.
- Click the "Help on this function" button in the lower left-hand edge of the "Insert Function" window.

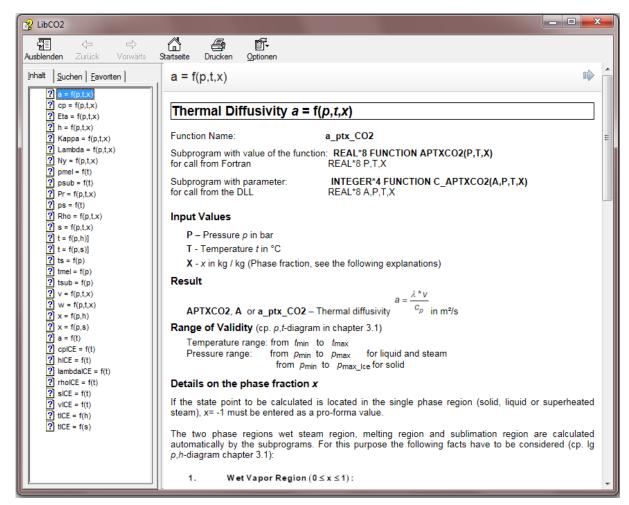


Figure 2.11: Help Window

If the LibCO2.chm function help cannot be found, you will be redirected to a Microsoft[®] help website by your standard browser. In this case, the LibCO2.chm file has to be copied into the folder of FluidEXL*Graphics*, in the standard case

C:\Program Files\FluidEXL_Graphics_Eng to use the help system.

2.6 Removing FluidEXLGraphics

2.6.1 Removing LibCO2 Library

Should you wish to remove only the LibCO2 library, delete the files

LibCO2.dll LibCO2.chm

in the directory selected for the installation of FluidEXLGraphics, in the standard case,

C:\Program Files\FluidEXL Graphics Eng

by using an appropriate program such as Explorer® or Norton Commander.

2.6.2 Unregistering and uninstalling FluidEXL^{Graphics} as Add-In in versions of Excel[®] from 2007 onwards (for earlier versions see 2.6.3)

In order to unregister the FluidEXL^{Graphics} Add-In in versions of Excel[®] from 2007 onwards start Excel[®] and carry out the following commands:

- Click the "File" button in the upper left corner of Excel®
- Click on the "Options" button in the menu which appears

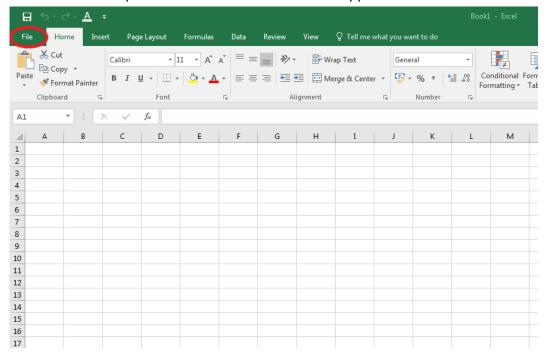


Figure 2.12: Unregistering FluidEXL Graphics as Add-In in Excel® 2016

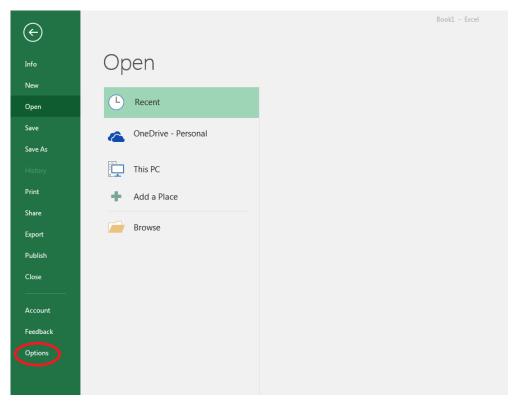


Figure 2.13 Unregistering FluidEXL Graphics as Add-In in Excel® 2016

- Click on "Add-Ins" in the next menu (Figure 2.14)

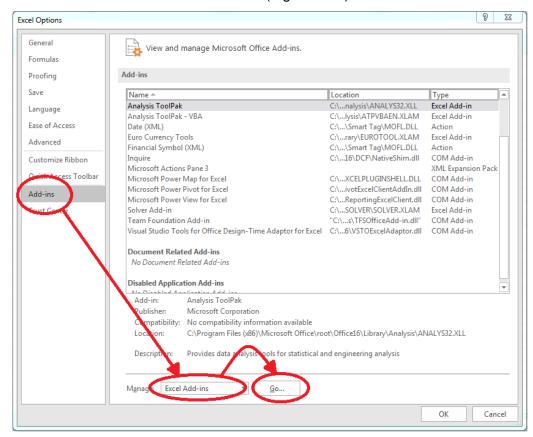


Figure 2.14: Dialog window "Add-Ins"

 If it is not shown in the list automatically, chose and click "Excel Add-ins" next to "Manage:" in the lower area of the menu

- Afterwards click the "Go..." button
- Remove the checkmark in front of

"FluidEXL Graphics Eng"

in the window which now appears. Click the "OK" button to confirm your entry.

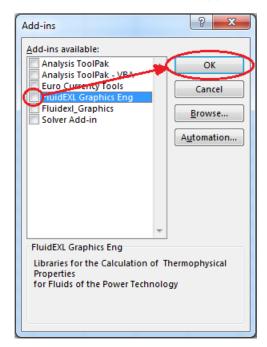


Figure 2.15: Dialog window "Add-Ins"

In order to remove FluidEXL^{Graphics} from Windows and the hard drive, click "Start" in the Windows task bar, select "Settings" and click "Control Panel."

Now, double click on "Add or Remove Programs."

In the list box of the "Add or Remove Programs" window that appears, select

"FluidEXL Graphics Eng"

by clicking on it and then clicking the "Add/Remove..." button.

Click "Automatic" in the following dialog box and then the "Next >" button.

Click "Finish" in the "Perform Uninstall" window.

Answer the question of whether all shared components should be removed with "Yes to All." Finally, close the "Add or Remove Programs" and "Control Panel" windows.

Now FluidEXLGraphics has been completely removed from your computer.

2.6.3 Unregistering and uninstalling FluidEXL^{Graphics} as Add-In in Excel[®], versions 2003 or earlier

To remove FluidEXL^{Graphics} completely, proceed as follows: First the registration of FluidEXL_Graphics_Eng.xla

has to be cancelled in Excel®.

In order to do this, click "Tools" in the upper menu bar of Excel® and here "Add-Ins...". Untick the box on the left-hand side of

"FluidEXL Graphics Eng"

in the window that appears and click the "OK" button. The additional menu bar of FluidEXL Graphics disappears from the upper part of the Excel $^{@}$ window. Afterwards, we

recommend closing Excel®.

If the FluidEXL Graphics menu bar does not disappear, take the following steps:

Click "View" in the upper menu bar of Excel®, then "Toolbars" and then "Customize..." in the list box which appears.

"FluidEXL Graphics Eng"

is situated at the bottom of the "Toolbars" entries, which must be selected by clicking on it. Delete the entry by clicking "Delete". You will be asked whether you really want to delete the toolbar – click "OK".

Within the next step delete the files

LibCO2.dll

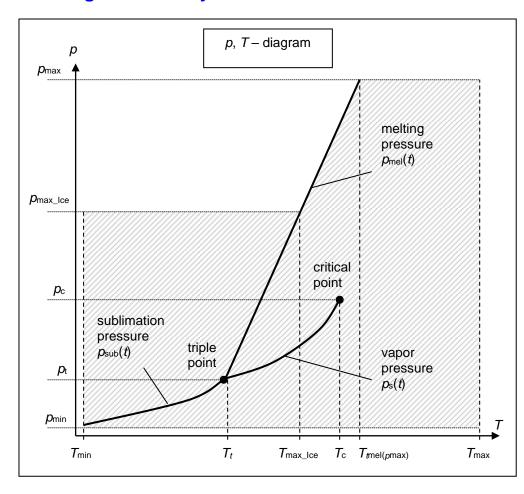
LibCO2.chm

in the directory selected for the installation of FluidEXLGraphics, in the standard case,

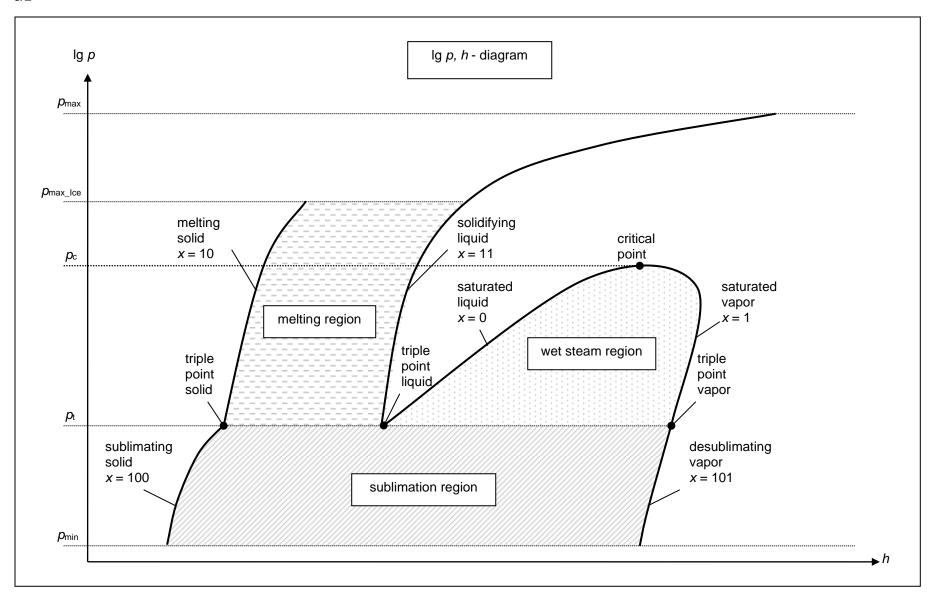
C:\Program Files\FluidEXL_Graphics_Eng

using an appropriate program such as Explorer® or Norton Commander.

In order to remove FluidEXL^{Graphics} from Windows and the hard drive, click "Start" in the Windows task bar, select "Settings" and click "Control Panel". Now double-click on "Add or Remove Programs". In the list box of the "Add/Remove Programs" window that appears select


"FluidEXL Graphics Eng"

by clicking on it and click the "Add/Remove..." button. In the following dialog box, click "Automatic" and then "Next >". Click "Finish" in the "Perform Uninstall" window. Answer the question whether all shared components shall be removed with "Yes to All". Finally, close the "Add/Remove Programs" and "Control Panel" windows.


Now FluidEXLGraphics has been removed.

3. Program Documentation

3.1 Ranges of Validity

Defending Chate.				
Reference State:				
At $p = 1.01325$ bar and $T = 298.15$ K (25 °C): h = -0.938457860 kJ/kg and $s = -0.00219606205$ kJ/(kg K)				
H = -0.936457660 kJ/kg at	10 S = -0.0021900	10203 KJ/(Kg K)		
Factor	Abbreviation	Value and Unit		
Minimum temperature	T _{min} (t _{min})	85 K (–188.15 °C)		
Maximum temperature	T _{max} (t _{max})	1500 K (1226.85 °C)		
Triple temperature	T _t (t _t)	216.592 K (-56.558 °C)		
Temperature at the critical point	T _c (t _c)	304.1282 K (30.9782 °C)		
Maximum temperature of solid region	T _{max_lce} (t _{miax_lce})	236.0309 K (-37.119 °C)		
Maximum temperature of melting pressure curve	$T_{\text{mel}}(p_{\text{max}}) \ (t_{\text{mel}}(p_{\text{max}}))$	327.671 K (54.521 °C)		
Minimum pressure	$p_{\min} = p_{\text{sub}}(T_{\min})$	2.9081875815·10 ⁻¹⁰ bar		
Maximum pressure	p _{max}	8000 bar		
Triple pressure	p t	5.179618369088 bar		
Pressure at the critical point	рс	73.773 bar		
Maximum pressure of solid region	<i>p</i> max_lce	1000 bar		

3.2 General Property Functions

Thermal Diffusivity a = f(p,t,x)

Function Name: a_ptx_CO2

Subprogram with value of the function: REAL*8 FUNCTION APTXCO2(P,T,X)

for call from Fortran REAL*8 P,T,X

Input Values

P – Pressure *p* in bar

T - Temperature t in °C

X - *x* in kg / kg (Phase fraction, see the following explanations)

Result

APTXCO2, **A** or **a_ptx_CO2** – Thermal diffusivity
$$a = \frac{\lambda * v}{c_p}$$
 in m²/s

Range of Validity (cp. p,t-diagram in chapter 3.1)

Temperature range: from t_{min} to t_{max}

Pressure range: from p_{min} to p_{max} for liquid and steam

from p_{min} to p_{max_lce} for solid

Details on the phase fraction x

If the state point to be calculated is located in the single phase region (solid, liquid or superheated steam), x=-1 must be entered as a pro-forma value.

The two phase regions wet steam region, melting region and sublimation region are calculated automatically by the subprograms. For this purpose the following facts have to be considered (cp. $\lg p,h$ -diagram chapter 3.1):

1. Wet Vapor Region $(0 \le x \le 1)$:

The phase fraction x equates to the vapor fraction x in the wet steam region in (kg dry saturated steam)/(kg wet steam).

The calculation for *x* values between 0 and 1 is not possible.

If boiling liquid (boiling curve) is to be calculated, the value 0 has to be entered for x. In case of dry saturated steam (dew curve) x = 1 has to be entered.

Concerning pressure and temperature either the given value for t and p = -1000 or the given value for p and t = -1000 and in both cases the value 0 or 1 for x must be entered when calculating boiling liquid or dry saturated steam. If p and t and x are entered, the program will consider p and t to represent the vapor pressure curve.

Boiling and dew curve: Temperature range from t_1 to t_2

Pressure range from p_t to p_c

2. Melting Region $(10 \le x \le 11)$:

The phase fraction x equates to the liquid fraction x in the melting region in (kg solidifying liquid)/(kg melt), whereas melt is a mixture of melting solid and solidifying liquid.

The calculation for x values between 10 and 11 is not possible.

If melting solid (melting curve) is to be calculated, the value 10 has to be entered for x. In case of solidifying liquid (solidification curve) x = 11 has to be entered.

When calculating a melting solid or solidifying liquid it is adequate, Concerning pressure and temperature, to put in either the value given for t and p = -1000 or the value given for p and t = -1000 and the value for p and p and p and p are entered as given values, the program tests whether p and p and p and p and p and p are entered as given values, the program tests whether p and p a

Melting curve: Temperature range from t_i to t_{max_lce} Pressure range from p_i to p_{max_lce}

Solidification curve: Temperature range from t_t to t_{max}

KCE-ThermoFluidProperties, Prof. Dr. Hans-Joachim Kretzschmar

Pressure range from p_t to p_{max}

Only the solidification curve (x = 11) is calculated for pressures p for which applies $p_{\text{max_lce}} .$

3. Sublimation Region $(100 \le x \le 101)$:

The phase fraction x equates to the vapour fraction x in the sublimation region in (kg desublimating steam)/(kg sublimation powder), whereas sublimation powder is a mixture of sublimating solid and desublimating steam.

The calculation for x values between 100 and 101 is not possible.

If sublimating solid is to be calculated, the value 100 has to be entered for x. In case of desublimating steam x = 101 has to be entered.

When calculating a sublimating solid or desublimating steam it is adequate, Concerning pressure and temperature, to put in either the value given for t and p = -1000 or the value given for p and t = -1000 and the value for t (t = 100 or t = 101). If t and t are entered as given values the program tests whether t and t fulfil the sublimation-pressure-curve.

Sublimation and

desublimation curve Temperatur range from t_{min} to t_{t} Pressure range from p_{min} to p_{t}

Results for wrong input values

Result APTXCO2 = -1000, A = -1000 or $a_ptx_CO2 = -1000$ for input values:

Single phase region:

```
Solid, liquid, overheated steam (x = -1):
```

- at $p < p_{min}$ or $p > p_{max}$ or $p > p_{max_lce}$ at Feststoff
- at $t < t_{min}$ or $t > t_{max}$ or $t > t_{max}$ lce at Feststoff

Two phase regions:

Wet steam region $(0 \le x \le 1)$:

- at 0 < x < 1, i.e. calculation in the wet steam region not possible!
- at p = -1000 and $t < t_t$ or $t > t_c$
- at t = -1000 and $p < p_t$ or $p > p_c$
- at $p < p_t$ or $p > p_c$
- at $t < t_1$ or $t > t_0$

Melting region $(10 \le x \le 11)$:

- at 10 < x < 11, i.e. calculation in the melting region not possible!
- at p = -1000 and $t < t_1$ or $t > t_{\text{max}}$ or $t > t_{\text{max_lce}}$ at x = 10
- at t = -1000 and $p < p_t$ or $p > p_{\text{max}}$ or $p > p_{\text{max_lce}}$ at x = 10
- at $p < p_t$ or $p > p_{\text{max}}$ or $p > p_{\text{max_lce}}$ at x = 10
- at $t < t_t$ or $t > t_{max}$ or $t > t_{max_lce}$ at x = 10

Sublimation region ($100 \le x \le 101$):

- at 100 < x < 101, i.e. calculation in the sublimation region not possible!
- at p = -1000 and $t < t_{min}$ or $t > t_{t}$
- at t = -1000 and $p < p_{min}$ or $p > p_t$
- at $p < p_{min}$ or $p > p_{t}$
- at $t < t_{\min}$ or $t > t_{t}$

References: [1], [2]

Specific Isobaric Heat Capacity $c_p = f(p,t,x)$

Function Name: cp_ptx_CO2

Subprogram with value of the function: REAL*8 FUNCTION CPPTXCO2(P,T,X)

for call from Fortran REAL*8 P,T,X

Input Values

P - Pressure p in bar

T - Temperature t in °C

X - *x* in kg / kg (Phase fraction, see the following explanations)

Result

CPPTXCO2, **CP** or **cp_ptx_CO2** - specific isobaric heat capacity c_p in kJ/(kg K)

Range of Validity (cp. p,t-diagram in chapter 3.1)

Temperature range: from t_{min} to t_{max}

Pressure range: from p_{min} to p_{max} for liquid and steam

from p_{min} to p_{max_lce} for solid

Details on the phase fraction x

If the state point to be calculated is located in the single phase region (solid, liquid or superheated steam), x=-1 must be entered as a pro-forma value.

The two phase regions wet steam region, melting region and sublimation region are calculated automatically by the subprograms. For this purpose the following facts have to be considered (cp. $\lg p,h$ -diagram chapter 3.1):

1. Wet Vapor Region $(0 \le x \le 1)$:

The phase fraction x equates to the vapor fraction x in the wet steam region in (kg dry saturated steam)/(kg wet steam).

The calculation for x values between 0 and 1 is not possible.

If boiling liquid (boiling curve) is to be calculated, the value 0 has to be entered for x. In case of dry saturated steam (dew curve) x = 1 has to be entered.

Concerning pressure and temperature either the given value for t and p = -1000 or the given value for p and t = -1000 and in both cases the value 0 or 1 for x must be entered when calculating boiling liquid or dry saturated steam. If p and t are entered, the program will consider p and t to represent the vapor pressure curve.

Boiling and dew curve: Temperature range from t_t to t_c

Pressure range from p_t to p_c

2. Melting Region $(10 \le x \le 11)$:

The phase fraction x equates to the liquid fraction x in the melting region in (kg solidifying liquid)/(kg melt), whereas melt is a mixture of melting solid and solidifying liquid.

The calculation for x values between 10 and 11 is not possible.

If melting solid (melting curve) is to be calculated, the value 10 has to be entered for x. In case of solidifying liquid (solidification curve) x = 11 has to be entered.

When calculating a melting solid or solidifying liquid it is adequate, Concerning pressure and temperature, to put in either the value given for t and p = -1000 or the value given for p and t = -1000 and the value for p and p and p and p are entered as given values, the program tests whether p and p and

Melting curve: Temperature range from t_t to t_{max_lce} Pressure range from p_t to p_{max_lce}

Solidification curve: Temperature range from t_i to t_{max}

Pressure range from p_t to p_{max}

Only the solidification curve (x = 11) is calculated for pressures p for which applies $p_{\text{max_lce}} .$

3. Sublimation Region $(100 \le x \le 101)$:

The phase fraction x equates to the vapor fraction x in the sublimation region in (kg desublimating steam)/(kg sublimation powder), whereas sublimation powder is a mixture of sublimating solid and desublimating steam.

The calculation for x values between 100 and 101 is not possible.

If sublimating solid is to be calculated, the value 100 has to be entered for x. In case of desublimating steam x = 101 has to be entered.

When calculating a sublimating solid or desublimating steam it is adequate, Concerning pressure and temperature, to put in either the value given for t and p = -1000 or the value given for p and t = -1000 and the value for t (t = 100 or t = 101). If t and t are entered as given values the program tests whether t and t fulfil the sublimation-pressure-curve.

Sublimation and

desublimation curve Temperatur range from t_{min} to t_{t} Pressure range from p_{min} to p_{t}

Results for wrong input values

```
Result CPPTXCO2 = -1000, CP = -1000 or cp_ptx_CO2 = -1000 for input values:
```

Single phase region:

Solid, liquid, overheated steam (x = -1):

- at $p < p_{min}$ or $p > p_{max}$ or $p > p_{max_lce}$ when calculating solid
- at $t < t_{min}$ or $t > t_{max}$ or $t > t_{max_lce}$ when calculating solid

Two phase regions:

Wet steam region $(0 \le x \le 1)$:

- at 0 < x < 1, i.e. calculation in the wet steam region not possible!
- at p = -1000 and $t < t_{t}$ or $t > t_{c}$
- at t = -1000 and $p < p_t$ or $p > p_c$
- at $p < p_t$ or $p > p_c$
- at $t < t_t$ or $t > t_c$

Melting region $(10 \le x \le 11)$:

- at 10 < x < 11, i.e. calculation in the melting region not possible!
- at p = -1000 and $t < t_t$ or $t > t_{max}$ or $t > t_{max_lce}$ at x = 10
- at t = -1000 and $p < p_t$ or $p > p_{max}$ or $p > p_{max lce}$ at x = 10
- at $p < p_t$ or $p > p_{max}$ or $p > p_{max_lce}$ at x = 10
- at $t < t_t$ or $t > t_{max}$ or $t > t_{max_lce}$ at x = 10

Sublimation region (100 $\leq x \leq$ 101):

- at 100 < x < 101, i.e. calculation in the sublimation region not possible!
- at p = -1000 and $t < t_{min}$ or $t > t_{t}$
- at t = -1000 and $p < p_{min}$ or $p > p_{t}$
- at $p < p_{min}$ or $p > p_{t}$
- at $t < t_{\min}$ or $t > t_{t}$

References: [1]

Specific Isochoric Heat Capacity $c_v = f(p,t,x)$

Function Name: cv_ptx_CO2

Subprogram with value of the function: REAL*8 FUNCTION CVPTXCO2(P,T,X)

for call from Fortran REAL*8 P,T,X

Input Values

P – Pressure *p* in bar

T - Temperature t in °C

X - *x* in kg / kg (Phase fraction, see the following explanations)

Result

CVPTXCO2, **CV** or **cv_ptx_CO2** - specific isochoric heat capacity c_p in kJ/(kg K)

Range of Validity (cv. p,t-diagram in chapter 3.1)

Temperature range: from t_{min} to t_{max}

Pressure range: from p_{min} to p_{max} for liquid and steam

from p_{min} to p_{max_lce} for solid

Details on the phase fraction x

If the state point to be calculated is located in the single phase region (solid, liquid or superheated steam), x=-1 must be entered as a pro-forma value.

The two phase regions wet steam region, melting region and sublimation region are calculated automatically by the subprograms. For this purpose the following facts have to be considered (cv. $\lg p,h$ -diagram chapter 3.1):

1. Wet Vapor Region $(0 \le x \le 1)$:

The phase fraction x equates to the vapor fraction x in the wet steam region in (kg dry saturated steam)/(kg wet steam).

The calculation for *x* values between 0 and 1 is not possible.

If boiling liquid (boiling curve) is to be calculated, the value 0 has to be entered for x. In case of dry saturated steam (dew curve) x = 1 has to be entered.

Concerning pressure and temperature either the given value for t and p = -1000 or the given value for p and t = -1000 and in both cases the value 0 or 1 for x must be entered when calculating boiling liquid or dry saturated steam. If p and t are entered, the program will consider p and t to represent the vapor pressure curve.

Boiling and dew curve: Temperature range from t_t to t_c

Pressure range from p_t to p_c

2. Melting Region $(10 \le x \le 11)$:

The phase fraction x equates to the liquid fraction x in the melting region in (kg solidifying liquid)/(kg melt), whereas melt is a mixture of melting solid and solidifying liquid.

The calculation for x values between 10 and 11 is not possible.

If melting solid (melting curve) is to be calculated, the value 10 has to be entered for x. In case of solidifying liquid (solidification curve) x = 11 has to be entered.

When calculating a melting solid or solidifying liquid it is adequate, Concerning pressure and temperature, to put in either the value given for t and p = -1000 or the value given for p and t = -1000 and the value for p and p and p and p are entered as given values, the program tests whether p and p and

Melting curve: Temperature range from t_t to t_{max_lce} Pressure range from p_t to p_{max_lce}

Solidification curve: Temperature range from t_i to t_{max}

Pressure range from p_t to p_{max}

Only the solidification curve (x = 11) is calculated for pressures p for which applies $p_{\text{max_lce}} .$

3. Sublimation Region $(100 \le x \le 101)$:

The phase fraction x equates to the vapor fraction x in the sublimation region in (kg desublimating steam)/(kg sublimation powder), whereas sublimation powder is a mixture of sublimating solid and desublimating steam.

The calculation for x values between 100 and 101 is not possible.

If sublimating solid is to be calculated, the value 100 has to be entered for x. In case of desublimating steam x = 101 has to be entered.

When calculating a sublimating solid or desublimating steam it is adequate, Concerning pressure and temperature, to put in either the value given for t and p = -1000 or the value given for p and t = -1000 and the value for p and p and p and p are entered as given values the program tests whether p and p

Sublimation and

desublimation curve Temperatur range from t_{min} to t_{t} Pressure range from p_{min} to p_{t}

Results for wrong input values

```
Result CVPTXCO2 = -1000, CV = -1000 or cv_ptx_CO2 = -1000 for input values:
```

Single phase region:

Solid, liquid, overheated steam (x = -1):

- at $p < p_{min}$ or $p > p_{max}$ or $p > p_{max_lce}$ when calculating solid
- at $t < t_{min}$ or $t > t_{max}$ or $t > t_{max_lce}$ when calculating solid

Two phase regions:

Wet steam region $(0 \le x \le 1)$:

- at 0 < x < 1, i.e. calculation in the wet steam region not possible!
- at p = -1000 and $t < t_t$ or $t > t_c$
- at t = -1000 and $p < p_t$ or $p > p_c$
- at $p < p_t$ or $p > p_c$
- at $t < t_t$ or $t > t_c$

Melting region $(10 \le x \le 11)$:

- at 10 < x < 11, i.e. calculation in the melting region not possible!
- at p = -1000 and $t < t_t$ or $t > t_{max}$ or $t > t_{max_lce}$ at x = 10
- at t = -1000 and $p < p_t$ or $p > p_{max}$ or $p > p_{max lce}$ at x = 10
- at $p < p_t$ or $p > p_{max}$ or $p > p_{max_lce}$ at x = 10
- at $t < t_t$ or $t > t_{max}$ or $t > t_{max_lce}$ at x = 10

Sublimation region (100 $\leq x \leq$ 101):

- at 100 < x < 101, i.e. calculation in the sublimation region not possible!
- at p = -1000 and $t < t_{min}$ or $t > t_{t}$
- at t = -1000 and $p < p_{min}$ or $p > p_{t}$
- at $p < p_{min}$ or $p > p_{t}$
- at $t < t_{\min}$ or $t > t_{t}$

References: [1]

Dynamic Viscosity $\eta = f(p,t,x)$

Function Name: eta_ptx_CO2

Subprogram with value of the function: REAL*8 FUNCTION ETAPTCO2(P,T,X)

for call from Fortran REAL*8 P,T,X

Input Values

P – Pressure *p* in bar

T - Temperature t in °C

X - *x* in kg / kg (Phase fraction, see the following explanations)

Result

ETAPTXCO2, **ETA** or **eta_ptx_CO2** – dynamic viscosity η in Pa s

Range of Validity (cp. p,t-diagram in chapter 3.1)

Temperature range: from t_t to t_{max}

Pressure range: from p_{min} to p_{max} for liquid and steam

Details on the phase fraction x

If the state point to be calculated is located in the single phase region (liquid or superheated steam), x=-1 must be entered as a pro-forma value. Calculating solid is not possible.

The two phase regions wet steam region, melting region and sublimation region are calculated automatically by the subprograms. For this purpose the following facts have to be considered (cp. $\lg p,h$ -diagram chapter 3.1):

1. Wet Vapor Region $(0 \le x \le 1)$:

The phase fraction x equates to the vapor fraction x in the wet steam region in (kg dry saturated steam)/(kg wet steam).

The calculation for *x* values between 0 and 1 is not possible.

If boiling liquid (boiling curve) is to be calculated, the value 0 has to be entered for x. In case of dry saturated steam (dew curve) x = 1 has to be entered.

Concerning pressure and temperature either the given value for t and p = -1000 or the given value for p and t = -1000 and in both cases the value 0 or 1 for x must be entered when calculating boiling liquid or dry saturated steam. If p and t are entered, the program will consider p and t to represent the vapor pressure curve.

Boiling and dew curve: Temperature range from t_1 to t_2 Pressure range from p_1 to p_2

2. Melting Region $(10 \le x \le 11)$:

The phase fraction x equates to the liquid fraction x in the melting region in (kg solidifying liquid)/(kg melt), whereas melt is a mixture of melting solid and solidifying liquid.

The calculation for x values of x = 10 (melting curve) and between 10 and 11 is not possible. If solidifying liquid (solidification curve) is to be calculated, the value 11 has to be entered for x. Concerning pressure and temperature either the given value for t and t = -1000 or the given value for t and t = -1000 and in both cases the value 11 for t must be entered when calculating solidifying liquid. If t and t are entered as given values, the program tests whether t and t fulfil the melting pressure curve.

Melting curve: Temperature range from t_i to t_{max_lce} Pressure range from p_t to p_{max_lce}

Solidification curve: Temperature range from t_t to t_{max} Pressure range from p_t to p_{max}

3. Sublimation Region $(100 \le x \le 101)$:

The phase fraction x equates to the vapor fraction x in the sublimation region in (kg desublimating steam)/(kg sublimation powder), whereas sublimation powder is a mixture of sublimating solid and desublimating steam.

The calculation for x values of x = 100 (sublimation curve) and between 100 and 101 is not possible. If desublimating steam (desublimation curve) is to be calculated, the value 101 has to be entered for x. Concerning pressure and temperature either the given value for t and t = -1000 or the given value for t and t = -1000 and in both cases the value 101 for t must be entered when calculating desublimating steam. If t and t and t are entered as given values the program tests whether t and t fulfil the sublimation-pressure-curve.

Sublimation and

desublimation curve Temperatur range from t_{min} to t_{t} Pressure range from p_{min} to p_{t}

Results for wrong input values

Result ETAPTXCO2 = -1000, ETA = -1000 or eta_ptx_CO2 = -1000 for input values:

Single phase region:

```
Liquid and overheated steam (x = -1):

- at p < p_{min} or p > p_{max}

- t t < t_{mt} or t > t_{max}
```

Two phase regions:

Wet steam region $(0 \le x \le 1)$:

- at 0 < x < 1, i.e. calculation in the wet steam region not possible!
- at p = -1000 and $t < t_1$ or $t > t_2$
- at t = -1000 and $p < p_t$ or $p > p_c$
- at $p < p_t$ or $p > p_c$
- at $t < t_1$ or $t > t_2$

Melting region $(10 \le x \le 11)$:

- at 10 < x < 11, i.e. calculation on the melting curve and in the melting region not possible!
- at p = -1000 and $t < t_t$ or $t > t_{max}$ or $t > t_{max_lce}$ at x = 10
- at t = -1000 and $p < p_t$ or $p > p_{max}$ or $p > p_{max_lce}$ at x = 10
- at $p < p_t$ or $p > p_{\text{max}}$ or $p > p_{\text{max_lce}}$ at x = 10
- at $t < t_t$ or $t > t_{max}$ or $t > t_{max_lce}$ at x = 10

Sublimation region (100 $\leq x \leq$ 101):

- at $100 \le x < 101$, i.e. calculation on the sublimation curve and in the sublimation region not possible!
- at p = -1000 and $t < t_{min}$ or $t > t_{t}$
- at t = -1000 and $p < p_{min}$ or $p > p_{t}$
- at $p < p_{min}$ or $p > p_t$
- at $t < t_{\min}$ or $t > t_{t}$

References: [1], [2]

Specific Enthalpy h = f(p,t,x)

Function Name: h_ptx_CO2

Subprogram with value of the function: **REAL*8 FUNCTION HPTXCO2(P,T,X)**

for call from Fortran REAL*8 P,T,X

Input Values

P – Pressure *p* in bar

T - Temperature t in °C

X - *x* in kg / kg (Phase fraction, see the following explanations)

Result

HPTXCO2, H or h_ptx_CO2 - specific enthalpy h in kJ/kg

Range of Validity (cp. p,t-diagram in chapter 3.1)

Temperature range: from t_{min} to t_{max}

Pressure range: from p_{min} to p_{max} for liquid and steam

from p_{min} to p_{max_lce} for solid

Details on the phase fraction x

If the state point to be calculated is located in the single phase region (solid, liquid or superheated steam), x=-1 must be entered as a pro-forma value.

The two phase regions wet steam region, melting region and sublimation region are calculated automatically by the subprograms. For this purpose the following facts have to be considered (cp. $\lg p,h$ -diagram chapter 3.1):

1. Wet Vapor Region $(0 \le x \le 1)$:

The phase fraction x equates to the vapor fraction x in the wet steam region in (kg dry saturated steam)/(kg wet steam).

If the state point to be calculated is located in the wet steam region, a value between 0 and 1 must be entered for x.

If boiling liquid (boiling curve) is to be calculated, the value 0 has to be entered for x. In case of dry saturated steam (dew curve) x = 1 has to be entered.

Concerning pressure and temperature either the given value for t and p = -1000 or the given value for p and t = -1000 and in both cases the value 0 or 1 for x must be entered when calculating boiling liquid or dry saturated steam. If p and t are entered, the program will consider p and t to represent the vapor pressure curve.

Boiling and dew curve: Temperature range from t_t to t_c

Pressure range from p_t to p_c

2. Melting Region $(10 \le x \le 11)$:

The phase fraction x equates to the liquid fraction x in the melting region in (kg solidifying liquid)/(kg melt), whereas melt is a mixture of melting solid and solidifying liquid.

If the state point to be calculated is located in the melting region, a value between 10 and 11 must be entered for x.

If melting solid (melting curve) is to be calculated, the value 10 has to be entered for x. In case of solidifying liquid (solidification curve) x = 11 has to be entered.

When calculating a melting solid or solidifying liquid it is adequate, Concerning pressure and temperature, to put in either the value given for t and p = -1000 or the value given for p and t = -1000 and the value for p and p and p and p are entered as given values, the program tests whether p and p and

Melting curve: Temperature range from t_1 to t_{max_lce} Pressure range from p_1 to p_{max_lce}

Solidification curve: Temperature range from t_t to t_{max}

KCE-ThermoFluidProperties, Prof. Dr. Hans-Joachim Kretzschmar

Pressure range from p_t to p_{max}

Only the solidification curve (x = 11) is calculated for pressures p for which applies $p_{\text{max_lce}} .$

3. Sublimation Region $(100 \le x \le 101)$:

The phase fraction x equates to the vapor fraction x in the sublimation region in (kg desublimating steam)/(kg sublimation powder), whereas sublimation powder is a mixture of sublimating solid and desublimating steam.

If the state point to be calculated is located in the melting region, a value between 100 and 101 must be entered for x.

If sublimating solid is to be calculated, the value 100 has to be entered for x. In case of desublimating steam x = 101 has to be entered.

When calculating a sublimating solid or desublimating steam it is adequate, Concerning pressure and temperature, to put in either the value given for t and p = -1000 or the value given for p and t = -1000 and the value for x (x = 100 or x = 101). If p and t are entered as given values the program tests whether p and t fulfil the sublimation-pressure-curve.

Sublimation and

desublimation curve Temperatur range from t_{min} to t_{t} Pressure range from p_{min} to p_{t}

Results for wrong input values

Result HPTXCO2 = -1000, H = -1000 or $h_ptx_CO2 = -1000$ for input values:

Single phase region:

```
Solid, liquid, overheated steam (x = -1):
```

- at $p < p_{min}$ or $p > p_{max}$ or $p > p_{max_lce}$ when calculating solid
- at $t < t_{min}$ or $t > t_{max}$ or $t > t_{max_lce}$ when calculating solid

Two phase regions:

```
Wet steam region (0 \le x \le 1):
```

- at p = -1000 and $t < t_t$ or $t > t_c$
- at t = -1000 and $p < p_t$ or $p > p_c$
- at $p < p_t$ or $p > p_c$
- at $t < t_t$ or $t > t_c$

Melting region $(10 \le x \le 11)$:

- at p = -1000 and $t < t_t$ or $t > t_{max}$ or $t > t_{max_lce}$ at x = 10
- at t = -1000 and $p < p_t$ or $p > p_{max}$ or $p > p_{max_lce}$ at x = 10
- at $p < p_t$ or $p > p_{\text{max}}$ or $p > p_{\text{max_lce}}$ at x = 10
- at $t < t_t$ or $t > t_{max}$ or $t > t_{max_lce}$ at x = 10

Sublimation region ($100 \le x \le 101$):

- at p = -1000 and $t < t_{min}$ or $t > t_{t}$
- at t = -1000 and $p < p_{min}$ or $p > p_{t}$
- at $p < p_{min}$ or $p > p_{t}$
- at $t < t_{\min}$ or $t > t_{t}$

References: [1]

Isentropic Exponent K = f(p, t, x)

Function Name: kappa_ptx_CO2

Subprogram with value of the function: REAL*8 FUNCTION KAPTXCO2(P,T,X)

for call from Fortran REAL*8 P,T,X

Input Values

P – Pressure *p* in bar

T - Temperature t in °C

X - *x* in kg / kg (Phase fraction, see the following explanations)

Result

KAP_PTX_CO2, **KAP** or **kappa_ptx_CO2** – Isentropic exponent $\kappa = \frac{w^2}{p^* v}$

Range of Validity (cp. p,t-diagram in chapter 3.1)

Temperature range: from t_t to t_{max}

Pressure range: from p_{min} to p_{max} for liquid and steam

Details on the phase fraction x

If the state point to be calculated is located in the single phase region (liquid or superheated steam), x= -1 must be entered as a pro-forma value. Calculating solid is not possible.

The two phase regions wet steam region, melting region and sublimation region are calculated automatically by the subprograms. For this purpose the following facts have to be considered (cp. $\lg p,h$ -diagram chapter 3.1):

1. Wet Vapor Region $(0 \le x \le 1)$:

The phase fraction x equates to the vapor fraction x in the wet steam region in (kg dry saturated steam)/(kg wet steam).

The calculation for x values between 0 and 1 is not possible.

If boiling liquid (boiling curve) is to be calculated, the value 0 has to be entered for x. In case of dry saturated steam (dew curve) x = 1 has to be entered.

Concerning pressure and temperature either the given value for t and p = -1000 or the given value for p and t = -1000 and in both cases the value 0 or 1 for x must be entered when calculating boiling liquid or dry saturated steam. If p and t and x are entered, the program will consider p and t to represent the vapor pressure curve.

Boiling and dew curve: Temperature range from \emph{t}_{t} to \emph{t}_{c}

Pressure range from p_t to p_c

2. Melting Region $(10 \le x \le 11)$:

The phase fraction x equates to the liquid fraction x in the melting region in (kg solidifying liquid)/(kg melt), whereas melt is a mixture of melting solid and solidifying liquid.

The calculation for x values of x = 10 (melting curve) and between 10 and 11 is not possible. If solidifying liquid (solidification curve) is to be calculated, the value 11 has to be entered for x. Concerning pressure and temperature either the given value for t and p = -1000 or the given value for p and t = -1000 and in both cases the value 11 for x must be entered when calculating solidifying liquid. If p and t are entered as given values, the program tests whether p and t fulfil the melting pressure curve.

Melting curve: Temperature range from t_t to t_{max_lce} Pressure range from p_t to p_{max_lce}

Solidification curve: Temperature range from t_t to t_{max}

Pressure range from p_t to p_{max}

3. Sublimation Region $(100 \le x \le 101)$:

The phase fraction x equates to the vapor fraction x in the sublimation region in (kg desublimating steam)/(kg sublimation powder), whereas sublimation powder is a mixture of sublimating solid and desublimating steam.

The calculation for x values of x = 100 (sublimation curve) and between 100 and 101 is not possible. If desublimating steam (desublimation curve) is to be calculated, the value 101 has to be entered for x. Concerning pressure and temperature either the given value for t and t = -1000 or the given value for t and t = -1000 and in both cases the value 101 for t must be entered when calculating desublimating steam. If t and t and t are entered as given values the program tests whether t and t fulfil the sublimation-pressure-curve.

Sublimation and

desublimation curve Temperatur range from t_{min} to t_{t} Pressure range from p_{min} to p_{t}

Results for wrong input values

Result KAP_PTX_CO2, KAP = -1000 or kappa_ptx_CO2 = -1000 for input values:

Single phase region:

```
Liquid and overheated steam (x = -1):
```

- at $p < p_{min}$ or $p > p_{max}$
- at $t < t_t$ or $t > t_{max}$

Two phase regions:

Wet steam region $(0 \le x \le 1)$:

- at 0 < x < 1, i.e. calculation in the wet steam region not possible!
- at p = -1000 and $t < t_1$ or $t > t_0$
- at t = -1000 and $p < p_t$ or $p > p_c$
- at $p < p_t$ or $p > p_c$
- at $t < t_t$ or $t > t_c$

Melting region $(10 \le x \le 11)$:

- at 10 < x < 11, i.e. calculation on the melting curve and in the melting region not possible!
- at p = -1000 and $t < t_t$ or $t > t_{max}$ or $t > t_{max_lce}$ at x = 10
- at t = -1000 and $p < p_t$ or $p > p_{max}$ or $p > p_{max_lce}$ at x = 10
- at $p < p_t$ or $p > p_{\text{max}}$ or $p > p_{\text{max_lce}}$ at x = 10
- at $t < t_t$ or $t > t_{max}$ or $t > t_{max_lce}$ at x = 10

Sublimation region (100 $\leq x \leq$ 101):

- at $100 \le x < 101$, i.e. calculation on the sublimation curve and in the sublimation region not possible!
- at p = -1000 and $t < t_{min}$ or $t > t_{t}$
- at t = -1000 and $p < p_{min}$ or $p > p_{t}$
- at $p < p_{min}$ or $p > p_t$
- at $t < t_{\min}$ or $t > t_{t}$

Thermal Conductivity $\lambda = f(p,t,x)$

Function Name: lambda_ptx_CO2

Subprogram with value of the function: REAL*8 FUNCTION LAMPTCO2(P,T,X)

for call from Fortran REAL*8 P,T,X

Input Values

P - Pressure p in bar

T - Temperature t in °C

X - *x* in kg / kg (Phase fraction, see the following explanations)

Result

LAMPTXCO2, **LAM** or **lambda** ptx CO2 – Thermal conductivity λ in W/m K

Range of Validity (cp. *p,t*-diagram in chapter 3.1)

Temperature range: from t_{min} to t_{max}

Pressure range: from p_{min} to p_{max} for liquid and steam

from p_{min} to p_{max_lce} for solid

Details on the phase fraction x

If the state point to be calculated is located in the single phase region (solid, liquid or superheated steam), x=-1 must be entered as a pro-forma value.

The two phase regions wet steam region, melting region and sublimation region are calculated automatically by the subprograms. For this purpose the following facts have to be considered (cp. $\lg p,h$ -diagram chapter 3.1):

1. Wet Vapor Region $(0 \le x \le 1)$:

The phase fraction x equates to the vapor fraction x in the wet steam region in (kg dry saturated steam)/(kg wet steam).

The calculation for *x* values between 0 and 1 is not possible.

If boiling liquid (boiling curve) is to be calculated, the value 0 has to be entered for x. In case of dry saturated steam (dew curve) x = 1 has to be entered.

Concerning pressure and temperature either the given value for t and p = -1000 or the given value for p and t = -1000 and in both cases the value 0 or 1 for x must be entered when calculating boiling liquid or dry saturated steam. If p and t and x are entered, the program will consider p and t to represent the vapor pressure curve.

Boiling and dew curve: Temperature range from t_1 to t_2 Pressure range from p_1 to p_2

2. Melting Region $(10 \le x \le 11)$:

The phase fraction x equates to the liquid fraction x in the melting region in (kg solidifying liquid)/(kg melt), whereas melt is a mixture of melting solid and solidifying liquid.

The calculation for *x* values between 10 and 11 is not possible.

If melting solid (melting curve) is to be calculated, the value 10 has to be entered for x. In case of solidifying liquid (solidification curve) x = 11 has to be entered.

When calculating a melting solid or solidifying liquid it is adequate, Concerning pressure and temperature, to put in either the value given for t and p = -1000 or the value given for p and t = -1000 and the value for p and p and p and p are entered as given values, the program tests whether p and p and

Melting curve: Temperature range from t_i to t_{max_lce} Pressure range from p_i to p_{max_lce}

Solidification curve: Temperature range from t_1 to t_{max} Pressure range from p_1 to p_{max} Only the solidification curve (x = 11) is calculated for pressures p for which applies $p_{\text{max_lce}} .$

3. Sublimation Region $(100 \le x \le 101)$:

The phase fraction x equates to the vapor fraction x in the sublimation region in (kg desublimating steam)/(kg sublimation powder), whereas sublimation powder is a mixture of sublimating solid and desublimating steam.

The calculation for x values between 100 and 101 is not possible.

If sublimating solid is to be calculated, the value 100 has to be entered for x. In case of desublimating steam x = 101 has to be entered.

When calculating a sublimating solid or desublimating steam it is adequate, Concerning pressure and temperature, to put in either the value given for t and p = -1000 or the value given for p and t = -1000 and the value for t (t = 100 or t = 101). If t and t are entered as given values the program tests whether t and t fulfil the sublimation-pressure-curve.

Sublimation and

desublimation curve Temperatur range from t_{min} to t_{t} Pressure range from p_{min} to p_{t}

Results for wrong input values

Result LAMPTXCO2 = - 1000, LAM = -1000 or lambda_ptx_CO2 = - 1000 for input values:

Single phase region:

Solid, liquid, overheated steam (x = -1):

- at $p < p_{min}$ or $p > p_{max}$ or $p > p_{max_lce}$ when calculating solid
- at $t < t_{min}$ or $t > t_{max}$ or $t > t_{max_lce}$ when calculating solid

Two phase regions:

Wet steam region $(0 \le x \le 1)$:

- at 0 < x < 1, i.e. calculation in the wet steam region not possible!
- at p = -1000 and $t < t_t$ or $t > t_c$
- at t = -1000 and $p < p_t$ or $p > p_c$
- at $p < p_t$ or $p > p_c$
- at $t < t_t$ or $t > t_c$

Melting region ($10 \le x \le 11$):

- at 10 < x < 11, i.e. calculation in the melting region not possible!
- at p = -1000 and $t < t_t$ or $t > t_{max}$ or $t > t_{max_lce}$ at x = 10
- at t = -1000 and $p < p_t$ or $p > p_{\text{max}}$ or $p > p_{\text{max_lce}}$ at x = 10
- at $p < p_t$ or $p > p_{\text{max}}$ or $p > p_{\text{max_lce}}$ at x = 10
- at $t < t_t$ or $t > t_{max}$ or $t > t_{max_lce}$ at x = 10

Sublimation region ($100 \le x \le 101$):

- at 100 < x < 101, i.e. calculation in the sublimation region not possible!
- at p = -1000 and $t < t_{min}$ or $t > t_{t}$
- at t = -1000 and $p < p_{min}$ or $p > p_{t}$
- at $p < p_{min}$ or $p > p_{t}$
- at $t < t_{\min}$ or $t > t_{t}$

References: [1], [2]

Kinematic Viscosity v = f(p,t,x)

Function Name: ny_ptx_CO2

Subprogram with value of the function: REAL*8 FUNCTION NYPTXCO2(P,T,X)

for call from Fortran REAL*8 P,T,X

Input Values

P – Pressure *p* in bar

T - Temperature t in °C

X - *x* in kg / kg (Phase fraction, see the following explanations)

Result

NYPTXCO2, **NY** or **ny_ptx_CO2** – Kinematic viscosity $v = \eta * v$ in m²/s

Range of Validity (cp. p,t-diagram in chapter 3.1)

Temperature range: from t_t to t_{max}

Pressure range: from p_{min} to p_{max} for liquid and steam

Details on the phase fraction x

If the state point to be calculated is located in the single phase region (liquid or superheated steam), x=-1 must be entered as a pro-forma value. Calculating solid is not possible.

The two phase regions wet steam region, melting region and sublimation region are calculated automatically by the subprograms. For this purpose the following facts have to be considered (cp. $\lg p,h$ -diagram chapter 3.1):

1. Wet Vapor Region $(0 \le x \le 1)$:

The phase fraction x equates to the vapor fraction x in the wet steam region in (kg dry saturated steam)/(kg wet steam).

The calculation for x values between 0 and 1 is not possible.

If boiling liquid (boiling curve) is to be calculated, the value 0 has to be entered for x. In case of dry saturated steam (dew curve) x = 1 has to be entered.

Concerning pressure and temperature either the given value for t and p = -1000 or the given value for p and t = -1000 and in both cases the value 0 or 1 for x must be entered when calculating boiling liquid or dry saturated steam. If p and t and x are entered, the program will consider p and t to represent the vapor pressure curve.

Boiling and dew curve: Temperature range from t_1 to t_2 Pressure range from p_1 to p_2

2. Melting Region $(10 \le x \le 11)$:

The phase fraction x equates to the liquid fraction x in the melting region in (kg solidifying liquid)/(kg melt), whereas melt is a mixture of melting solid and solidifying liquid.

The calculation for x values of x = 10 (melting curve) and between 10 and 11 is not possible. If solidifying liquid (solidification curve) is to be calculated, the value 11 has to be entered for x. Concerning pressure and temperature either the given value for t and p = -1000 or the given value for p and t = -1000 and in both cases the value 11 for x must be entered when calculating solidifying liquid. If p and t are entered as given values, the program tests whether p and t fulfil the melting pressure curve.

Melting curve: Temperature range from t_1 to t_{max_lce} Pressure range from p_1 to p_{max_lce}

Solidification curve: Temperature range from t_t to t_{max} Pressure range from p_t to p_{max}

3. Sublimation Region $(100 \le x \le 101)$:

The phase fraction x equates to the vapor fraction x in the sublimation region in (kg desublimating steam)/(kg sublimation powder), whereas sublimation powder is a mixture of sublimating solid and desublimating steam.

The calculation for x values of x = 100 (sublimation curve) and between 100 and 101 is not possible. If desublimating steam (desublimation curve) is to be calculated, the value 101 has to be entered for x. Concerning pressure and temperature either the given value for t and t = -1000 or the given value for t and t = -1000 and in both cases the value 101 for t must be entered when calculating desublimating steam. If t and t are entered as given values the program tests whether t and t fulfil the sublimation-pressure-curve.

Sublimation and

desublimation curve Temperatur range from t_{min} to t_{t} Pressure range from p_{min} to p_{t}

Results for wrong input values

Result NYPTXCO2 = -1000, NY = -1000 or ny_ptx_CO2 = -1000 for input values:

Single phase region:

```
Liquid and overheated steam (x = -1):
```

- at $p < p_{min}$ or $p > p_{max}$ - at $t < t_t$ or $t > t_{max}$

Two phase regions:

Wet steam region $(0 \le x \le 1)$:

- at 0 < x < 1, i.e. calculation in the wet steam region not possible!
- at p = -1000 and $t < t_t$ or $t > t_c$
- at t = -1000 and $p < p_t$ or $p > p_c$
- at $p < p_t$ or $p > p_c$
- at $t < t_1$ or $t > t_2$

Melting region $(10 \le x \le 11)$:

- at 10 < x < 11, i.e. calculation on the melting curve and in the melting region not possible!
- at p = -1000 and $t < t_t$ or $t > t_{max}$ or $t > t_{max_lce}$ at x = 10
- at t = -1000 and $p < p_t$ or $p > p_{max}$ or $p > p_{max_lce}$ at x = 10
- at $p < p_t$ or $p > p_{\text{max}}$ or $p > p_{\text{max_lce}}$ at x = 10
- at $t < t_t$ or $t > t_{max}$ or $t > t_{max_lce}$ at x = 10

Sublimation region (100 $\leq x \leq$ 101):

- at $100 \le x < 101$, i.e. calculation on the sublimation curve and in the sublimation region not possible!
- at p = -1000 and $t < t_{min}$ or $t > t_{t}$
- at t = -1000 and $p < p_{min}$ or $p > p_{t}$
- at $p < p_{min}$ or $p > p_{t}$
- at $t < t_{\min}$ or $t > t_{t}$

References: [1], [2]

Melting Pressure $p_{mel} = f(t)$

Function Name: pmel_t_CO2

Subprogram with value of the function: REAL*8 FUNCTION PMELCO2(T)

for call from Fortran REAL*8 T

Input Values

T - Temperature *t* in °C

Result

PMELCO2, **PMEL** or **pmel_t_CO2** – Melting pressure p_{mel} in bar

Range of Validity (cp. p,t-diagram in chapter 3.1)

Temperature range: from t_t to $t_{mel}(p_{max})$

Results for wrong input values

Result PMELCO2 = -1000, PMEL = -1000 or pmel_t_CO2 = -1000 for input values:

- at $t < t_t \text{ or } t > t_{mel}(p_{max})$

Sublimation Pressure $p_{sub} = f(t)$

Function Name: psub_t_CO2

Subprogram with value of the function: REAL*8 FUNCTION PSUBCO2(T)

for call from Fortran REAL*8 T

Input Values

T - Temperature t in °C

Result

 ${\bf PSUBCO2}, \, {\bf PSUB} \ {\rm or} \ {\bf psub_t_CO2} - {\rm Sublimation} \ {\rm pressure} \ p_{\rm sub} \ {\rm in} \ {\rm bar}$

Range of Validity (cp. p,t-diagram in chapter 3.1)

Temperature range: from t_{min} to t_{t}

Results for wrong input values

Result PSUBCO2 = -1000, PSUB = -1000 or psub_t_CO2 = -1000 for input values:

- at $t < t_{min} \text{ or } t > t_{c}$

Prandtl-Number Pr = f(p, t, x)

Function Name: Pr_ptx_CO2

Subprogram with value of the function: REAL*8 FUNCTION PRPTXCO2(P,T,X)

for call from Fortran REAL*8 P,T,X

Input Values

P – Pressure *p* in bar

T - Temperature t in °C

X - *x* in kg / kg (Phase fraction, see the following explanations)

Result

PRPTXCO2, **PR** or **Pr_ptx_CO2** – Prandtl-Number
$$Pr = \frac{\eta * c_p}{\lambda}$$

Range of Validity (cp. p,t-diagram in chapter 3.1)

Temperature range: from t_t to t_{max}

Pressure range: from p_{min} to p_{max} for liquid and steam

Details on the phase fraction x

If the state point to be calculated is located in the single phase region (liquid or superheated steam), x=-1 must be entered as a pro-forma value. Calculating solid is not possible.

The two phase regions wet steam region, melting region and sublimation region are calculated automatically by the subprograms. For this purpose the following facts have to be considered (cp. $\lg p,h$ -diagram chapter 3.1):

1. Wet Vapor Region $(0 \le x \le 1)$:

The phase fraction x equates to the vapor fraction x in the wet steam region in (kg dry saturated steam)/(kg wet steam).

The calculation for x values between 0 and 1 is not possible.

If boiling liquid (boiling curve) is to be calculated, the value 0 has to be entered for x. In case of dry saturated steam (dew curve) x = 1 has to be entered.

Concerning pressure and temperature either the given value for t and p = -1000 or the given value for p and t = -1000 and in both cases the value 0 or 1 for x must be entered when calculating boiling liquid or dry saturated steam. If p and t are entered, the program will consider p and t to represent the vapor pressure curve.

Boiling and dew curve: Temperature range from $t_{\rm t}$ to $t_{\rm c}$

Pressure range from p_t to p_c

2. Melting Region $(10 \le x \le 11)$:

The phase fraction x equates to the liquid fraction x in the melting region in (kg solidifying liquid)/(kg melt), whereas melt is a mixture of melting solid and solidifying liquid.

The calculation for x values of x = 10 (melting curve) and between 10 and 11 is not possible. If solidifying liquid (solidification curve) is to be calculated, the value 11 has to be entered for x. Concerning pressure and temperature either the given value for t and t = -1000 or the given value for t and t = -1000 and in both cases the value 11 for t must be entered when calculating solidifying liquid. If t and t are entered as given values, the program tests whether t and t fulfil the melting pressure curve.

Melting curve: Temperature range from t_t to t_{max_lce} Pressure range from p_t to p_{max_lce}

Solidification curve: Temperature range from t_1 to t_{max}

Pressure range from p_t to p_{max}

3. Sublimation Region $(100 \le x \le 101)$:

The phase fraction x equates to the vapor fraction x in the sublimation region in (kg desublimating steam)/(kg sublimation powder), whereas sublimation powder is a mixture of sublimating solid and desublimating steam.

The calculation for x values of x = 100 (sublimation curve) and between 100 and 101 is not possible. If desublimating steam (desublimation curve) is to be calculated, the value 101 has to be entered for x. Concerning pressure and temperature either the given value for t and t = -1000 or the given value for t and t = -1000 and in both cases the value 101 for t must be entered when calculating desublimating steam. If t and t are entered as given values the program tests whether t and t fulfil the sublimation-pressure-curve.

Sublimation and

desublimation curve Temperatur range from t_{min} to t_{t} Pressure range from p_{min} to p_{t}

Results for wrong input values

Result PRPTXCO2 = -1000, PR = -1000 or Pr_ptx_CO2 = -1000 for input values:

Single phase region:

```
Liquid and overheated steam (x = -1):
```

- at $p < p_{min}$ or $p > p_{max}$
- at $t < t_t$ or $t > t_{max}$

Two phase regions:

Wet steam region $(0 \le x \le 1)$:

- at 0 < x < 1, i.e. calculation in the wet steam region not possible!
- at p = -1000 and $t < t_1$ or $t > t_2$
- at t = -1000 and $p < p_t$ or $p > p_c$
- at $p < p_t$ or $p > p_c$
- at $t < t_t$ or $t > t_c$

Melting region $(10 \le x \le 11)$:

- at 10 < x < 11, i.e. calculation on the melting curve and in the melting region not possible!
- at p = -1000 and $t < t_t$ or $t > t_{max}$ or $t > t_{max_lce}$ at x = 10
- at t = -1000 and $p < p_t$ or $p > p_{max}$ or $p > p_{max_lce}$ at x = 10
- at $p < p_t$ or $p > p_{\text{max}}$ or $p > p_{\text{max_lce}}$ at x = 10
- at $t < t_1$ or $t > t_{\text{max}}$ or $t > t_{\text{max_lce}}$ at x = 10

Sublimation region ($100 \le x \le 101$):

- at $100 \le x < 101$, i.e. calculation on the sublimation curve and in the sublimation region not possible!
- at p = -1000 and $t < t_{min}$ or $t > t_{t}$
- at t = -1000 and $p < p_{min}$ or $p > p_{t}$
- at $p < p_{min}$ or $p > p_t$
- at $t < t_{\min}$ or $t > t_{t}$

References: [1], [2]

Vapor Pressure $p_s = f(t)$

Function Name: ps_t_CO2

Subprogram with value of the function: REAL*8 FUNCTION PSTCO2(T)

for call from Fortran REAL*8 T

Input Values

T - Temperature t in °C

Result

PSTCO2, **PS** or **ps_t_CO2** – Vapor pressure p_s in bar

Range of Validity (cp. p,t-diagram in chapter 3.1)

Temperature range: from t_t to t_c

Results for wrong input values

Result PSTCO2 = -1000, PS = -1000 or ps_t_CO2 = -1000 for input values:

- at $t < t_t \text{ or } t > t_c$

Density $\rho = f(p,t,x)$

Function Name: rho_ptx_CO2

Subprogram with value of the function: REAL*8 FUNCTION ROPTXCO2(P,T,X)

for call from Fortran REAL*8 P,T,X

Input Values

P – Pressure p in bar

T - Temperature t in °C

X - *x* in kg / kg (Phase fraction, see the following explanations)

Result

RHO_PTX_CO2, **RHO** or **rho_ptx_CO2** - Density ρ in kg/m³

Range of Validity (cp. p,t-diagram in chapter 3.1)

Temperature range: from t_{min} to t_{max}

Pressure range: from p_{min} to p_{max} for liquid and steam

from p_{min} to p_{max_lce} for solid

Details on the phase fraction x

If the state point to be calculated is located in the single phase region (solid, liquid or superheated steam), x=-1 must be entered as a pro-forma value.

The two phase regions wet steam region, melting region and sublimation region are calculated automatically by the subprograms. For this purpose the following facts have to be considered (cp. $\lg p,h$ -diagram chapter 3.1):

1. Wet Vapor Region $(0 \le x \le 1)$:

The phase fraction x equates to the vapor fraction x in the wet steam region in (kg dry saturated steam)/(kg wet steam).

If the state point to be calculated is located in the wet steam region, a value between 0 and 1 must be entered for x.

If boiling liquid (boiling curve) is to be calculated, the value 0 has to be entered for x. In case of dry saturated steam (dew curve) x = 1 has to be entered.

Concerning pressure and temperature either the given value for t and p = -1000 or the given value for p and t = -1000 and in both cases the value 0 or 1 for x must be entered when calculating boiling liquid or dry saturated steam. If p and t and x are entered, the program will consider p and t to represent the vapor pressure curve.

Boiling and dew curve: Temperature range from \emph{t}_{t} to \emph{t}_{c}

Pressure range from p_t to p_c

2. Melting Region $(10 \le x \le 11)$:

The phase fraction x equates to the liquid fraction x in the melting region in (kg solidifying liquid)/(kg melt), whereas melt is a mixture of melting solid and solidifying liquid.

If the state point to be calculated is located in the melting region, a value between 10 and 11 must be entered for x.

If melting solid (melting curve) is to be calculated, the value 10 has to be entered for x. In case of solidifying liquid (solidification curve) x = 11 has to be entered.

When calculating a melting solid or solidifying liquid it is adequate, Concerning pressure and temperature, to put in either the value given for t and p = -1000 or the value given for p and t = -1000 and the value for p and p and p and p are entered as given values, the program tests whether p and p and

Melting curve: Temperature range from t_i to t_{max_lce}

Pressure range from p_t to p_{max_lce}

Solidification curve: Temperature range from t_t to t_{max}

Pressure range from p_t to p_{max}

Only the solidification curve (x = 11) is calculated for pressures p for which applies $p_{\text{max lce}} .$

3. Sublimation Region $(100 \le x \le 101)$:

The phase fraction x equates to the vapor fraction x in the sublimation region in (kg desublimating steam)/(kg sublimation powder), whereas sublimation powder is a mixture of sublimating solid and desublimating steam.

If the state point to be calculated is located in the melting region, a value between 100 and 101 must be entered for x.

If sublimating solid is to be calculated, the value 100 has to be entered for x. In case of desublimating steam x = 101 has to be entered.

When calculating a sublimating solid or desublimating steam it is adequate, Concerning pressure and temperature, to put in either the value given for t and p = -1000 or the value given for p and t = -1000 and the value for p and p and p and p are entered as given values the program tests whether p and p

Sublimation and

desublimation curve Temperatur range from t_{min} to t_{t} Pressure range from p_{min} to p_{t}

Results for wrong input values

Result RHOPTXCO2 = - 1000, RHO = -1000 or rho_ptx_CO2 = - 1000 for input values:

Single phase region:

```
Solid, liquid, overheated steam (x = -1):
```

- at $p < p_{min}$ or $p > p_{max}$ or $p > p_{max_lce}$ when calculating solid
- at $t < t_{min}$ or $t > t_{max}$ or $t > t_{max}$ lee when calculating solid

Two phase regions:

```
Wet steam region (0 \le x \le 1):
```

- at p = -1000 and $t < t_t$ or $t > t_c$
- at t = -1000 and $p < p_t$ or $p > p_c$
- at $p < p_t$ or $p > p_c$
- at $t < t_t$ or $t > t_c$

Melting region $(10 \le x \le 11)$:

- at p = -1000 and $t < t_t$ or $t > t_{max}$ or $t > t_{max_lce}$ at x = 10
- at t = -1000 and $p < p_t$ or $p > p_{max}$ or $p > p_{max_lce}$ at x = 10
- at $p < p_t$ or $p > p_{max}$ or $p > p_{max lce}$ at x = 10
- at $t < t_t$ or $t > t_{max}$ or $t > t_{max_lce}$ at x = 10

Sublimation region ($100 \le x \le 101$):

- at p = -1000 and $t < t_{min}$ or $t > t_{t}$
- at t = -1000 and $p < p_{min}$ or $p > p_{t}$
- at $p < p_{min}$ or $p > p_t$
- at $t < t_{\min}$ or $t > t_{t}$

Specific Entropy s = f(p,t,x)

Function Name: s_ptx_CO2

Subprogram with value of the function: REAL*8 FUNCTION SPTXCO2(P,T,X)

for call from Fortran REAL*8 P,T,X

Input Values

P – Pressure *p* in bar

T - Temperature t in °C

X - *x* in kg / kg (Phase fraction, see the following explanations)

Result

SPTXCO2, S or s_ptx_CO2 - Specific entropy s in kJ/kg K

Range of Validity (cp. p,t-diagram in chapter 3.1)

Temperature range: from tmin to tmax

Pressure range: from p_{min} to p_{max} for liquid and steam

from p_{\min} to p_{\max_lce} for solid

Details on the phase fraction x

If the state point to be calculated is located in the single phase region (solid, liquid or superheated steam), x = -1 must be entered as a pro-forma value.

The two phase regions wet steam region, melting region and sublimation region are calculated automatically by the subprograms. For this purpose the following facts have to be considered (cp. $\lg p,h$ -diagram chapter 3.1):

1. Wet Vapor Region $(0 \le x \le 1)$:

The phase fraction x equates to the vapor fraction x in the wet steam region in (kg dry saturated steam)/(kg wet steam).

If the state point to be calculated is located in the wet steam region, a value between 0 and 1 must be entered for x.

If boiling liquid (boiling curve) is to be calculated, the value 0 has to be entered for x. In case of dry saturated steam (dew curve) x = 1 has to be entered.

Concerning pressure and temperature either the given value for t and p = -1000 or the given value for p and t = -1000 and in both cases the value 0 or 1 for x must be entered when calculating boiling liquid or dry saturated steam. If p and t and x are entered, the program will consider p and t to represent the vapor pressure curve.

Boiling and dew curve: Temperature range from t_1 to t_2 Pressure range from p_1 to p_2

2. Melting Region $(10 \le x \le 11)$:

The phase fraction x equates to the liquid fraction x in the melting region in (kg solidifying liquid)/(kg melt), whereas melt is a mixture of melting solid and solidifying liquid.

If the state point to be calculated is located in the melting region, a value between 10 and 11 must be entered for x.

If melting solid (melting curve) is to be calculated, the value 10 has to be entered for x. In case of solidifying liquid (solidification curve) x = 11 has to be entered.

When calculating a melting solid or solidifying liquid it is adequate, concerning pressure and temperature, to put in either the value given for t and p = -1000 or the value given for p and t = -1000 and the value for p (p and p and p and p are entered as given values the program tests whether p and p

Melting curve: Temperature range from t_i to t_{max_lce} Pressure range from p_i to p_{max_lce}

Solidification curve: Temperature range from t_i to t_{max}

Pressure range from p_t to p_{max}

KCE-ThermoFluidProperties, Prof. Dr. Hans-Joachim Kretzschmar

Only the solidification curve (x = 11) is calculated for pressures p for which applies $p_{\text{max lce}} .$

3. Sublimation Region $(100 \le x \le 101)$:

The phase fraction x equates to the vapor fraction x in the sublimation region in (kg desublimating steam)/(kg sublimation powder), whereas sublimation powder is a mixture of sublimating solid and desublimating steam.

If the state point to be calculated is located in the melting region, a value between 100 and 101 must be entered for x.

If sublimating solid is to be calculated, the value 100 has to be entered for x. In case of desublimating steam x = 101 has to be entered.

When calculating a sublimating solid or desublimating steam it is adequate, Concerning pressure and temperature, to put in either the value given for t and p = -1000 or the value given for p and t = -1000and the value for x (x = 100 or x = 101). If p and t and x are entered as given values the program tests whether p and t fulfil the sublimation-pressure-curve.

Sublimation and

desublimation curve Temperatur range from t_{min} to t_1 Pressure range from p_{min} to p_t

Results for wrong input values

```
Result SPTXCO2 = -1000, S = -1000 or s_ptx_co2 = -1000 for input values:
Single phase region:
```

Solid, liquid, overheated steam (x = -1):

- at $p < p_{min}$ or $p > p_{max}$ or $p > p_{max_lce}$ when calculating solid
- at $t < t_{min}$ or $t > t_{max}$ or $t > t_{max_lce}$ when calculating solid

Two phase regions:

```
Wet steam region (0 \le x \le 1):
 - at p = -1000 and t < t_1 or t > t_0
 - at t = -1000 and p < p_t or p > p_c
 - at p < p_t or p > p_c
 - at t < t_t or t > t_c
Melting region (10 \le x \le 11):
 - at p = -1000 and t < t_t or t > t_{max} or t > t_{max\_lce} at x = 10
 - at t = -1000 and p < p_t or p > p_{max} or p > p_{max lce} at x = 10
 - at p < p_t or p > p_{\text{max}} or p > p_{\text{max\_lce}} at x = 10
 - at t < t_1 or t > t_{\text{max}} or t > t_{\text{max lce}} at x = 10
Sublimation region (100 \le x \le 101):
 - at p = -1000 and t < t_{min} or t > t_{t}
 - at t = -1000 and p < p_{min} or p > p_{t}
 - at p < p_{min} or p > p_t
 - at t < t_{\min} or t > t_{t}
```

Backward Function: Temperature t = f(p,h)

Function Name: t_ph_CO2

Subprogram with value of the function: **REAL*8 FUNCTION TPHCO2(P,H)**

for call from Fortran REAL*8 P,H

Input Values

P - Pressure p in bar

H - Specific enthalpy h in kJ/kg

Result

TPHCO2, **T** or **t_ph_CO2** – Temperature *t* in °C

Range of Validity (cp. p,t-diagram in chapter 3.1)

Pressure range: from p_{min} to p_{max} for liquid and steam

from p_{min} to p_{max_lce} for solid

Enthalpy range: from $h < h_{\text{max}} = h(p_{\text{min}}, t_{\text{max}})$ to $h > h_{\text{min}} = h(p_{\text{min}}, t_{\text{min}})$

Temperature range: from t_{min} to t_{max} (resulting from internal calculation of the subprograms)

Details on calculating the two phase regions

Using the given values for p and h, the program determines whether the point of state to be calculated is located in the single phase region (solid, liquid or steam) or in the two phase region. The two phase regions wet steam region, melting region and sublimation region (cp. lg p,h-diagram chapter 3.1) are calculated automatically by the subprograms. After that, the calculation is realized for the certain region.

Results for wrong input values

Result T_PH_CO2 , T = -1000 or $t_ph_CO2 = -1000$ for input values:

Single phase region:

Solid, liquid, overheated steam:

- at $p < p_{min}$ or $p > p_{max}$ or $p > p_{max_lce}$ when calculating solid
- at calculation result $t < t_{\min}$ or $t > t_{\max}$ or $t > t_{\max}$ when calculating solid

Two phase regions:

Wet steam region:

- at $p < p_t$ or $p > p_c$
- at calculation result $t < t_t$ or $t > t_c$

Melting region:

- at $p < p_t$ or $p > p_{max}$ or $p > p_{max_lce}$ when calculating solid
- at calculation result $t < t_{\rm t}$ or $t > t_{\rm max}$ or $t > t_{\rm max_lce}$ when calculating solid

Sublimation region:

- at $p < p_{min}$ or $p > p_{t}$
- at calculation result $t < t_{min}$ or $t > t_{t}$

Backward Function: Temperature t = f(p,s)

Function Name: t_ps_CO2

Subprogram with value of the function: REAL*8 FUNCTION TPSCO2(P,S)

for call from Fortran REAL*8 P,S

Input Values

P – Pressure *p* in bar

S - Specific entropy s in kJ/(kg K)

Result

TPSCO2, **T** or **t ps CO2** – Temperature *t* in °C

Range of Validity (cp. p,t-diagram in chapter 3.1)

Pressure range: from p_{min} to p_{max} for liquid and steam

from p_{min} to p_{max_lce} for solid

Entropy range: from $s < s_{max} = s(p_{min}, t_{max})$ to $s > s_{min} = s(p_{min}, t_{min})$

Temperature range: from t_{min} to t_{max} (resulting from internal calculation of the subprograms)

Details on calculating the two phase regions

Using the given values for p and h, the program determines whether the point of state to be calculated is located in the single phase region (solid, liquid or steam) or in the two phase region. The two phase regions wet steam region, melting region and sublimation region (cp. lg p,h-diagram chapter 3.1) are calculated automatically by the subprograms. After that, the calculation is realized for the certain region.

Results for wrong input values

Result T_PS_CO2 , T = -1000 or $t_ps_CO2 = -1000$ for input values:

Single phase region:

Solid, liquid, overheated steam:

- at $p < p_{min}$ or $p > p_{max}$ or $p > p_{max_lce}$ when calculating solid
- at calculation result $t < t_{\min}$ or $t > t_{\max}$ or $t > t_{\max_lce}$ when calculating solid

Two phase regions:

Wet steam region:

- at $p < p_t$ or $p > p_c$
- at calculation result $t < t_t$ or $t > t_c$

Melting region:

- at $p < p_t$ or $p > p_{max}$ or $p > p_{max_lce}$ when calculating solid
- at calculation result $t < t_t$ or $t > t_{max}$ or $t > t_{max_lce}$ when calculating solid

Sublimation region:

- at $p < p_{min}$ or $p > p_{t}$
- at calculation result $t < t_{min}$ or $t > t_{t}$

Saturation Temperature $t_s = f(p)$

Function Name: ts_p_CO2

Subprogram with value of the function: REAL*8 FUNCTION TSPCO2(P)

for call from Fortran REAL*8 P

Input Values

P – Pressure *p* in bar

Result

TSPCO2, **TS** or ts_p_CO2 – Saturation temperature t_s in °C

Range of Validity (cp. p,t-diagram in chapter 3.1)

Pressure range: from p_t to p_c

Results for wrong input values

Result TSPCO2= -1000, TS = -1000 or ts_p_CO2 = -1000 for input values:

- at $p < p_t$ or $p > p_c$

Melting Temperature $t_{mel} = f(p)$

Function Name: tmel_p_CO2

Subprogram with value of the function: REAL*8 FUNCTION TMELCO2(P)

for call from Fortran REAL*8 P

Input Values

P – Pressure *p* in bar

Result

TMELCO2, **TMEL** or **tmel_p_CO2** – Melting temperature t_{mel} in °C

Range of Validity (cp. p,t-diagram in chapter 3.1)

Pressure range: from p_t to p_{max}

Results for wrong input values

Result TMELCO2 = -1000, TMEL = -1000 or $tmel_p_CO2 = -1000$ for input values:

- at $p < p_t$ or $p > p_{max}$

Sublimation Temperature $t_{sub} = f(p)$

Function Name: tsub_p_CO2

Subprogram with value of the function: REAL*8 FUNCTION TSUBCO2(P)

for call from Fortran REAL*8 P

Input Values

P – Pressure *p* in bar

Result

TSUBCO2, **TSUB** or $tsub_p_CO2$ – Sublimation temperature t_{sub} in °C

Range of Validity (cp. p,t-diagram in chapter 3.1)

Pressure range: from p_{min} to p_t

Results for wrong input values

Result TSUBCO2, = -1000, TSUB = -1000 or $tsub_pCO2 = -1000$ for input values:

- at $p < p_{min}$ or $p > p_{t}$

Specific Volume v = f(p,t,x)

Function Name: v_ptx_CO2

Subprogram with value of the function: REAL*8 FUNCTION VPTXCO2(P,T,X)

for call from Fortran REAL*8 P,T,X

Input Values

P – Pressure *p* in bar

T - Temperature t in °C

X - *x* in kg / kg (Phase fraction, see the following explanations)

Result

VPTXCO2, **V** or **v_ptx_CO2** – Specific volume *v* in m³/kg

Range of Validity (cp. p,t-diagram in chapter 3.1)

Temperature range: from t_{min} to t_{max}

Pressure range: from p_{min} to p_{max} for liquid and steam

from p_{min} to p_{max_lce} for solid

Details on the phase fraction x

If the state point to be calculated is located in the single phase region (solid, liquid or superheated steam), x=-1 must be entered as a pro-forma value.

The two phase regions wet steam region, melting region and sublimation region are calculated automatically by the subprograms. For this purpose the following facts have to be considered (cp. $\lg p,h$ -diagram chapter 3.1):

1. Wet Vapor Region $(0 \le x \le 1)$:

The phase fraction x equates to the vapor fraction x in the wet steam region in (kg dry saturated steam)/(kg wet steam).

If boiling liquid (boiling curve) is to be calculated, the value 0 has to be entered for x. In case of dry saturated steam (dew curve) x = 1 has to be entered.

If the state point to be calculated is located in the wet steam region, a value between 0 and 1 must be entered for x.

Concerning pressure and temperature either the given value for t and p = -1000 or the given value for p and t = -1000 and in both cases the value 0 or 1 for x must be entered when calculating boiling liquid or dry saturated steam. If p and t and x are entered, the program will consider p and t to represent the vapor pressure curve.

Boiling and dew curve: Temperature range from t_1 to t_2 Pressure range from p_1 to p_2

2. Melting Region $(10 \le x \le 11)$:

The phase fraction x equates to the liquid fraction x in the melting region in (kg solidifying liquid)/(kg melt), whereas melt is a mixture of melting solid and solidifying liquid.

If melting solid (melting curve) is to be calculated, the value 10 has to be entered for x. In case of solidifying liquid (solidification curve) x = 11 has to be entered.

If the state point to be calculated is located in the melting region, a value between 10 and 11 must be entered for x.

When calculating a melting solid or solidifying liquid it is adequate, concerning pressure and temperature, to put in either the value given for t and p = -1000 or the value given for p and t = -1000 and the value for p and p and p are entered as given values the program tests whether p and p and

Melting curve: Temperature range from t_t to t_{max_lce} Pressure range from p_t to p_{max_lce}

Solidification curve: Temperature range from t_t to t_{max} Pressure range from p_t to p_{max}

KCE-ThermoFluidProperties, Prof. Dr. Hans-Joachim Kretzschmar

Only the solidification curve (x = 11) is calculated for pressures p for which applies p_{max} lee < $p \le p_{\text{max}}$.

3. Sublimation Region $(100 \le x \le 101)$:

The phase fraction x equates to the vapor fraction x in the sublimation region in (kg desublimating steam)/(kg sublimation powder), whereas sublimation powder is a mixture of sublimating solid and desublimating steam.

If sublimating solid is to be calculated, the value 100 has to be entered for x. In case of desublimating steam x = 101 has to be entered.

If the state point to be calculated is located in the melting region, a value between 100 and 101 must be entered for x.

When calculating a sublimating solid or desublimating steam it is adequate, Concerning pressure and temperature, to put in either the value given for t and p = -1000 or the value given for p and t = -1000 and the value for p and p and p and p are entered as given values the program tests whether p and p

Sublimation and

desublimation curve Temperatur range from t_{min} to t_{t} Pressure range from p_{min} to p_{t}

Results for wrong input values

```
Result VPTXCO2 = -1000, H = -1000 or v_ptx_cO2 = -1000 for input values:
```

Single phase region:

Solid, liquid, overheated steam (x = -1):

- at $p < p_{min}$ or $p > p_{max}$ or $p > p_{max_lce}$ when calculating solid
- at $t < t_{min}$ or $t > t_{max}$ or $t > t_{max_lce}$ when calculating solid

Two phase regions:

```
Wet steam region (0 \le x \le 1):
```

- at p = -1000 and $t < t_t$ or $t > t_c$
- at t = -1000 and $p < p_t$ or $p > p_c$
- at $p < p_t$ or $p > p_c$
- at $t < t_t$ or $t > t_c$

Melting region $(10 \le x \le 11)$:

- at p = -1000 and $t < t_1$ or $t > t_{max}$ or $t > t_{max_lce}$ at x = 10
- at t = -1000 and $p < p_t$ or $p > p_{max}$ or $p > p_{max lce}$ at x = 10
- at $p < p_t$ or $p > p_{\text{max}}$ or $p > p_{\text{max_lce}}$ at x = 10
- at $t < t_t$ or $t > t_{max}$ or $t > t_{max_lce}$ at x = 10

Sublimation region (100 $\leq x \leq$ 101):

- at p = -1000 and $t < t_{min}$ or $t > t_{t}$
- at t = -1000 and $p < p_{min}$ or $p > p_{t}$
- at $p < p_{min}$ or $p > p_t$
- at $t < t_{\min}$ or $t > t_{t}$

Isentropic Speed of Sound w = f(p,t,x)

Function Name: w_ptx_CO2

Subprogram with value of the function: REAL*8 FUNCTION WPTXCO2(P,T,X)

for call from Fortran REAL*8 P,T,X

Input Values

P – Pressure *p* in bar

T - Temperature t in °C

X - *x* in kg / kg (Phase fraction, see the following explanations)

Result

WPTXCO2, W or w_ptx_CO2 - Speed of sound w in m/s

Range of Validity (cp. p,t-diagram in chapter 3.1)

Temperature range: from t_t to t_{max}

Pressure range: from p_{min} to p_{max} for liquid and steam

Details on the phase fraction x

If the state point to be calculated is located in the single phase region (liquid or superheated steam), x=-1 must be entered as a pro-forma value. Calculating solid is not possible.

The two phase regions wet steam region, melting region and sublimation region are calculated automatically by the subprograms. For this purpose the following facts have to be considered (cp. $\lg p,h$ -diagram chapter 3.1):

1. Wet Vapor Region $(0 \le x \le 1)$:

The phase fraction x equates to the vapor fraction x in the wet steam region in (kg dry saturated steam)/(kg wet steam).

The calculation for x values between 0 and 1 is not possible.

If boiling liquid (boiling curve) is to be calculated, the value 0 has to be entered for x. In case of dry saturated steam (dew curve) x = 1 has to be entered.

Concerning pressure and temperature either the given value for t and p = -1000 or the given value for p and t = -1000 and in both cases the value 0 or 1 for x must be entered when calculating boiling liquid or dry saturated steam. If p and t are entered, the program will consider p and t to represent the vapor pressure curve.

Boiling and dew curve: Temperature range from t_1 to t_2 Pressure range from p_1 to p_2

2. Melting Region $(10 \le x \le 11)$:

The phase fraction x equates to the liquid fraction x in the melting region in (kg solidifying liquid)/(kg melt), whereas melt is a mixture of melting solid and solidifying liquid.

The calculation for x values of x = 10 (melting curve) and between 10 and 11 is not possible. If solidifying liquid (solidification curve) is to be calculated, the value 11 has to be entered for x. Concerning pressure and temperature either the given value for t and t = -1000 or the given value for t and t = -1000 and in both cases the value 11 for t must be entered when calculating solidifying liquid. If t and t are entered as given values, the program tests whether t and t fulfil the melting pressure curve.

Melting curve: Temperature range from t_t to t_{max_lce} Pressure range from p_t to p_{max_lce}

Solidification curve: Temperature range from t_t to t_{max} Pressure range from p_t to p_{max}

3. Sublimation Region $(100 \le x \le 101)$:

The phase fraction x equates to the vapor fraction x in the sublimation region in (kg desublimating steam)/(kg sublimation powder), whereas sublimation powder is a mixture of sublimating solid and desublimating steam.

The calculation for x values of x = 100 (sublimation curve) and between 100 and 101 is not possible. If desublimating steam (desublimation curve) is to be calculated, the value 101 has to be entered for x. Concerning pressure and temperature either the given value for t and t = -1000 or the given value for t and t = -1000 and in both cases the value 101 for t must be entered when calculating desublimating steam. If t and t are entered as given values the program tests whether t and t fulfil the sublimation-pressure-curve.

Sublimation and

desublimation curve Temperatur range from t_{min} to t_{t} Pressure range from p_{min} to p_{t}

Results for wrong input values

Result WPTXCO2 = -1000 or w_ptx_CO2 = -1000 for input values:

Single phase region:

```
Liquid and overheated steam (x = -1):
```

- at $p < p_{min}$ or $p > p_{max}$
- at $t < t_t$ or $t > t_{max}$

Two phase regions:

Wet steam region $(0 \le x \le 1)$:

- at 0 < x < 1, i.e. calculation in the wet steam region not possible!
- at p = -1000 and $t < t_t$ or $t > t_c$
- at t = -1000 and $p < p_t$ or $p > p_c$
- at $p < p_t$ or $p > p_c$
- at $t < t_t$ or $t > t_c$

Melting region $(10 \le x \le 11)$:

- at 10 < x < 11, i.e. calculation on the melting curve and in the melting region not possible!
- at p = -1000 and $t < t_t$ or $t > t_{max}$ or $t > t_{max_lce}$ at x = 10
- at t = -1000 and $p < p_t$ or $p > p_{max}$ or $p > p_{max_lce}$ at x = 10
- at $p < p_t$ or $p > p_{max}$ or $p > p_{max_lce}$ at x = 10
- at $t < t_1$ or $t > t_{max}$ or $t > t_{max_lce}$ at x = 10

Sublimation region ($100 \le x \le 101$):

- at $100 \le x < 101$, i.e. calculation on the sublimation curve and in the sublimation region not possible!
- at p = -1000 and $t < t_{min}$ or $t > t_{t}$
- at t = -1000 and $p < p_{min}$ or $p > p_{t}$
- at $p < p_{min}$ or $p > p_t$
- at $t < t_{\min}$ or $t > t_{t}$

Backward Function: Vapor Fraction x = f(p,h)

Function Name: x_ph_CO2

Subprogram with value of the function: REAL*8 FUNCTION XPHCO2(P,H)

for call from Fortran REAL*8 P,H

Input Values

P - Pressure p in bar

H - Specific enthalpy h in kJ/kg

Result

XPHCO2, **X** or **x** ph **CO2** – Vapor fraction x in (kg saturated steam/kg wet steam)

Range of Validity (cp. p,t-diagram in chapter 3.1)

Pressure range: from p_{min} to p_{max} for liquid and steam

from p_{min} to p_{max_lce} for solid

Enthalpy range: from $h < h_{\text{max}} = h(p_{\text{min}}, t_{\text{max}})$ to $h > h_{\text{min}} = h(p_{\text{min}}, t_{\text{min}})$

Temperature range: from t_{min} to t_{max} (resulting from internal calculation of the subprograms)

Details on calculating the two phase regions

The two phase regions are calculated automatically by the subprograms. Using the given values for p and h, the program determines whether the point of state to be calculated is located in the single phase region (solid, liquid or steam) or in one of the two phase regions wet steam region, melting region and sublimation region (cp. lg p,h-diagram in chapter 3.1). When calculating a two phase mixture, x will be calculated. If the state point to be calculated is located in the single-phase region the result is set to x = -1.

Results for wrong input values

Result X_PH_CO2 , X = -1 or $x_ph_CO2 = -1$ for input values:

If the state point to be calculated is located in the single phase region (cp. lg p,h-diagram in chapter 3.1).

Two phase regions:

Wet steam region $(0 \le x \le 1)$:

- at $p < p_t$ or $p > p_c$
- at calculation result $t < t_t$ or $t > t_c$

Melting region $(10 \le x \le 11)$:

- at $p < p_t$ or $p > p_{max}$ or $p > p_{max_lce}$ when calculating solid
- at calculation result $t < t_t$ or $t > t_{max}$ or $t > t_{max_lce}$ when calculating solid

Sublimation region ($100 \le x \le 101$):

- at $p < p_{min}$ or $p > p_{t}$
- at calculation result $t < t_{min}$ or $t > t_{t}$

Backward Function: Vapor Fraction x = f(p,s)

Function Name: x_ps_CO2

Subprogram with value of the function: REAL*8 FUNCTION XPSCO2(P,S)

for call from Fortran REAL*8 P,S

Input Values

P - Pressure p in bar

S - Specific entropy s in kJ/(kg K)

Result

XPSCO2, **X** or **x** ps **CO2** – Vapor fraction *x* in (kg saturated steam/kg wet steam)

Range of Validity (cp. p,t-diagram in chapter 3.1)

Pressure range: from p_{min} to p_{max} for liquid and steam

from p_{min} to p_{max_lce} for solid

Entropy range: from $s < s_{max} = s(p_{min}, t_{max})$ to $s > s_{min} = s(p_{min}, t_{min})$

Temperature range: from t_{min} to t_{max} (resulting from internal calculation of the subprograms)

Details on calculating the two phase regions

The two phase regions are calculated automatically by the subprograms. Using the given values for p and s, the program determines whether the point of state to be calculated is located in the single phase region (solid, liquid or steam) or in one of the two phase regions wet steam region, melting region and sublimation region (cp. lg p,h-diagram in chapter 3.1). When calculating a two phase mixture, x will be calculated. If the state point to be calculated is located in the single-phase region the result is set to x = -1.

Results for wrong input values

Result X_PS_CO2 , X = -1 or $x_pS_CO2 = -1$ for input values:

If the state point to be calculated is located in the single phase region (cp. lg p,h-diagram in chapter 3.1).

Two phase regions:

Wet steam region $(0 \le x \le 1)$:

- at $p < p_t$ or $p > p_c$
- at calculation result $t < t_t$ or $t > t_c$

Melting region $(10 \le x \le 11)$:

- at $p < p_t$ or $p > p_{max}$ or $p > p_{max_lce}$ when calculating solid
- at calculation result $t < t_t$ or $t > t_{max}$ or $t > t_{max_lce}$ when calculating solid

Sublimation region ($100 \le x \le 101$):

- at $p < p_{min}$ or $p > p_{t}$
- at calculation result $t < t_{min}$ or $t > t_{t}$

Compression factor z = f(p,t,x)

Function Name: z_ptx_CO2

Subprogram with value of the function: REAL*8 FUNCTION ZPTXCO2(P,T,X)

for call from Fortran REAL*8 P,T,X

Input Values

P – Pressure *p* in bar

T - Temperature t in °C

X - *x* in kg / kg (Phase fraction, see the following explanations)

Result

ZPTXCO2, Z or z_ptx_CO2 - Compression factor

Range of Validity (z. p,t-diagram in chapter 3.1)

Temperature range: from t_t to t_{max}

Pressure range: from p_{min} to p_{max} for liquid and steam

Details on the phase fraction x

If the state point to be calculated is located in the single phase region (liquid or superheated steam), x=-1 must be entered as a pro-forma value. Calculating solid is not possible.

The two phase regions wet steam region, melting region and sublimation region are calculated automatically by the subprograms. For this purpose the following facts have to be considered (z. $\lg p,h$ -diagram chapter 3.1):

1. Wet Vapor Region $(0 \le x \le 1)$:

The phase fraction x equates to the vapor fraction x in the wet steam region in (kg dry saturated steam)/(kg wet steam).

The calculation for x values between 0 and 1 is not possible.

If boiling liquid (boiling curve) is to be calculated, the value 0 has to be entered for x. In case of dry saturated steam (dew curve) x = 1 has to be entered.

Concerning pressure and temperature either the given value for t and p = -1000 or the given value for p and t = -1000 and in both cases the value 0 or 1 for x must be entered when calculating boiling liquid or dry saturated steam. If p and t are entered, the program will consider p and t to represent the vapor pressure curve.

Boiling and dew curve: Temperature range from t_1 to t_2 Pressure range from p_1 to p_2

2. Melting Region $(10 \le x \le 11)$:

The phase fraction x equates to the liquid fraction x in the melting region in (kg solidifying liquid)/(kg melt), whereas melt is a mixture of melting solid and solidifying liquid.

The calculation for x values of x = 10 (melting curve) and between 10 and 11 is not possible. If solidifying liquid (solidification curve) is to be calculated, the value 11 has to be entered for x. Concerning pressure and temperature either the given value for t and t = -1000 or the given value for t and t = -1000 and in both cases the value 11 for t must be entered when calculating solidifying liquid. If t and t are entered as given values, the program tests whether t and t fulfil the melting pressure curve.

Melting curve: Temperature range from t_t to t_{max_lce} Pressure range from p_t to p_{max_lce}

Solidification curve: Temperature range from \emph{t}_{t} to \emph{t}_{max}

Pressure range from p_t to p_{max}

3. Sublimation Region $(100 \le x \le 101)$:

The phase fraction x equates to the vapor fraction x in the sublimation region in (kg desublimating steam)/(kg sublimation powder), whereas sublimation powder is a mixture of sublimating solid and desublimating steam.

The calculation for x values of x = 100 (sublimation curve) and between 100 and 101 is not possible. If desublimating steam (desublimation curve) is to be calculated, the value 101 has to be entered for x. Concerning pressure and temperature either the given value for t and t = -1000 or the given value for t and t = -1000 and in both cases the value 101 for t must be entered when calculating desublimating steam. If t and t are entered as given values the program tests whether t and t fulfil the sublimation-pressure-curve.

Sublimation and

desublimation curve Temperatur range from t_{min} to t_{t} Pressure range from p_{min} to p_{t}

Results for wrong input values

Result ZPTXCO2 = -1000 or $z_ptx_CO2 = -1000$ for input values:

Single phase region:

```
Liquid and overheated steam (x = -1):
```

- at $p < p_{min}$ or $p > p_{max}$
- at $t < t_t$ or $t > t_{max}$

Two phase regions:

Wet steam region $(0 \le x \le 1)$:

- at 0 < x < 1, i.e. calculation in the wet steam region not possible!
- at p = -1000 and $t < t_t$ or $t > t_c$
- at t = -1000 and $p < p_t$ or $p > p_c$
- at $p < p_t$ or $p > p_c$
- at $t < t_t$ or $t > t_c$

Melting region $(10 \le x \le 11)$:

- at 10 < x < 11, i.e. calculation on the melting curve and in the melting region not possible!
- at p = -1000 and $t < t_t$ or $t > t_{max}$ or $t > t_{max_lce}$ at x = 10
- at t = -1000 and $p < p_t$ or $p > p_{\text{max}}$ or $p > p_{\text{max_lce}}$ at x = 10
- at $p < p_t$ or $p > p_{max}$ or $p > p_{max_lce}$ at x = 10
- at $t < t_1$ or $t > t_{max}$ or $t > t_{max_lce}$ at x = 10

Sublimation region ($100 \le x \le 101$):

- at $100 \le x < 101$, i.e. calculation on the sublimation curve and in the sublimation region not possible!
- at p = -1000 and $t < t_{min}$ or $t > t_{t}$
- at t = -1000 and $p < p_{min}$ or $p > p_{t}$
- at $p < p_{min}$ or $p > p_t$
- at $t < t_{\min}$ or $t > t_{t}$

3.3 Property Functions for Solid Carbon Dioxide (Dry Ice)

Thermal Diffusivity a = f(p,t)

Function Name: alCE_pt_CO2

Subprogram with value of the function: REAL*8 FUNCTION APICEPTCO2(P,T)

for call from Fortran REAL*8 P,T

Input Values

- **P** Pressure *p* in bar
- T Temperature t in °C

Result

AICEPTCO2, a or aICE_pt_CO2 – Thermal diffusivity
$$a = \frac{\lambda * v}{c_D}$$
 in m²/s

Range of Validity (cp. p,t-diagram in chapter 3.1)

Pressure range: from p_{\min} to p_{\max_lce} Temperature range: from t_{\min} to t_{\max_lce}

Results for wrong input values

Result AICEPTCO2 = -1000, A = -1000 or aICE_pt_CO2 = -1000 for input values:

- at $t < t_{\min}$ or $t > t_{\max}$ lce
- at $p < p_{min} \text{ or } p > p_{max_lce}$

References: [3], [4]

Specific Isobaric Heat Capacity $c_p = f(p,t)$

Function Name: cplCE_pt_CO2

Subprogram with value of the function: REAL*8 FUNCTION CPICEPTCO2(P,T)

for call from Fortran REAL*8 P,T

Input Values

- **P** Pressure *p* in bar
- T Temperature t in °C

Result

CPICETCO2, **CP** or **cpICE**_t_**CO2** – specific isobaric heat capacity c_p in kJ/(kg K)

Range of Validity (cp. p,t-diagram in chapter 3.1)

Pressure range: from p_{\min} to p_{\max_lce} Temperature range: from t_{\min} to t_{\max_lce}

Results for wrong input values

Result CPICEPTCO2 = -1000, CP = -1000 or cpICE_pt_CO2 = -1000 for input values:

- at $t < t_{\min}$ or $t > t_{\max_lce}$ - at $\rho < \rho_{\min}$ or $\rho > \rho_{\max_lce}$

Specific Enthalpy h = f(p,t)

Function Name: hICE_pt_CO2

Subprogram with value of the function: REAL*8 FUNCTION HICEPTCO2(P,T)

for call from Fortran REAL*8 P,T

Input Values

- P Pressure p in bar
- T Temperature t in °C

Result

HICETCO2, H or hICE_t_CO2 - specific enthalpy h in kJ / kg

Range of Validity (cp. p,t-diagram in chapter 3.1)

Pressure range: from p_{min} to p_{max_lce} Temperature range: from t_{min} to t_{max_lce}

Results for wrong input values

Result HICEPTCO2 = -1000, H = -1000 or hICE_pt_CO2 = -1000 for input values:

- at $t < t_{\min}$ or $t > t_{\max_lce}$
- at $p < p_{min} \text{ or } p > p_{max_lce}$

Thermal Conductivity $\lambda = f(t)$

Function Name: lambdalCE_t_CO2

Subprogram with value of the function: REAL*8 FUNCTION LAMICETCO2(T)

for call from Fortran REAL*8 T

Input Values

T - Temperature t in °C

Result

LAMICETCO2, **LAM** or **lambdalCE_t_CO2** – Thermal conducivity λ in W/m K

Range of Validity (cp. p,t-diagram in chapter 3.1)

Temperature range: from \it{t}_{min} to \it{t}_{max_lce}

Results for wrong input values

Result LAMICETCO2 = -1000, LAM = -1000 or lambdalCE_t_CO2 = -1000 for input values:

- at $t < t_{min}$ or $t > t_{max_lce}$

Density $\rho = f(p,t)$

Function Name: rholCE_pt_CO2

Subprogram with value of the function: REAL*8 FUNCTION RHOICEPTCO2(P,T)

for call from Fortran REAL*8 P,T

Input Values

- **P** Pressure *p* in bar
- T Temperature t in °C

Result

RHOICEPTCO2, RHO or rhoICE_pt_CO2 - Density ρ in kg/m³

Range of Validity (cp. p,t-diagram in chapter 3.1)

Pressure range: from p_{min} to p_{max_lce} Temperature range: from t_{min} to t_{max_lce}

Results for wrong input values

Result RHOICEPTCO2 = -1000, RHO = -1000 or rhoICE_pt_CO2 = -1000 for input values:

- at $t < t_{\min}$ or $t > t_{\max_lce}$ - at $p < p_{\min}$ or $p > p_{\max_lce}$
- at $\rho < \rho \min Oi \rho > \rho \max_{i} Oi$

Specific Entropy s = f(p,t)

Function Name: sICE_pt_CO2

Subprogram with value of the function: REAL*8 FUNCTION SICEPTCO2(P,T)

for call from Fortran REAL*8 P,T

Input Values

- **P** Pressure *p* in bar
- T Temperature t in °C

Result

SICEPTCO2, S or sICE_pt_CO2 – Specific Entropy s in kJ/(kg K)

Range of Validity (cp. p,t-diagram in chapter 3.1)

Pressure range: from p_{\min} to p_{\max_lce} Temperature range: from t_{\min} to t_{\max_lce}

Results for wrong input values

Result SICEPTCO2 = -1000, S = -1000 or sICE_pt_CO2 = -1000 for input values:

- at $t < t_{min}$ or $t > t_{max_lce}$
- at $p < p_{min} \text{ or } p > p_{max_lce}$

Specific Volume v = f(p,t)

Function Name: vICE_pt_CO2

Subprogram with value of the function: REAL*8 FUNCTION VICEPTCO2(P,T)

for call from Fortran REAL*8 P,T

Input Values

- **P** Pressure *p* in bar
- T Temperature t in °C

Result

VICEPTCO2, V or vICE_pt_CO2 - specific volume v in m³/kg

Range of Validity (cp. *p,t*-diagram in chapter 3.1)

Pressure range: from p_{\min} to p_{\max_lce} Temperature range: from t_{\min} to t_{\max_lce}

Results for wrong input values

Result VICEPTCO2 = -1000, V = -1000 or vICE_pt_CO2 = -1000 for input values:

- at $t < t_{\min}$ or $t > t_{\max_lce}$
- at $p < p_{min} \text{ or } p > p_{max_lce}$

Backward function: Temperature t = f(p,h)

Function Name: tICE_ph_CO2

Subprogram with value of the function: REAL*8 FUNCTION TICEPHCO2(P,H)

for call from Fortran REAL*8 P,H

Input Values

P - Pressure *p* in bar

H – Specific enthalpy *h* in kJ/kg

Result

TICEPHCO2, T or tICE_ph_CO2 - Temperature in °C

Range of Validity (cp. *p*,*t*-diagram in chapter 3.1)

Enthalpy range: from $h > h_{min} = h(t_{min})$ to $h < h_{max_lce} = h(t_{max_lce})$

Pressure range: from p_{\min} to p_{\max_lce}

Temperature range: for results from t_{min} to $t_{max lce}$

Results for wrong input values

Result TICEPHCO2 = -1000, T = -1000 or tICE_ph_CO2 = -1000 for input values:

- at $h < h_{\min} = h(t_{\min})$ or $h > h_{\max_lce} = h(t_{\max_lce})$ or

- at $p < p_{min} \text{ or } p > p_{max_lce}$

Backward function: Temperature t = f(p,s)

Function Name: tICE_ps_CO2

Subprogram with value of the function: REAL*8 FUNCTION TICEPSCO2(P,S)

for call from Fortran REAL*8 P,S

Input Value

P - Pressure *p* in bar

S – Specific Entropy in kJ/(kg K)

Result

TICEPSCO2, T or tICE_ps_CO2 - Temperature in °C

Range of Validity (cp. *p,t*-diagram in chapter 3.1)

Entropy range: from $s > s_{min} = s(t_{min})$ to $s < s_{max_lce} = s(t_{max_lce})$

Pressure range: from p_{min} to p_{max_lce}

Temperature range: for results from t_{min} to t_{max_lce}

Results for wrong input values

Result TICEPSCO2 = -1000, T = -1000 or tICE_ps_CO2 = -1000 for input values:

- at $s < S_{min} = s(t_{min})$ or $s > S_{max_lce} = s(t_{max_lce})$

- at $p < p_{min} \text{ or } p > p_{max_lce}$

References: [3]

KCE-ThermoFluidProperties www.thermofluidprop.com

Property Libraries for Calculating Heat Cycles, Boilers, Turbines and Refrigerators

Water and Steam

Library LibIF97

- Industrial Formulation IAPWS-IF97 (Revision 2007)
- Supplementary Standards IAPWS-IF97-S01, -S03rev, -S04, and -S05
- IAPWS Revised Advisory Note No. 3 on Thermodynamic Derivatives (2008)

Library LibIF97 META

 Industrial Formulation IAPWS-IF97 (Revision 2007) for metastable steam

Humid Combustion Gas Mixtures

Library LibHuGas

Model: Ideal mixture of the real fluids:

CO₂ - Span, Wagner H₂O - IAPWS-95

O₂ - Schmidt, Wagner N₂ - Span et al.

Ar - Tegeler et al.

and of the ideal gases:

SO₂, CO, Ne

(Scientific Formulation of Bücker et al.)

Consideration of:

- Dissociation from VDI 4670
- Poynting effect

Humid Air

Library LibHuAir

Model: Ideal mixture of the real fluids:

- Dry air from Lemmon et al.
- Steam, water and ice from IAPWS-IF97 and IAPWS-06

Consideration of:

- Condensation and freezing of steam
- Dissociation from VDI 4670
- Poynting effect from ASHRAE RP-1485

Extremely Fast Property Calculations

Spline-Based Table Look-up Method (SBTL)

Library LibSBTL_IF97 Library LibSBTL_95 Library LibSBTL_HuAir

For steam, water, humid air, carbon dioxide and other fluids and mixtures according IAPWS Guideline 2015 for Computational Fluid Dynamics (CFD), real-time and non-stationary simulations

Carbon Dioxide Including Dry Ice

Library LibCO2

Formulation of Span and Wagner (1996)

Seawater

Library LibSeaWa

IAPWS Industrial Formulation 2013

Ice

Library LibICE

Ice from IAPWS-06, Melting and sublimation pressures from IAPWS-08, Water from IAPWS-IF97, Steam from IAPWS-95 and -IF97

Ideal Gas Mixtures

Library LibIdGasMix

Model: Ideal mixture of the ideal gases:

Ar	NO	не	Propylene
Ne	H ₂ O	F ₂	Propane
N_2	SO ₂	NH ₃	Iso-Butane
O_2	H ₂	Methane	n-Butane
CO	H ₂ S	Ethane	Benzene
CO ₂	OH	Ethylene	Methanol
A in			

Consideration of:

Dissociation from the VDI Guideline 4670

Library LibIDGAS

Model: Ideal gas mixture from VDI Guideline 4670

Consideration of:

Dissociation from the VDI Guideline 4670

Humid Air

Library ASHRAE LibHuAirProp

Model: Virial equation from ASHRAE Report RP-1485 for real mixture of the real fluids:

Drivein

- Dry air
- Steam

Consideration of:

 Enhancement of the partial saturation pressure of water vapor at elevated total pressures

www.ashrae.org/bookstore

Dry Air Including Liquid Air

Library LibRealAir

Formulation of Lemmon et al. (2000)

Refrigerants

Ammonia

Library LibNH3

Formulation of Tillner-Roth et al. (1993)

R134a

Library LibR134a

Formulation of Tillner-Roth and Baehr (1994)

Iso-Butane

Library LibButane_Iso

Formulation of Bücker and Wagner (2006)

n-Butane

Library LibButane_n

Formulation of Bücker and Wagner (2006)

Mixtures for Absorption Processes

Ammonia/Water Mixtures

Library LibAmWa

IAPWS Guideline 2001 of Tillner-Roth and Friend (1998)

Helmholtz energy equation for the mixing term (also useable for calculating the Kalina Cycle)

Water/Lithium Bromide Mixtures

Library LibWaLi

Formulation of Kim and Infante Ferreira (2004)
Gibbs energy equation for the mixing term

Liquid Coolants

Liquid Secondary Refrigerants

Library LibSecRef

Liquid solutions of water with

C₂H₆O₂ Ethylene glycol C₃H₈O₂ Propylene glycol

C₂H₅OH Ethanol CH₃OH Methanol C₃H₈O₃ Glycerol

K₂CO₃ Potassium carbonate
CaCl₂ Calcium chloride
MgCl₂ Magnesium chloride
NaCl Sodium chloride
C₂H₃KO₂ Potassium acetate
CHKO₂ Potassium formate
LiCl Lithium chloride

NH₃ Ammonia

Formulation of the International Institute of Refrigeration (IIR 2010)

Ethanol

Library LibC2H5OH

Formulation of Schroeder et al. (2014)

Methanol

Library LibCH3OH

Formulation of de Reuck and Craven (1993)

Propane

Library LibPropane

Formulation of Lemmon et al. (2009)

Siloxanes as ORC Working Fluids

Octamethylcyclotetrasiloxane C₈H₂₄O₄Si₄ Library LibD4

Decamethylcyclopentasiloxane C₁₀H₃₀O₅Si₅ Library LibD5

Tetradecamethylhexasiloxane C₁₄H₄₂O₅Si₆ Library LibMD4M

Hexamethyldisiloxane C₆H₁₈OSi₂ Library LibMM

Formulation of Colonna et al. (2006)

Dodecamethylcyclohexasiloxane C₁₂H₃₆O₆Si₆ Library LibD6

Decamethyltetrasiloxane C₁₀H₃₀O₃Si₄ Library LibMD2M

Dodecamethylpentasiloxane C₁₂H₃₆O₄Si₅ Library LibMD3M

Octamethyltrisiloxane C₈H₂₄O₂Si₃ Library LibMDM

Formulation of Colonna et al. (2008)

Nitrogen and Oxygen

Libraries LibN2 and LibO2

Formulations of Span et al. (2000) and Schmidt and Wagner (1985)

Hydrogen

Library LibH2

Formulation of Leachman et al. (2009)

Helium

Library LibHe

Formulation of Arp et al. (1998)

Hydrocarbons

Decane C₁₀H₂₂ Library LibC10H22

Isopentane C₅H₁₂ Library LibC5H12_Iso

Neopentane C₅H₁₂ Library LibC5H12_Neo

Isohexane C₆H₁₄ Library LibC6H14

Toluene C₇H₈ Library LibC7H8

Formulation of Lemmon and Span (2006)

Further Fluids

Carbon monoxide CO Library LibCO

Carbonyl sulfide COS Library LibCOS

Hydrogen sulfide H₂S Library LibH2S

Nitrous oxide N₂O Library LibN2O

Sulfur dioxide SO₂ Library LibSO2

Acetone C₃H₆O Library LibC3H6O

Formulation of Lemmon and Span (2006)

For more information please contact:

KCE-ThermoFluidProperties UG & Co. KG Prof. Dr. Hans-Joachim Kretzschmar

Wallotstr. 3

01307 Dresden, Germany

Internet: www.thermofluidprop.com

Email: info@thermofluidprop.com

Phone: +49-351-27597860

Mobile: +49-172-7914607

Fax: +49-3222-1095810

The following thermodynamic and transport properties can be calculated^a:

Thermodynamic Properties

- Vapor pressure p_s
- Saturation temperature T_s
- Density ρ
- Specific volume v
- Enthalpy h
- Internal energy u
- Entropy s
- Exergy e
- Isobaric heat capacity c_p
- Isochoric heat capacity c_v
- Isentropic exponent κ
- Speed of sound w
- Surface tension σ

Transport Properties

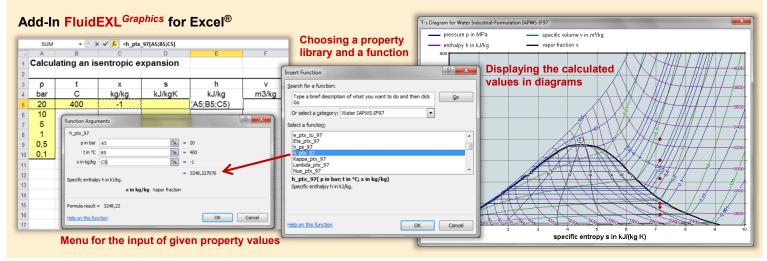
- Dynamic viscosity $\boldsymbol{\eta}$
- Kinematic viscosity v
- Thermal conductivity λ
- Prandtl number Pr
- Thermal diffusivity a

Backward Functions

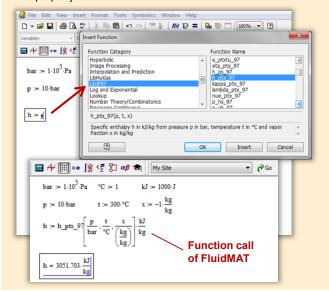
- T, v, s(p,h)
- T, v, h (p,s)
- p, T, v (h,s)p, T (v,h)
- p, T (v,u)

Thermodynamic Derivatives

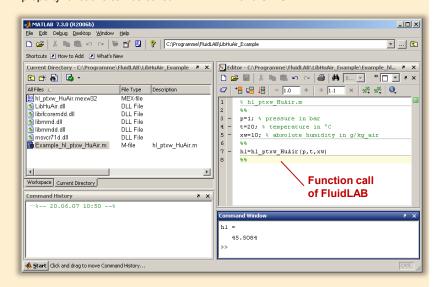
 Partial derivatives used in process modeling can be calculated.


^a Not all of these property functions are available in all property libraries.

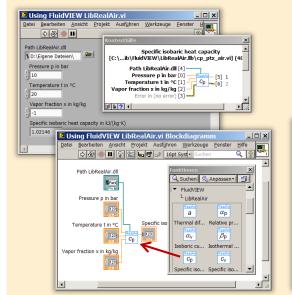
KCE-ThermoFluidProperties www.thermofluidprop.com



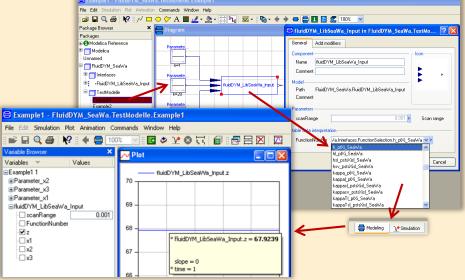
Property Software for Calculating Heat Cycles, Boilers, Turbines and Refrigerators


Add-On FluidMAT for Mathcad[®] Add-On FluidPRIME for Mathcad Prime[®]

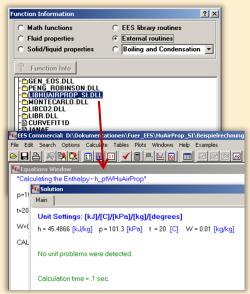
The property libraries can be used in Mathcad® and Mathcad Prime®.


Add-On FluidLAB for MATLAB® and SIMULINK®

Using the Add-In FluidLAB the property functions can be called in MATLAB® and SIMULINK®.


Add-On FluidVIEW for LabVIEW™

The property functions can be calculated in LabVIEW™.



Add-On FluidDYM for DYMOLA® (Modelica) and SimulationX®

The property functions can be called in DYMOLA® and SimulationX®.

Add-On FluidEES for Engineering Equation Solver®

App International Steam Tables for iPhone, iPad, iPod touch, Android Smartphones and Tablets

Online Property Calculator at www.thermofluidprop.com

Property Software for Pocket Calculators

For more information please contact:

KCE-ThermoFluidProperties UG & Co. KG Prof. Dr. Hans-Joachim Kretzschmar Wallotstr. 3 01307 Dresden, Germany Internet: www.thermofluidprop.com Email: info@thermofluidprop.com

Phone: +49-351-27597860 Mobile: +49-172-7914607 Fax: +49-3222-1095810

The following thermodynamic and transport properties^a can be calculated in Excel[®], MATLAB[®], Mathcad[®], Engineering Equation Solver[®] (EES), DYMOLA[®] (Modelica), SimulationX[®] and LabVIEW™:

Thermodynamic Properties

- Vapor pressure p_s
- Saturation temperature T_s
- Density ρ
- Specific volume v
- Enthalpy h
- Internal energy u
- Entropy s
- Exergy e
- Isobaric heat capacity c_p
- Isochoric heat capacity c_{ν}
- Isentropic exponent κ
- Speed of sound w
- Surface tension σ

Transport Properties

- Dynamic viscosity η
- Kinematic viscosity v
- Thermal conductivity λ
- Prandtl number *Pr*
- Thermal diffusivity a

Backward Functions

- T, v, s (p,h)
- T, v, h (p,s)
- p, T, v (h,s)
- p, T (v,h)
- p, T (v,u)

Thermodynamic Derivatives

 Partial derivatives used in process modeling can be calculated.

^a Not all of these property functions are available in all property libraries.

5. References

[1] Span, R.; Wagner W.:

A New Equation of State for Carbon Dioxide Covering the Fluid Region from the Triple-Point Temperature to 1100 K at Pressures up to 800 MPa.

- J. Phys. Chem. Ref. Data, 25, (1996) Nr. 6, S. 1506-1596
- [2] Vesovic, V.; Wakeham, W. A.; Olchowy, G. A.; Sengers, J. V.; Watson, J. T. R.; Millat, J.:

The Transport Properties of Carbon Dioxide.

- J. Phys. Chem. Ref. Data, 19, (1990) Nr. 3, S. 763-808
- [3] Jäger, A.; Span, R.:

Equation of State for Solid Carbon Dioxide Based on the Gibbs Free Energy.

- J. Chem. Eng. Data 57 (2012), 590-597
- [4] Kuprianoff, J.:

Die feste Kohlensäure (Trockeneis) – Herstellung und Verwendung Ferdinand Enke Verlag Stuttgart, 1953

6. Satisfied Customers

Period from 2018 to 2022

The following companies and institutions use the property libraries:

- FluidEXL^{Graphics} for Excel[®] incl. VBA
- FluidLAB for MATLAB® and Simulink
- FluidMAT for Mathcad®
- FluidPRIME for Mathcad Prime®
- FluidEES for Engineering Equation Solver® EES
- FluidDYM for Dymola[®] (Modelica) and SimulationX[®]
- FluidVIEW for LabVIEW[™]
- FluidPYT for Python
- FluidJAVA for Java
- DLLs for Windows Applications
- Shared Objects for Linux
- Shared Objects for macOS.

2022

ASTG, Graz, Austria	12/2022
Wandschneider + Gutjahr, Hamburg	
RWE Supply & Trading, Essen	11/2022
Stadtwerke Rosenheim	
CEA, Saclay, France	10/2022
RWE Supply & Trading, Essen	
SEEC Saudi Energy Efficiency Center, Riyadh, Saudi Arabia	
MAN, Copenhagen, Denmark	
Hermeler & Partner Consulting Engineers, Sassenberg	09/2022
Envi Con, Nürnberg	
Drill Cool Systems, Bakersfield CA, USA	
RWE Supply & Trading, Essen	
Maerz Ofenbau, Zürich, Switzerland	
Saale Energie, Schkopau	
ERGO, Dresden	
Mainova, Frankfurt/Main	
Bundeswehr, Koblenz	08/2022
RWE Supply & Trading, Essen	
Grenzebach Corporation, Newnan GE, USA	
AGRANA, Gmuend, Austria	07/2022
MIBRAG, Zeitz	
Hochschule Niederrhein, Krefeld	
ULT, Löbau	06/2022
LEAG, Cottbus	
VPC Group, Vetschau	

09/2021

Wärme, Hamburg ILK, Dresden Stricker IB, Küssnacht a. Rigi, Switzerland LEAG, Cottbus 05/2022 RWE Supply & Trading, Essen IGT Tomalla, Kreuztal B+T Engineering, Dübendorf, Switzerland Stricker IB, Küssnacht a. Rigi, Switzerland Vogelsang & Benning, Bochum 04/2022 Frischli, Rehburg-Loccum BPS Consulting, Sprenge 03/2022 HS Hannover, Maschinenbau & BioVT M+M Turbinentechnik, Bad Salzuflen Uni. Strathclyde, Glasgow, UK 02/2022 Delta Energy Group, Jiaozhou City, Qingdao, China Wetzel IB, Guben Wijbenga, PC Geldermalsen, The Netherlands Voith Paper, Heidenheim HS Zittau/Görlitz, Maschinenwesen 01/2022 Thermische Abfallbehandlung, Lauta Webb Institute, Glen Cove NY, USA TU Berlin, Umweltverfahrenstechnik SachsenEnergie, Dresden Doosan, Chang-won-si, Gyeongsangnam-do, South Korea KW3, LH Veenendaal, The Netherlands Université du Luxembourg, Esch-sur-Alzette Enseleit IB, Mansfeld Caliqua/Equans, Zürich, Switzerland Rudnick & Enners, Alpenrod 2021 Wenisch IB, Vetschau 12/2021 PPCHEM, Hinwil, Switzerland KW3, The Netherlands BASF Ludwigshafen Air-Consult, Jena Sjerp & Jongeneel, RB Zoetermeer, The Netherlands 11/2021 Maerz Ofenbau, Zürich, Switzerland RWE Supply & Trading, Essen Hahn IB, Dresden 10/2021

RWE Supply & Trading, Essen
Enseleit IB, Mansfeld
SachsenEnergie, Dresden

RWE Supply & Trading, Essen TH Nürnberg, Verfahrenstechnik

BSH Hausgeräte, Berlin

Therm, South Africa

Norsk Energi, Oslo, Norway	08/2021
AKM Industrieanlagen, Haltern Drill Cool Systems, Bakersfield CA, USA	
Siemens Energy Global, Erlangen	07/2021
Wulff & Umag, Husum	07/2021
Planungsbüro Waidhas, Chemnitz	
Burkhardt Energie Technik, Mühlhausen	
Lücke IB, Paderborn	06/2021
TU Dresden, Energieverfahrenstechnik	
Wärme, Hamburg	
AL-KO Therm, Kötz	
PCK Raffinerie, Schwedt	
Vogelsang & Benning, Bochum	05/2021
MTU, München	
VPC Group, Vetschau	
AVG, Köln	04/2021
TH Ulm, Institut für Fahrzeugtechnik	
Marty IB, Oberwil, Switzerland	
HypTec, Lebring, Austria	
Lopez IB, Getxo, Bizkaia, Spain	03/2021
GM Remediation Systems, Leoben, Austria	
Jager Kältetechnik, Osnabrück	
T&M Automation, GR Leidschendam, The Netherlands	
RWE Supply & Trading, Essen	
Stadtwerke Leipzig	
Beuth Hochschule für Technik, Berlin	
Beleth IB, Woeth	02/2021
ZTL, Thal, Austria	
ETABO Bochum	
RWE Supply & Trading, Essen	
Onyx Germany, Berlin	
TU Dresden, Kältetechnik	
GOHL-KTK, Durmersheim	
Therm Development, South Africa	
thermofin, Heinsdorfergrund	01/2021
RWE Supply & Trading, Essen STEAG, Essen	01/2021
ETA Energieberatung, Pfaffenhofen	
Enex Power, Kirchseeon	
Lifex Fower, Nichseeon	
2020	
Drill Cool, Bakersfield CA, USA	12/2020
Manders, The Netherlands	12/2020
RWE Supply & Tranding, Essen	
NEOWAT Lodz, Poland	
University of Duisburg-Essen, Duisburg	11/2020
Stellenbosch University, South Africa	11/2020
Standing door of involving, Count / infoa	

University De France-COMTe, France RWE, Essen STEAG, Herne Isenmann Ingenierbüro University of Stuttgart, ITLR, Stuttgart Norsk Energi, Oslo, Norway TGM Kanis, Nürnberg Stadtwerke Neuburg 10/2020 Smurfit Kappa, Roermond, The Netherlands RWE, Essen Hochschule Zittau/Görlitz, Wirtschaftsingenieurwesen Stadtwerke, Neuburg ILK, Dresden ATESTEO, Alsdorf Hochschule Zittau/Görlitz, Maschinenwesen TH Nürnberg, Verfahrenstechnik Drill Cool, Bakersfield CA,USA 09/2020 RWE, Essen 2Meyers Ingenieurbüro, Nürnberg FELUWA, Mürlenbach Stadtwerke Neuburg Caverion, Wien, Austria GMVA Niederrhein, Oberhausen INWAT Lodz, Poland 08/2020 Troche Ingenieurbüro, Hayingen CEA Saclay, France VPC, Vetschau 07/2020 FSK System-Kälte-Klima, Dortmund Exergie Etudes, Sarl, Switzerland **AWG Wuppertal** STEAG Energy Services, Zwingenberg Hochschule Braunschweig 06/2020 DBI, Leipzig GOHL-KTK, Dumersheim TU Dresden, Energieverfahrenstechnik

BASF SE, ESI/EE, Ludwigshafen

Wärme Hamburg

Ruchti Ingenieurbüro, Uster, Switzerland

IWB, Basel, Switzerland

Midiplan, Bietingen-Bissingen 05/2020

Knieschke, Ingenieurbüro

RWE, Essen

Leser, Hamburg

AGRANA, Gmünd, Austria

EWT Wassertechnik, Celle

Hochschule Darmstadt 04/2020

MTU München CCP

HAW Hamburg 03/2020

Hanon, Novi Jicin, Czech Republic TU Dresden, Kältetechnik MAN, Copenhagen, Denmark EnerTech, Radebeul 02/2020 LEAG, Cottbus B+B Enginering Magdeburg Hochschule Offenburg WIB, Dennheritz 01/2020 Universität Duisburg-Essen, Strömungsmaschinen Kältetechnik Dresen-Bremen TH Ingolstadt Vattenfall AB, Jokkmokk, Sweden Fraunhofer UMSICHT 2019 PEU Leipzig, Rötha 12/2019 MB-Holding, Vestenbergsgreuth RWE, Essen Georg-Büchner-Hochschule, Darmstadt 11/2019 EEB ENERKO, Aldenhoven Robert Benoufa Energietechnik, Wiesloch Kehrein & Kubanek Klimatechnik, Moers 10/2019 Hanon Systems Autopal Services, Hluk, Czech Republic CEA Saclay, Gif Sur Yvette cedex, France Saudi Energy Efficiency Center SEEC, Riyadh, Saudi Arabia VPC, Vetschau 09/2019 jGanser PM + Engineering, Forchheim Endress+Hauser Flowtec AG, Reinach, Switzerland Ruchti IB, Uster, Switzerland ZWILAG Zwischenlager Würenlingen, Switzerland 08/2019 Hochschule Zittau/Görlitz, Faculty Maschinenwesen Stadtwerke Neubrandenburg Physikalisch Technische Bundesanstalt PTB, Braunschweig GMVA Oberhausen 07/2019 Endress+Hauser Flowtec AG, Reinach, Switzerland WARNICA, Waterloo, Canada MIBRAG, Zeitz 06/2019 Pöyry, Zürich, Switzerland RWTH Aachen, Institut für Strahlantriebe und Turbomaschinen Midiplan, Bietigheim-Bissingen **GKS Schweinfurt** HS Zittau/Görlitz, Wirtschaftswissenschaften und Wirtschaftsingenieurwesen **ILK Dresden** HZDR Helmholtz Zentrum Dresden-Rossendorf 05/2019 TH Köln, Technische Gebäudeausrüstung IB Knittel, Braunschweig

Norsk Energi, Oslo, Norway

STEAG, Essen Stora Enso, Eilenburg IB Lücke, Paderborn Haarslev, Sonderso, Denmark MAN Augsburg Wieland Werke, Ulm 04/2019 Fels-Werke, Elbingerode Univ. Luxembourg, Luxembourg BTU Cottbus, Power Engineering 03/2009 Eins-Energie Sachsen, Schwarzenberg TU Dresden, Kälte- und Kryotechnik ITER, St. Paul Lez Durance Cedex, France Fraunhofer UMSICHT, Oberhausen Comparex Leipzig for Spedition Thiele HEMMERSBACH Rückert NaturGas, Lauf/Pegnitz BASF, Basel, Switzerland 02/2019 Stadtwerke Leipzig Maerz Ofenbau Zürich, Switzerland Hanon Systems Germany, Kerpen Thermofin, Heinsdorfergrund 01/2019 **BSH** Berlin 2018 Jaguar Energy, Guatemala 12/2018 WEBASTO, Gilching Smurfit Kappa, Oosterhout, Netherlands Univ. BW München RAIV, Liberec for VALEO, Prague, Czech Republic 11/2018 VPC Group Vetschau SEITZ, Wetzikon, Switzerland MVV, Mannheim 10/2018 **IB Troche** KANIS Turbinen, Nürnberg TH Ingolstadt, Institut für neue Energiesysteme IB Kristl & Seibt, Graz, Austria 09/2018 INEOS, Köln IB Lücke, Paderborn 08/2018 Südzucker, Ochsenfurt K&K Turbinenservice, Bielefeld 07/2018 OTH Regensburg, Elektrotechnik Comparex Leipzig for LEAG, Berlin 06/2018 Münstermann, Telgte 05/2018 TH Nürnberg, Verfahrenstechnik Universität Madrid, Madrid, Spanien HS Zittau/Görlitz, Wirtschaftsingenieurwesen HS Niederrhein, Krefeld Wilhelm-Büchner HS, Pfungstadt 03/2018

GRS, Köln

WIB, Dennheritz

RONAL AG, Härklingen, Schweiz 02/2018

Ingenieurbüro Leipert, Riegelsberg

AIXPROCESS, Aachen

KRONES, Neutraubling

Doosan Lentjes, Ratingen 01/2018