

Property Library for Methanol

FluidEXL Graphics with LibCH3OH for Excel®

Prof. Dr. Hans-Joachim Kretzschmar Prof. Dr. Matthias Kunick Dr. Sebastian Herrmann M.Eng Martin Suender Ines Jaehne M. Hempel

Software for the Calculation of the Properties of Methanol

Including DLL and Add-In for Excel®

FluidEXL*Graphics*LibCH3OH

Contents

- 0. Package Contents
 - 0.1 Zip-files for 32-bit Office®
 - 0.2 Zip-files for 64-bit Office®
- 1. Property Functions
- 2. Application of FluidEXL in Excel®
 - 2.1 Installing FluidEXL
 - 2.2 Registering FluidEXL as Add-In in Excel®
 - 2.3 Licensing the LibCH3OH Property Library
 - 2.4 Example calculation
 - 2.5 The FluidEXL Help System
 - 2.6 Removing FluidEXL
- 3. Program Documentation
- 4. Property Libraries for Calculating Heat Cycles, Boilers, Turbines, and Refrigerators
- 5. References
- 6. Satisfied Customers

© KCE-ThermoFluidProperties

Prof. Dr. Hans-Joachim Kretzschmar Haager Weg 6, 92224 Amberg, Germany

Phone: +49-9621-1762047 Mobile: +49-172-7914607 Fax: +49-3222-1095810

Email: info@thermofluidprop.com Internet: www.thermofluidprop.com

0 Package Contents

0.1 Zip files for 64-bit Office®

```
The following zip file has been delivered for your computer running a 64-bit Office® version: CD_FluidEXL_Graphics_Eng_LibCH3OH_x64.zip including the following folders an files:
```

```
\FLUFT\
\Formulation97\
FluidEXL_Graphics_LibCH3OH_Docu_Eng.pdf
FluidEXL_Graphics_Eng.xla
LC.dll
LibCH3OH.dll
```

0.2 Zip files for 32-bit Office®

LibCH3OH.chm.

The following zip file has been delivered for your computer running a 32-bit Office® version: CD_FluidEXL_Graphics_Eng_LibCH3OH.zip including the following folders and files:

```
\FLUFT\
\Formulation97\
FluidEXL_Graphics_LibCH3OH_Docu_Eng.pdf
FluidEXL_Graphics_Eng.xla
LC.dll
LibCH3OH.dll
LibCH3OH.chm.
```

1. Property Functions of the "Methanol LibCH3OH" Library

Functional dependence	Function name	Function call from Fortran	Property or function	Unit of calculated value
$c_p = f(p,t,x)$	cp_ptx_CH3OH	CP_PTX_CH3OH(P,T,X)	Specific isobaric heat capacity	kJ/(kg K)
h = f(p, t, x)	h_ptx_CH3OH	H_PTX_CH3OH(P,T,X)	Specific enthalpy	kJ/kg
$\kappa = f(p, t, x)$	ka_ptx_CH3OH	KA_PTX_CH3OH(P,T,X)	Isentropic exponent	-
$p_{mel} = f(t)$	pmel_t_CH3OH	PMEL_T_CH3OH(T)	Melting pressure from temperature	bar
$p_{s} = f(t)$	ps_t_CH3OH	PS_T_CH3OH(T)	Vapor pressure from temperature	bar
s = f(p, t, x)	s_ptx_CH3OH	S_PTX_CH3OH(P,T,X)	Specific entropy	kJ/(kg K)
t = f(p,h)	t_ph_CH3OH	T_PH_CH3OH(P,H)	Backward function: temperature from pressure and enthalpy	°C
t = f(p,s)	t_ps_CH3OH	T_PS_CH3OH(P,S)	Backward function: temperature from pressure and entropy	°C
$t_{mel} = f(p)$	tmel_p_CH3OH	TMEL_P_CH3OH(P)	Melting temperature from pressure	°C
$t_{\rm S} = f(p)$	ts_p_CH3OH	TS_P_CH3OH(P)	Saturation temperature from	°C
V = f(p, t, x)	v_ptx_CH3OH	V_PTX_CH3OH(P,T,X)	Specific volume	m³/kg
W = f(p, t, x)	w_ptx_CH3OH	W_PTX_CH3OH(P,T,X)	Speed of sound	m²/s
x = f(p,h)	x_ph_CH3OH	X_PH_CH3OH(P,H)	Backward function: vapor fraction from pressure and enthalpy	kg/kg
x = f(p,s)	x_ps_CH3OH	X_PS_CH3OH(P,S)	Backward function: vapor fraction from pressure and entropy	kg/kg

Units: $t \text{ in } {}^{\circ}\text{C}$

p in bar

x in kg saturated vapor / kg wet steam

Range of validity: Reference state:

Temperature range: from $t_{\text{mel}}(p)$ up to 620 °C at $p \ge p_t = 1.864*10-6$ bar

h = -1189.0680819098 kJ/kg

and

Pressure range: from 0.05 bar up to 8000 bar

s = -3.52437307719933 kJ/(kg K)

at p = 1.01325 bar and t = 25 °C

Details on the vapor fraction x and on the calculation of wet steam

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction *x* are to be considered:

Single-phase region

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

Wet-steam region

If the state point to be calculated is located in the wet steam region, a value for x between 0 and 1 (x = 0 for saturated liquid, x = 1 for saturated steam) must be entered. In this case, the backward functions result in the appropriate value between 0 and 1 for x. When calculating wet steam either the given value for t and t = -1 or the given value for t and t = -1 and in both cases the value for t between 0 and 1 must be entered.

If p and t and x are entered as given values, the program considers p and t to be appropriate to represent the vapor pressure curve. If this is not the case the calculation for the property of the chosen function results in -1.

Wet steam region: Temperature ranges from $t_t = -97.54$ °C to $t_c = 240.23$ °C

Pressure ranges from $p_{\rm t}$ = 1.864*10–6 bar to $p_{\rm c}$ = 82.1585 bar

Please note.

If the calculation results in –1000 values have been entered outside the range of validity. For further information on each function and its range of validity see the software documentation in chapter 3.

2. Application of FluidEXLGraphics in Excel®

The FluidEXL^{Graphics} Add-In has been developed to calculate thermodynamic properties in Excel[®] more conveniently. Within Excel[®], it enables the direct call of functions relating to Water and Steam from the LibCH3OH property program library.

2.1 Installing FluidEXL^{Graphics}

Complete the following steps for initial installation of FluidEXLGraphics.

Before you begin, it is best to uninstall any older version of FluidEXLGraphics.

The installation routine for 32-bit and 64-bit versions of Excel is similar. The following instructions are valid for both versions.

After you have downloaded and extracted the zip-file:

```
CD_FluidEXL_Graphics_LibCH3OH_x64_Eng.zip (for 64 bit version)
or
  CD_FluidEXL_Graphics_LibCH3OH_Eng.zip" (for 32 bit version).
you will see the folder
  \CD_FluidEXL_Graphics_LibCH3OH_x64_Eng\ (for 64 bit version)
or
  \CD_FluidEXL_Graphics_LibCH3OH_Eng\ (for 32 bit version)
in your Windows Explorer, Total Commander etc.
Now, open this folder by double-clicking on it.
Within this folder you will see the following folders and files:
  \FLUFT\
  \Formulation97\
  FluidEXL_Graphics_Eng.xla
  FluidEXL_Graphics_LibCH3OH_Docu_Eng
  LC.dll
  LibCH3OH.dll
  LibCH3OH.chm
  Reg .reg
Now, please copy the following folders and files
  \FLUFT\
  \Formulation97\
  FluidEXL Graphics Eng.xla
  LibCH3OH.dll
  LibCH3OH.chm
  LC.dll
into the folder
  C:\Users\[your name]\AppData\Roaming\Microsoft\AddIns\,
```

where [your name] is your name in the Windows system.

If this folder is not found, follow the next section anyway.

2.2 Registering FluidEXL^{Graphics} as Add-In in Excel[®]

After installation in Windows[®], FluidEXL Graphics must be registered in Excel[®] as an Add-In. To do this, start Excel[®] and carry out the following steps:

- Click the "File" button in the upper left hand corner of Excel® (see Fig. 2.1)

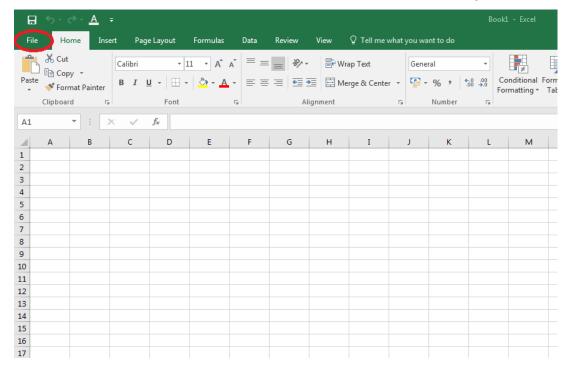


Figure 2.1: Registering FluidEXL Graphics as Add-In in Excel® 2016

- Click on the "Options" button in the menu which appears (see Fig. 2.2)

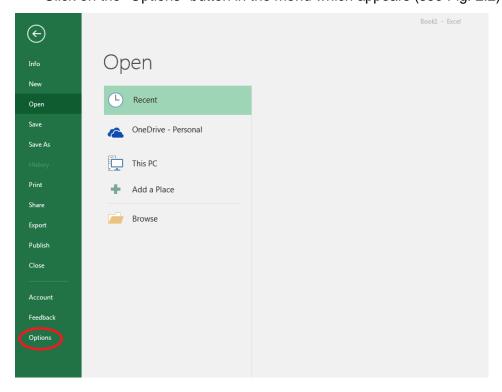


Figure 2.2: Registering FluidEXL Graphics as Add-In in Excel® 2016

Click on "Add-Ins" in the next menu (Fig. 2.3)

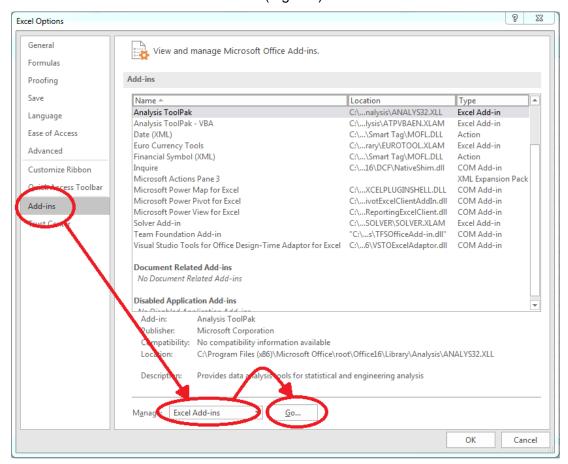


Figure 2.3: Dialog window "Excel Options"

- Select "Excel Add-ins" next to "Manage:" in the lower area of the menu
- Then click the "Go..." button
- Click "Browse" in the following window (Fig. 2.4)



Figure 2.4: Dialog window "Add-ins"

- Excel opens the AddIns folder. This is usually
 C:\Users\[your name]\AppData\Roaming\Microsoft\AddIns\.
- If the FluidEXL files have already been copied to this directory in section 2.1, please skip
 the following indented section. If not, follow the indented instructions to successful paste
 the needed files for the FluidEXL Add-In:

In the upper part of the "Browse" window the correct Add-In path is displayed (see Figure 2.5). Please note that not the entire path is displayed.

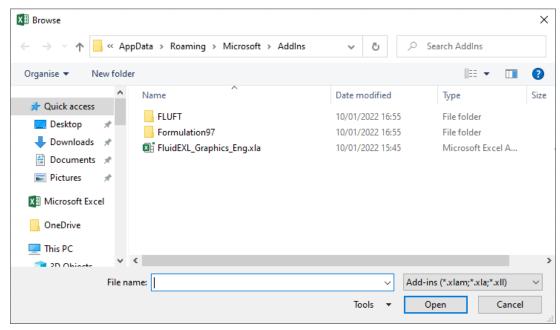


Figure 2.5: "Browse"-Window

Please copy this path and paste it into your file manager.

Now, please copy the following directories and files:

\FLUFT\

\Formulation97\

LC.dll

FluidEXL_Graphics_Eng.xla

LibCH3OH.dll

LibCH3OH.chm

from the delivered CD-folder into this folder.

- Click "FluidEXL_Graphics_Eng.xla" in this folder (see Fig. 2.5) and click "OK."
- Now, "FluidEXL Graphics Eng" will be shown in the list of Add-ins (see Fig. 2.6).
 (If a checkmark is in the box next to the name "FluidEXL Graphics Eng", this Add-In will automatically be loaded whenever Excel starts. This will continue to occur unless the checkmark is removed from the box by clicking on it.)
- In order to register the Add-In click the "OK" button in the "Add-ins" window (see Fig. 2.6).

Figure 2.6: Dialog window "Add-Ins"

In order to use FluidEXL^{Graphics} in the following example, click on the menu item "Add-Ins" shown in Fig. 2.7.

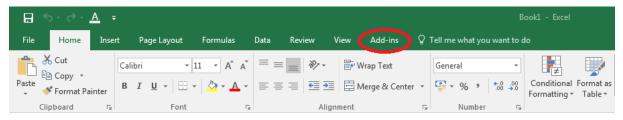


Figure 2.7: Menu item "Add-Ins"

In the upper menu region of Excel[®], the FluidEXL^{Graphics} menu bar will appear as marked with the red circle in Fig. 2.8.



Figure 2.8: FluidEXLGraphics menu bar

The Installation of FluidEXL^{Graphics} in Excel[®] is now complete.

An example calculation of "LibCH3OH" DLL library property functions can be found in chapter 2.4.

2.3 Licensing the LibCH3OH Property LibCH3OHrary

The licensing procedure has to be carried out when Excel[®] starts up and a FluidEXL^{Graphics} prompt message appears. In this case, you will see the "License Information" window (see figure below).

Figure 2.12: "License Information" window

Here you will have to type in the license key. You can find contact information on the "Content" page of this User's Guide or by clicking the yellow question mark in the "License Information" window. Then the following window will appear:

Figure 2.13: "Help" window

If you do not enter a valid license it is still possible to start Excel[®] by clicking "Cancel" twice. In this case, the LibCH3OH property library will display the result "–11111111" for every calculation.

The "License Information" window will appear every time you start Excel[®] unless you uninstall FluidEXL^{Graphics} according to the description in section 2.6 of this User's Guide.

Should you not wish to license the LibCH3OH property library, you have to delete the files

LibCH3OH.dll

LibCH3OH.chm

in the installation folder of FluidEXLGraphics (the standard being)

C:\Program Files\FluidEXL_Graphics_Eng using an appropriate program such as Explorer® or Norton Commander.

Note:

The product name "LibCH3OH____ in Figure 2.12 and 2.13 stands for the LibCH3OHrary you are installing. In this case it is the LibCH3OH library.

2.4 Example calculation

Now we will calculate, step by step, the specific enthalpy h as a function of pressure p, temperature t, and vapor fraction x, using FluidEXL Graphics .

- Start Excel®
- Enter a value for p in bar into a cell
 (Range of validity: p = 0.05 bar ... 8000 bar)

```
\Rightarrow e.g.: Enter 10 into cell A2.
```

- Enter a value for t in °C into a cell

```
(Range of validity: t = t_{mel} \dots 620 \,^{\circ}\text{C})
```

```
\Rightarrow e.g.: Enter 25 into cell B2.
```

- Enter a value for x in kg saturated steam / kg wet steam into a cell

Since the wet steam region is calculated automatically by the subprograms, the following fixed details on the vapor fraction *x* are to be considered when the value for *x* is entered:

Single-phase region

If the state point to be calculated is located in the single-phase region (liquid or superheated steam), i.e., pressure p and temperature t are given, x = -1 must be entered as a pro-forma value.

Wet-steam region

If the state point to be calculated is located in the wet steam region, a value for x between 0 and 1 (x = 0 for saturated liquid, x = 1 for saturated steam) must be entered.

When calculating wet steam either the given value for t and p = -1000 or the given value for p and t = -1000 and in both cases the value for x between 0 and 1 must be entered.

If p and t and x are entered as given values, the program considers p and t to be appropriate to represent the vapor pressure curve. If it is not the case the calculation for the property of the chosen function to be calculated results in -1000.

```
(CH3OH saturation pressure curve: t_t = -97.54 \, ^{\circ}\text{C...} \, t_C = 240.23 \, ^{\circ}\text{C}

p_t = 1.864 \, ^{*}10 - 6 \, \text{bar...} \, p_C = 82.1585 \, \text{bar}
```

```
\Rightarrow e.g.: Enter -1 into the C2 cell.
```

- Click the cell in which the enthalpy *h* in kJ/kg is to be displayed.

```
\Rightarrow e.g.: Click the D2 cell.
```

Click "Calculate" in the menu bar of FluidEXL^{Graphics}.
 Now, the "Insert Function" window appears (see Figure 2.14).

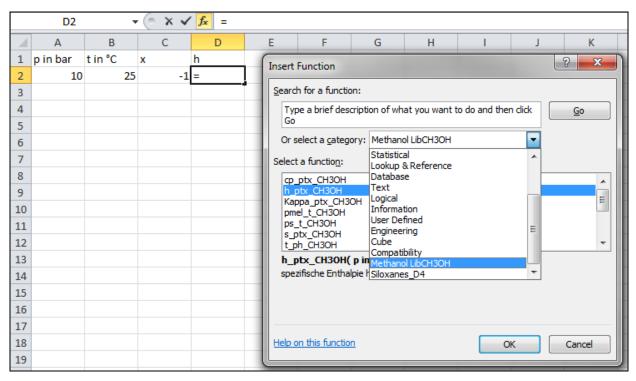


Figure 2.14: Selecting library and function

- Search and click the "Methanol LibCH3OH" library next to "Or select a category:" in the upper part of the window.
- Search and click the h_ptx_CH3OH function below "Select a function:"
 Here it is possible to get more information on the range of validity, measuring units, error responses, etc. by clicking the "Help on this function" button.
- Click "OK".
 The window shown in Figure 2.15 will now appear.

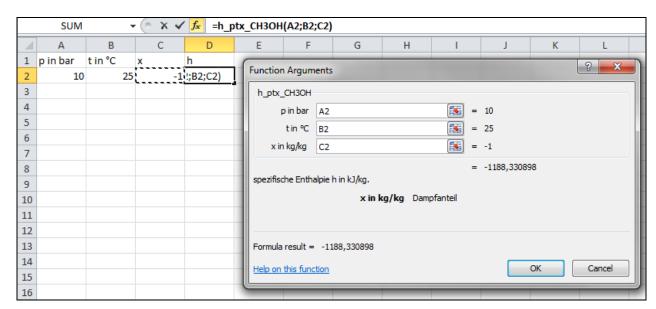


Figure 2.15: Entering the values given for the property calculation

- The cursor is situated on the line next to "p in bar". You can now enter the value for p either by clicking the cell with the value for p, by entering the name of the cell with the value for p, or by entering the value for p directly.

- Situate the cursor next to "t in °C" and enter the value for t by clicking the cell with the value for t, or by entering the name of the cell with the value for t directly.
- Situate the cursor next to "x in kg/kg" and enter the value for x by clicking the cell with the value for x, or by entering the name of the cell with the value for x, or by entering the value for x directly.
- Click the "OK" button.

The result for h in kJ/kg appears in the cell selected above.

 \Rightarrow The result in our sample calculation here is: h = -1188.330898 kJ/kg.

The calculation of h = f(p,t,x) has thus been completed. You can now arbitrarily change the values for p, t or x in the appropriate cells. The enthalpy is recalculated and updated every time you change the data. This shows that the Excel[®] data flow and the DLL calculations are working together successfully.

Note:

If the calculation results in –1000, this indicates that the values entered are located outside the range of validity of LibCH3OH. More detailed information on each function and its range of validity is available in the program documentation in Chapter 3.

For further property functions calculable in FluidEXL^{Graphics}, see the function table in Chapter 1.

Number Formats

When using FluidEXL^{Graphics} you have the option of choosing special number formats in advance.

Changes can be made as follows:

- Click the cell or select and click on the cells you wish to format.
 (In empty cells the new format will be applied once a value has been entered.)
- Click "Number Format" in the FluidEXL Graphics menu bar.
- Select the desired number format in the dialog box which appears:

"STD – Standard": Insignificant zeros behind the decimal point are not

shown.

"FIX – Fixed Number of Digits": All set decimal places are shown, including insignificant

zeros.

"SCI – Scientific Format": Numbers are always shown in the exponential form with

the set number of decimal places.

- Set the "Number of decimal places" by entering the number into the appropriate window.
- Confirm this by clicking the "OK" button.

As an example, the table below shows the three formats for the number 1.230 adjusted for three decimal places:

STD	1.23
FIX	1.230
SCI	1.230E+00

This formatting can also be applied to cells which have already been calculated.

2.5 The FluidEXL Graphics Help System

As mentioned earlier, FluidEXL*Graphics* also provides detailed help functions. Information on individual property functions may be accessed via the following steps:

- Click "Calculate" in the FluidEXL Graphics menu bar.
- Click on the "LibCH3OH" library under "Or select a <u>category:</u>" in the "Insert Function" window which will appear.
- Click the "Help on this function" button in the lower left-hand edge of the "Insert Function" window.

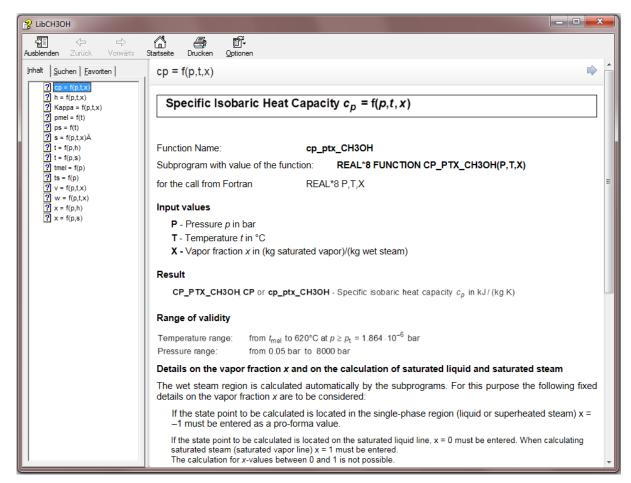


Figure 2.16: Help Window

If the LibCH3OH.chm function help cannot be found, you will be redirected to a Microsoft[®] help website by your standard browser. In this case, the LibCH3OH.chm file has to be copied into the folder of FluidEXL^{Graphics}, in the standard case

C:\Program Files\FluidEXL_Graphics_Eng to use the help system.

2.6 Removing FluidEXLGraphics

2.6.1 Removing LibCH3OH Library

Should you wish to remove only the LibCH3OH library, delete the files

LibCH3OH.dll LibCH3OH.chm

in the directory selected for the installation of FluidEXLGraphics, in the standard case,

C:\Program Files\FluidEXL Graphics Eng

by using an appropriate program such as Explorer® or Norton Commander.

2.6.2 Unregistering and uninstalling FluidEXL^{Graphics} as Add-In in versions of Excel[®] from 2007 onwards (for earlier versions see 2.6.3)

In order to unregister the FluidEXL^{Graphics} Add-In in versions of Excel[®] from 2007 onwards start Excel[®] and carry out the following commands:

- Click the "File" button in the upper left corner of Excel®
- Click on the "Options" button in the menu which appears

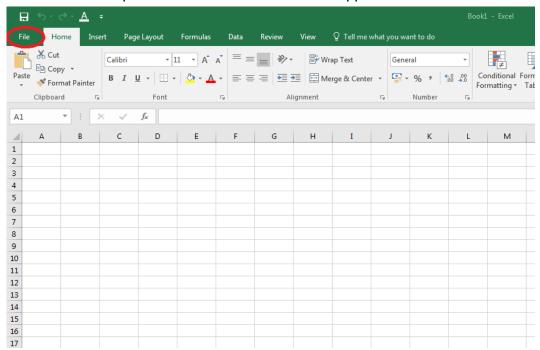


Figure 2.17: Unregistering FluidEXL Graphics as Add-In in Excel® 2016

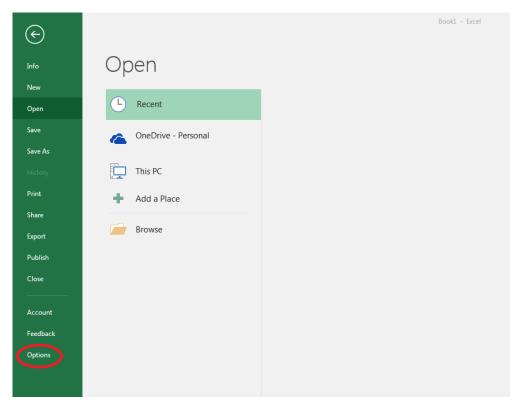


Figure 2.18 Unregistering FluidEXL Graphics as Add-In in Excel® 2016

- Click on "Add-Ins" in the next menu (Figure 2.19)

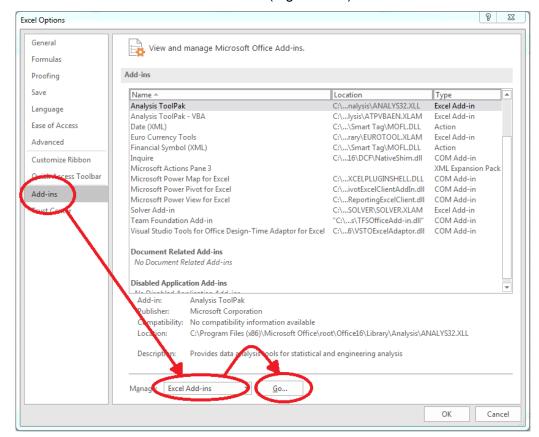


Figure 2.19: Dialog window "Add-Ins"

 If it is not shown in the list automatically, chose and click "Excel Add-ins" next to "Manage:" in the lower area of the menu

- Afterwards click the "Go..." button
- Remove the checkmark in front of

"FluidEXL Graphics Eng"

in the window which now appears. Click the "OK" button to confirm your entry.

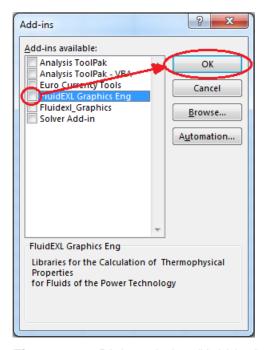


Figure 2.20: Dialog window "Add-Ins"

In order to remove FluidEXL^{Graphics} from Windows and the hard drive, click "Start" in the Windows task bar, select "Settings" and click "Control Panel."

Now, double click on "Add or Remove Programs."

In the list box of the "Add or Remove Programs" window that appears, select

"FluidEXL Graphics Eng"

by clicking on it and then clicking the "Add/Remove..." button.

Click "Automatic" in the following dialog box and then the "Next >" button.

Click "Finish" in the "Perform Uninstall" window.

Answer the question of whether all shared components should be removed with "Yes to All." Finally, close the "Add or Remove Programs" and "Control Panel" windows.

Now FluidEXLGraphics has been completely removed from your computer.

2.6.3 Unregistering and uninstalling FluidEXL^{Graphics} as Add-In in Excel[®], versions 2003 or earlier

To remove FluidEXL^{Graphics} completely, proceed as follows: First the registration of FluidEXL_Graphics_Eng.xla

has to be cancelled in Excel®.

In order to do this, click "Tools" in the upper menu bar of Excel® and here "Add-Ins...". Untick the box on the left-hand side of

"FluidEXL Graphics Eng"

in the window that appears and click the "OK" button. The additional menu bar of FluidEXL Graphics disappears from the upper part of the Excel $^{@}$ window. Afterwards, we

recommend closing Excel®.

If the FluidEXL Graphics menu bar does not disappear, take the following steps:

Click "View" in the upper menu bar of Excel®, then "Toolbars" and then "Customize..." in the list box which appears.

"FluidEXL Graphics Eng"

is situated at the bottom of the "Toolbars" entries, which must be selected by clicking on it. Delete the entry by clicking "Delete". You will be asked whether you really want to delete the toolbar – click "OK".

Within the next step delete the files

LibCH3OH.dll

LibCH3OH.chm

in the directory selected for the installation of FluidEXLGraphics, in the standard case,

C:\Program Files\FluidEXL Graphics Eng

using an appropriate program such as Explorer® or Norton Commander.

In order to remove FluidEXL^{Graphics} from Windows and the hard drive, click "Start" in the Windows task bar, select "Settings" and click "Control Panel". Now double-click on "Add or Remove Programs". In the list box of the "Add/Remove Programs" window that appears select

"FluidEXL Graphics Eng"

by clicking on it and click the "Add/Remove..." button. In the following dialog box, click "Automatic" and then "Next >". Click "Finish" in the "Perform Uninstall" window. Answer the question whether all shared components shall be removed with "Yes to All". Finally, close the "Add/Remove Programs" and "Control Panel" windows.

Now FluidEXLGraphics has been removed.

3. Program Documentation

Specific Isobaric Heat Capacity $c_p = f(p,t,x)$

Function Name: cp_ptx_CH3OH

Subprogram with value of the function: REAL*8 FUNCTION CP_PTX_CH3OH(P,T,X)

for the call from Fortran REAL*8 P,T,X

Input values

P - Pressure *p* in bar

T - Temperature t in °C

X - Vapor fraction *x* in (kg saturated vapor)/(kg wet steam)

Result

CP_PTX_CH3OH, CP or cp_ptx_CH3OH - Specific isobaric heat capacity $c_{
ho}$ in kJ/(kg K)

Range of validity

Temperature range: from t_{mel} to 620°C at $p \ge p_{\text{t}} = 1.864 \cdot 10^{-6}$ bar

Pressure range: from 0.05 bar to 8000 bar

Details on the vapor fraction *x* and on the calculation of saturated liquid and saturated steam

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction *x* are to be considered:

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

If the state point to be calculated is located on the saturated liquid line, x = 0 must be entered. When calculating saturated steam (saturated vapor line) x = 1 must be entered.

The calculation for *x*-values between 0 and 1 is not possible.

When calculating saturated liquid or saturated steam, it is adequate to enter either the given value for t and p = -1000, or the given value for p and t = -1000, plus the value for x (x = 0 or x = 1). If p and t and t are entered as given values, the program will consider p and t to be appropriate to represent the vapor pressure curve.

(Saturated liquid and saturated vapor line:

Temperature ranges from $t_t = -97.54 \,^{\circ}\text{C}$ to $t_c = 240.23 \,^{\circ}\text{C}$

Pressure ranges from $p_t = 1.864 \times 10^{-6}$ bar to $p_c = 82.1585$ bar)

Results for wrong input values

Result of CP_PTX_CH3OH = -1000, CP = -1000 or cp_ptx_CH3OH = -1000 for the following input values:

Single-phase region: p > 8000 bar or p < 0.05 bar or

(x = -1) t > 620°C or $t < t_{mel}$ at $p \ge 0.05$ bar

Saturated liquid or at p = -1000 and t > 240.23 °C or t < -97.54 °C

saturated vapor at t = -1000 and p > 82.1585 bar or $p < 1.864 \cdot 10^{-6}$ bar or

line at p > 82.1585 bar or $p < 1.864 \cdot 10^{-6}$ bar and

 $t > 240.23 \, ^{\circ}\text{C} \text{ or } t < -97.54 \, ^{\circ}\text{C}$

Reference: [1]

Function Name: h_ptx_CH3OH

Subprogram with value of the function: REAL*8 FUNCTION H_PTX_CH3OH(P,T,X)

for the call from Fortran REAL*8 P,T,X

Input values

P - Pressure p in bar

T - Temperature t in °C

X - Vapor fraction *x* in (kg saturated vapor)/(kg wet steam)

Result

H_PTX_CH3OH, **H** or **h_ptx_CH3OH** - Specific enthalpy *h* in kJ/kg

Range of validity

Temperature range: from t_{mel} to 620°C at $p \ge p_{\text{t}} = 1.864 \cdot 10^{-6}$ bar

Pressure range: from 0.05 bar to 8000 bar

Details on the vapor fraction x and on the calculation of wet steam

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction *x* are to be considered:

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

If the state point to be calculated is located in the wet steam region, a value for x between 0 and 1 (x = 0 for saturated liquid, x = 1 for saturated steam) must be entered.

When calculating wet steam either the given value for t and p = -1000 or the given value for p and t = -1000 and in both cases the value for x between 0 and 1 must be entered.

If p and t and x are entered as given values, the program considers p and t to be appropriate to represent the vapor pressure curve.

(Saturated liquid and saturated vapor line:

Temperature ranges from $t_t = -97.54 \,^{\circ}\text{C}$ to $t_c = 240.23 \,^{\circ}\text{C}$

Pressure ranges from $p_t = 1.864 \times 10^{-6}$ bar to $p_c = 82.1585$ bar)

Results for wrong input values

Result of H_PTX_CH3OH = -1000, H = -1000 or h_ptx_CH3OH = -1000 for the following input values:

Single – phase region: p > 8000 bar or p < 0.05 bar or

(x = -1) t > 620°C or $t < t_{mel}$ at $p \ge 0.05$ bar

Saturated liquid or at p = -1000 and t > 240.23 °C or t < -97.54 °C

saturated vapor at t = -1000 and p > 82.1585 bar or $p < 1.864 \cdot 10^{-6}$ bar or

line at p > 82.1585 bar or $p < 1.864 \cdot 10^{-6}$ bar and

 $t > 240.23 \, ^{\circ}\text{C} \text{ or } t < -97.54 \, ^{\circ}\text{C}$

Isentropic Exponent $\kappa = f(p,t,x)$

Function Name: kappa_ptx_CH3OH

Subprogram with value of the function: REAL*8 FUNCTION KAPPA_PTX_CH3OH(P,T,X)

for the call from Fortran REAL*8 P,T,X

Input values

P - Pressure *p* in bar

T - Temperature t in °C

X - Vapor fraction *x* in (kg saturated vapor)/(kg wet steam)

Result

KAPPA_PTX_CH3OH, KAPPA or kappa_ptx_CH3OH - Isentropic exponent
$$\kappa = \frac{w^2}{p \cdot v}$$

Range of validity

Temperature range: from t_{mel} to 620°C at $p \ge p_{\text{t}} = 1.864 \cdot 10^{-6}$ bar

Pressure range: from 0.05 bar to 8000 bar

Details on the vapor fraction x and on the calculation of saturated liquid and saturated steam

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction *x* are to be considered:

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

If the state point to be calculated is located on the saturated liquid line, x = 0 must be entered. When calculating saturated steam (saturated vapor line) x = 1 must be entered.

The calculation for x-values between 0 and 1 is not possible.

When calculating saturated liquid or saturated steam, it is adequate to enter either the given value for t and p = -1000, or the given value for p and t = -1000, plus the value for x (x = 0 or x = 1). If p and t and t are entered as given values, the program will consider p and t to be appropriate to represent the vapor pressure curve.

(Saturated liquid and saturated vapor line:

Temperature ranges from $t_{\rm t} = -97.54 \,^{\circ}\text{C}$ to $t_{\rm c} = 240.23 \,^{\circ}\text{C}$

Pressure ranges from $p_{\rm t} = 1.864 \times 10^{-6} \text{ bar to } p_{\rm c} = 82.1585 \text{ bar})$

Results for wrong input values

Result of **KAPPA_PTX_CH3OH**, **KAPPA = -1000** or **kappa_ptx_CH3OH = -1000** for the following input values:

Single – phase region: p > 8000 bar or p < 0.05 bar or

(x = -1) t > 620°C or $t < t_{mel}$ at $p \ge 0.05$ bar

Saturated liquid or at p = -1000 and t > 240.23 °C or t < -97.54 °C

saturated vapor at t = -1000 and p > 82.1585 bar or $p < 1.864 \cdot 10^{-6}$ bar or

line at p > 82.1585 bar or $p < 1.864 \cdot 10^{-6}$ bar and

 $t > 240.23 \, ^{\circ}\text{C} \text{ or } t < -97.54 \, ^{\circ}\text{C}$

Melting Pressure $p_{mel} = f(t)$

Function Name: pmel_t_CH3OH

Subprogram with value of the function: REAL*8 FUNCTION PMEL_T_CH3OH(T)

for the call from Fortran REAL*8 T

Input values

T - Temperature t in °C

Result

PMEL_T_CH3OH, **PMEL** or **pmel_t_CH3OH** - Melting pressure p_{mel} in bar

Range of validity

Temperature range: from -97.54 °C to -66.15 °C

Results for wrong input values

Result of **PMEL_T_CH3OH = -1000**, **PMEL = -1000** or **pmel_t_CH3OH = -1000** for the following input values:

t < -97.54 °C or t > -66.15 °C

Vapor Pressure $p_s = f(t)$

Function Name: ps_t_CH3OH

Subprogram with value of the function: REAL*8 FUNCTION PS_T_CH3OH(T)

for the call from Fortran REAL*8 T

Input values

T - Temperature t in °C

Result

 $\mbox{PS_T_CH3OH}, \mbox{PS} \mbox{ or } \mbox{ps_t_CH3OH} \mbox{ - Vapor pressure } p_{\mbox{\scriptsize S}} \mbox{ in bar}$

Range of validity

Temperature range: from -97.54 °C to 240.23 °C

Results for wrong input values

Result of $PS_T_CH3OH = -1000$, PS = -1000 or $ps_t_CH3OH = -1000$ for the following input values:

t < -97.54 °C or t > 240.23 °C

Specific Entropy s = f(p, t, x)

Function Name: s_ptx_CH3OH

Subprogram with value of the function: REAL*8 FUNCTION S_PTX_CH3OH(P,T,X)

for the call from Fortran REAL*8 P,T,X

Input values

P - Pressure *p* in bar

T - Temperature t in °C

X - Vapor fraction *x* in (kg saturated vapor)/(kg wet steam)

Result

S_PTX_CH3OH, S or s_ptx_CH3OH - Specific entropy s in kJ/kg K

Range of validity

Temperature range: from t_{mel} to 620°C at $p \ge p_{\text{t}} = 1.864 \cdot 10^{-6}$ bar

Pressure range: from 0.05 bar to 8000 bar

Details on the vapor fraction x and on the calculation of wet steam

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction *x* are to be considered:

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

If the state point to be calculated is located in the wet steam region, a value for x between 0 and 1 (x = 0 for saturated liquid, x = 1 for saturated steam) must be entered.

When calculating wet steam either the given value for t and p = -1000 or the given value for p and t = -1000 and in both cases the value for x between 0 and 1 must be entered.

If p and t and x are entered as given values, the program considers p and t to be appropriate to represent the vapor pressure curve.

(Saturated liquid and saturated vapor line:

Temperature ranges from $t_{\rm t} = -97.54 \,^{\circ}\text{C}$ to $t_{\rm c} = 240.23 \,^{\circ}\text{C}$

Pressure ranges from $p_{\rm t} = 1.864 \times 10^{-6} \text{ bar to } p_{\rm c} = 82.1585 \text{ bar})$

Results for wrong input values

Result of S_PTX_CH3OH = -1000, S = -1000 or s_ptx_CH3OH = -1000 for the following input values:

Single – phase region: p > 8000 bar or p < 0.05 bar or

(x = -1) t > 620°C or $t < t_{mel}$ at $p \ge 0.05$ bar

Saturated liquid or at p = -1000 and t > 240.23 °C or t < -97.54 °C

saturated vapor at t = -1000 and p > 82.1585 bar or $p < 1.864 \cdot 10^{-6}$ bar or

line at p > 82.1585 bar or $p < 1.864 \cdot 10^{-6}$ bar and

 $t > 240.23 \, ^{\circ}\text{C} \text{ or } t < -97.54 \, ^{\circ}\text{C}$

Backward Function: Temperature t = f(p,h)

Function Name: t_ph_CH3OH

Subprogram with value of the function: REAL*8 FUNCTION T_PH_CH3OH(P,H)

for the call from Fortran REAL*8 P,H

Input values

P - Pressure p in bar

H - Specific enthalpy h in kJ/kg

Result

T_PH_CH3OH, T or t_ph_CH3OH - Temperature t in °C

Range of validity

Temperature range: from t_{mel} to 620°C at $p \ge p_{\text{t}} = 1.864 \cdot 10^{-6}$ bar

Pressure range: from 0.05 bar to 8000 bar

Details on the calculation of wet steam

The wet steam region is calculated automatically. This means that from the given values of p and h the function will determine whether the state point to be calculated is located within the single-phase region (liquid or steam) or the wet steam region. Afterwards the calculation of t in the appropriate region will be carried out.

Wet steam region: Pressure ranges from $p_t = 1.864 \times 10^{-6}$ bar to $p_c = 82.1585$ bar

Results for wrong input values

Result of T_PH_CH3OH , T = -1000 or $t_ph_CH3OH = -1000$ for the following input values:

Single – phase region: p > 8000 bar or p < 0.05 bar or

(x = -1) when calculation results in t > 620 °C, t < -97.54 °C or $t < t_{mel}(p)$

Saturated liquid or at p = 82.1585 bar or $p > 1.864 \cdot 10^{-6}$ or

saturated vapor line when calculation results in t > 240.23 °C or t < -97.54 °C

Backward Function: Temperature t = f(p,s)

Function Name: t_ps_CH3OH

Subprogram with value of the function: REAL*8 FUNCTION T_PS_CH3OH(P,S)

for the call from Fortran REAL*8 P,S

Input values

P - Pressure p in bar

S - Specific entropy s in kJ/kg K

Result

T_PS_CH3OH, T or t_ps_CH3OH - Temperature t in °C

Range of validity

Temperature range: from t_{mel} to 620°C at $p \ge p_{\text{t}} = 1.864 \cdot 10^{-6}$ bar

Pressure range: from 0.05 bar to 8000 bar

Details on the calculation of wet steam

The wet steam region is calculated automatically. This means that from the given values of p and s the function will determine whether the state point to be calculated is located within the single-phase region (liquid or steam) or the wet steam region. Afterwards the calculation of t in the appropriate region will be carried out.

Wet steam region: Pressure ranges from $p_t = 1.864 \times 10^{-6}$ bar to $p_c = 82.1585$ bar

Results for wrong input values

Result of T_PH_CH3OH , T = -1000 or $t_ph_CH3OH = -1000$ for the following input values:

Single – phase region: p > 8000 bar or p < 0.05 bar or

(x = -1) when calculation results in t > 620 °C, t < -97.54 °C or $t < t_{mel}(p)$

Saturated liquid or at p = 82.1585 bar or $p > 1.864 \cdot 10^{-6}$ or

saturated vapor line when calculation results in t > 240.23 °C or t < -97.54 °C

Melting Temperature $t_{mel} = f(p)$

Function Name: tmel_p_CH3OH

Subprogram with value of the function: REAL*8 FUNCTION _P_CH3OH(P)

for the call from Fortran REAL*8 P

Input values

P - Pressure *p* in bar

Result

TMEL_P_CH3OH, **TMEL** or **tmel_p_CH3OH** - Melting temperature t_{mel} in °C

Range of validity

Pressure range: from $1.864 \cdot 10^{-6}$ bar to 2492.2 bar

Results for wrong input values

Result of TMEL_P_CH3OH, = -1000, TMEL = -1000 or tmel_p_CH3OH = -1000 for the following input values:

 $p < 1.864 \cdot 10^{-6}$ bar or p > 2492.2 bar

Saturation Temperature $t_s = f(p)$

Function Name: ts_p_CH3OH

Subprogram with value of the function: **REAL*8 FUNCTION TS_P_CH3OH(P)**

for the call from Fortran REAL*8 P

Input values

P - Pressure *p* in bar

Result

TS_P_CH3OH, **TS** or **ts_p_CH3OH** - Saturation temperature t_s in °C

Range of validity

Pressure range: from $1.864 \cdot 10^{-6}$ bar to 82.1585 bar

Results for wrong input values

Result of TS_P_CH3OH = -1000, TS = -1000 or ts_p_CH3OH = -1000 for the following input values:

p > 82.1585 bar or $p < 1.864 \cdot 10^{-6}$ bar

Specific Volume v = f(p, t, x)

Function Name: v_ptx_CH3OH

Subprogram with value of the function: REAL*8 FUNCTION V_PTX_CH3OH(P,T,X)

for the call from Fortran REAL*8 P,T,X

Input values

P - Pressure *p* in bar

T - Temperature t in °C

X - Vapor fraction x in (kg saturated vapor)/(kg wet steam)

Result

V_PTX_CH3OH, V or v_ptx_CH3OH - Specific volume v in m3/kg

Range of validity

Temperature range: from t_{mel} to 620°C at $p \ge p_{\text{t}} = 1.864 \cdot 10^{-6}$ bar

Pressure range: from 0.05 bar to 8000 bar

Details on the vapor fraction x and on the calculation of saturated liquid and saturated steam

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction *x* are to be considered:

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

If the state point to be calculated is located on the saturated liquid line, x = 0 must be entered. When calculating saturated steam (saturated vapor line) x = 1 must be entered.

The calculation for *x*-values between 0 and 1 is not possible.

When calculating saturated liquid or saturated steam, it is adequate to enter either the given value for t and p = -1000, or the given value for p and t = -1000, plus the value for x (x = 0 or x = 1). If p and t and t are entered as given values, the program will consider t and t to be appropriate to represent the vapor pressure curve.

(Saturated liquid and saturated vapor line:

Temperature ranges from $t_t = -97.54 \,^{\circ}\text{C}$ to $t_c = 240.23 \,^{\circ}\text{C}$

Pressure ranges from $p_{\rm t} = 1.864 \times 10^{-6} \text{ bar to } p_{\rm c} = 82.1585 \text{ bar})$

Results for wrong input values

Result of $V_PTX_CH3OH = -1000$, V = -1000 or $v_ptx_CH3OH = -1000$ for the following input values:

Single – phase region: p > 8000 bar or p < 0.05 bar or

(x = -1) t > 620°C or $t < t_{mel}$ at $p \ge 0.05$ bar

Saturated liquid or at p = -1000 and t > 240.23 °C or t < -97.54 °C

saturated vapor at t = -1000 and p > 82.1585 bar or $p < 1.864 \cdot 10^{-6}$ bar or

line at p > 82.1585 bar or $p < 1.864 \cdot 10^{-6}$ bar and

 $t > 240.23 \, ^{\circ}\text{C} \text{ or } t < -97.54 \, ^{\circ}\text{C}$

Isentropic Speed of Sound w = f(p,t,x)

Function Name: w_ptx_CH3OH

Subprogram with value of the function: REAL*8 FUNCTION W_PTX_CH3OH(P,T,X)

for the call from Fortran REAL*8 P,T,X

Input values

P - Pressure *p* in bar

T - Temperature t in °C

X - Vapor fraction *x* in (kg saturated vapor)/(kg wet steam)

Result

W_PTX_CH3OH, W or w_ptx_CH3OH - Isentropic speed of sound w in m/s

Range of validity

Temperature range: from t_{mel} to 620°C at $p \ge p_{\text{t}} = 1.864 \cdot 10^{-6}$ bar

Pressure range: from 0.05 bar to 8000 bar

Details on the vapor fraction x and on the calculation of saturated liquid and saturated steam

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction *x* are to be considered:

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

If the state point to be calculated is located on the saturated liquid line, x = 0 must be entered. When calculating saturated steam (saturated vapor line) x = 1 must be entered.

The calculation for *x*-values between 0 and 1 is not possible.

When calculating saturated liquid or saturated steam, it is adequate to enter either the given value for t and p = -1000, or the given value for p and t = -1000, plus the value for x (x = 0 or x = 1). If p and t and t are entered as given values, the program will consider p and t to be appropriate to represent the vapor pressure curve.

(Saturated liquid and saturated vapor line:

Temperature ranges from $t_{\rm t} = -97.54 \,^{\circ}\text{C}$ to $t_{\rm c} = 240.23 \,^{\circ}\text{C}$

Pressure ranges from $p_t = 1.864 \times 10^{-6}$ bar to $p_c = 82.1585$ bar)

Results for wrong input values

Result of W_PTX_CH3OH = -1000 or w_ptx_CH3OH = -1000 for the following input values:

Single – phase region: p > 8000 bar or p < 0.05 bar or

(x = -1) t > 620°C or $t < t_{mel}$ at $p \ge 0.05$ bar

Saturated liquid or at p = -1000 and t > 240.23 °C or t < -97.54 °C

saturated vapor at t = -1000 and p > 82.1585 bar or $p < 1.864 \cdot 10^{-6}$ bar or

line at p > 82.1585 bar or $p < 1.864 \cdot 10^{-6}$ bar and

 $t > 240.23 \, ^{\circ}\text{C} \text{ or } t < -97.54 \, ^{\circ}\text{C}$

Backward Function: Vapor Fraction x = f(p,h)

Function Name: x_ph_CH3OH

Subprogram with value of the function: REAL*8 FUNCTION X_PH_CH3OH(P,H)

for the call from Fortran REAL*8 P,H

Input values

P - Pressure p in bar

H - Specific enthalpy h in kJ/kg

Result

X_PH_CH3OH, **X** or **x_ph_CH3OH** - Vapor fraction *x* in (kg saturated vapor/kg wet steam)

Range of validity

Temperature range: from t_{mel} to 620°C at $p \ge p_{\text{t}} = 1.864 \cdot 10^{-6}$ bar

Pressure range: from 0.05 bar to 8000 bar

Details on the calculation of wet steam

The wet steam region is calculated automatically. This means that from the given values of p and h the function will determine whether the state point to be calculated is located within the single-phase region (liquid or steam) or the wet steam region. When calculating wet steam the value for x between 0 and 1 is calculated (0 for saturated liquid, 1 for saturated steam). If the state point to be calculated is located in the single-phase region the result x = -1 will be returned.

Wet steam region: Pressure ranges from $p_t = 1.864 \times 10^{-6}$ bar to $p_c = 82.1585$ bar

Results for wrong input values

Result of X_PH_CH3OH , X = -1 or $x_ph_CH3OH = -1$ for the following input values:

In case the point of state to be calculated lies within the single-phase region -

p > 82.1585 bar or $p < 1.864 \cdot 10^{-6}$ bar

Backward Function: Vapor Fraction x = f(p,s)

Function Name: x_ps_CH3OH

Subprogram with value of the function: REAL*8 FUNCTION X_PS_CH3OH(P,S)

for the call from Fortran REAL*8 P,S

Input values

P - Pressure *p* in bar

S - Specific entropy s in kJ/kg K

Result

X_PS_CH3OH, **X** or **x_ps_CH3OH** - Vapor fraction *x* in (kg saturated vapor/kg wet steam)

Range of validity

Temperature range: from t_{mel} to 620°C at $p \ge p_{\text{t}} = 1.864 \cdot 10^{-6}$ bar

Pressure range: from 0.05 bar to 8000 bar

Details on the calculation of wet steam

The wet steam region is calculated automatically. This means that from the given values of p and s the function will determine whether the state point to be calculated is located within the single-phase region (liquid or steam) or the wet steam region. When calculating wet steam the value for x between 0 and 1 is calculated (0 for saturated liquid, 1 for saturated steam). If the state point to be calculated is located in the single-phase region the result x = -1 will be returned.

Wet steam region: Pressure ranges from $p_t = 1.864 \times 10^{-6}$ bar to $p_c = 82.1585$ bar

Results for wrong input values

Result of X_PH_CH3OH , X = -1 or $x_ph_CH3OH = -1$ for the following input values:

In case the point of state to be calculated lies within the single-phase region -

p > 82.1585 bar or $p < 1.864 \cdot 10^{-6}$ bar

KCE-ThermoFluidProperties www.thermofluidprop.com

Property Libraries for Calculating Heat Cycles, Boilers, Turbines and Refrigerators

Water and Steam

Library LibIF97

- Industrial Formulation IAPWS-IF97 (Revision 2007)
- Supplementary Standards IAPWS-IF97-S01, -S03rev, -S04, and -S05
- IAPWS Revised Advisory Note No. 3 on Thermodynamic Derivatives (2008)

Library LibIF97 META

 Industrial Formulation IAPWS-IF97 (Revision 2007) for metastable steam

Humid Combustion Gas Mixtures

Library LibHuGas

Model: Ideal mixture of the real fluids:

CO₂ - Span, Wagner H₂O - IAPWS-95 O_2 - Schmidt, Wagner N_2 - Span et al.

Ar - Tegeler et al.

and of the ideal gases:

SO₂, CO, Ne

(Scientific Formulation of Bücker et al.)

Consideration of:

- Dissociation from VDI 4670
- Poynting effect

Humid Air

Library LibHuAir

Model: Ideal mixture of the real fluids:

- Dry air from Lemmon et al.
- Steam, water and ice from IAPWS-IF97 and IAPWS-06

Consideration of:

- Condensation and freezing of steam
- Dissociation from VDI 4670
- Poynting effect from ASHRAE RP-1485

Extremely Fast Property Calculations

Spline-Based Table Look-up Method (SBTL)

Library LibSBTL_IF97 Library LibSBTL_95 Library LibSBTL_HuAir

For steam, water, humid air. carbon dioxide and other fluids and mixtures according IAPWS Guideline 2015 for Computational Fluid Dynamics (CFD), real-time and non-stationary simulations

Carbon Dioxide Including Dry Ice

Library LibCO2

Formulation of Span and Wagner (1996)

Seawater

Library LibSeaWa

IAPWS Industrial Formulation 2013

Ice

Library LibICE

Ice from IAPWS-06, Melting and sublimation pressures from IAPWS-08. Water from IAPWS-IF97, Steam from IAPWS-95 and -IF97

Ideal Gas Mixtures

Library LibIdGasMix

Model: Ideal mixture of the ideal gases:

Ar	NO	не	Propylene
Ne	H ₂ O	F_2	Propane
N_2	SO ₂	NH ₃	Iso-Butane
O ₂	H ₂	Methane	n-Butane
CO	H ₂ S	Ethane	Benzene
CO ₂	OH	Ethylene	Methanol
Air			

Consideration of:

Dissociation from the VDI Guideline 4670

Library LibIDGAS

Model: Ideal gas mixture from VDI Guideline 4670

Consideration of:

Dissociation from the VDI Guideline 4670

Humid Air

Library ASHRAE LibHuAirProp

Model: Virial equation from ASHRAE Report RP-1485 for real mixture of the real fluids:

- Dry air
- Steam

Consideration of:

 Enhancement of the partial saturation pressure of water vapor at elevated total pressures

www.ashrae.org/bookstore

Dry Air **Including Liquid Air**

Library LibRealAir

Formulation of Lemmon et al. (2000)

Refrigerants

Ammonia

Library LibNH3

Formulation of Tillner-Roth et al. (1993)

R134a

Library LibR134a

Formulation of Tillner-Roth and Baehr (1994)

Iso-Butane

Library LibButane Iso

Formulation of Bücker and Wagner (2006)

n-Butane

Library LibButane n

Formulation of Bücker and Wagner (2006)

Mixtures for Absorption Processes

Ammonia/Water Mixtures

Library LibAmWa

IAPWS Guideline 2001 of Tillner-Roth and Friend (1998)

Helmholtz energy equation for the mixing term (also useable for calculating the Kalina Cycle)

Water/Lithium Bromide Mixtures

Library LibWaLi

Formulation of Kim and Infante Ferreira (2004) Gibbs energy equation for the mixing term

Liquid Coolants

Liquid Secondary Refrigerants

Library LibSecRef

Liquid solutions of water with

C₂H₆O₂ Ethylene glycol C₃H₈O₂ Propylene glycol C₂H₅OH Ethanol

CH₃OH Methanol C₃H₈O₃ Glycerol

K₂CO₃ Potassium carbonate CaCla Calcium chloride MqCl₂ Magnesium chloride NaCl Sodium chloride C₂H₃KO₂ Potassium acetate CHKO₂ Potassium formate

LiCI Lithium chloride

NH3

Ammonia Formulation of the International Institute of Refrigeration (IIR 2010)

Ethanol

Library LibC2H5OH

Formulation of Schroeder et al. (2014)

Methanol

Library LibCH3OH

Formulation of de Reuck and Craven (1993)

Propane

Library LibPropane

Formulation of Lemmon et al. (2009)

Siloxanes as ORC Working Fluids

Octamethylcyclotetrasiloxane C₈H₂₄O₄Si₄ Library LibD4

Decamethylcyclopentasiloxane C₁₀H₃₀O₅Si₅ Library LibD5

Tetradecamethylhexasiloxane C₁₄H₄₂O₅Si₆ Library LibMD4M

Hexamethyldisiloxane C₆H₁₈OSi₂ Library LibMM

Formulation of Colonna et al. (2006)

Dodecamethylcyclohexasiloxane C₁₂H₃₆O₆Si₆ Library LibD6

Decamethyltetrasiloxane C₁₀H₃₀O₃Si₄ Library LibMD2M

Dodecamethylpentasiloxane C₁₂H₃₆O₄Si₅ Library LibMD3M

Octamethyltrisiloxane C₈H₂₄O₂Si₃ Library LibMDM

Formulation of Colonna et al. (2008)

Nitrogen and Oxygen

Libraries LibN2 and LibO2

Formulations of Span et al. (2000) and Schmidt and Wagner (1985)

Hydrogen

Library LibH2

Formulation of Leachman et al. (2009)

Helium

Library LibHe

Formulation of Arp et al. (1998)

Hydrocarbons

Decane C₁₀H₂₂ Library LibC10H22

Isopentane C₅H₁₂ Library LibC5H12_Iso

Neopentane C₅H₁₂ Library LibC5H12_Neo

Isohexane C₆H₁₄ Library LibC6H14

Toluene C₇H₈ Library LibC7H8

Formulation of Lemmon and Span (2006)

Further Fluids

Carbon monoxide CO Library LibCO

Carbonyl sulfide COS Library LibCOS

Hydrogen sulfide H₂S Library LibH2S

Nitrous oxide N₂O Library LibN2O

Sulfur dioxide SO₂ Library LibSO2

Acetone C₃H₆O Library LibC3H6O

Formulation of Lemmon and Span (2006)

For more information please contact:

KCE-ThermoFluidProperties UG & Co. KG Prof. Dr. Hans-Joachim Kretzschmar

Wallotstr. 3

01307 Dresden, Germany

Internet: www.thermofluidprop.com

Email: info@thermofluidprop.com

Phone: +49-351-27597860

Mobile: +49-172-7914607

Fax: +49-3222-1095810

The following thermodynamic and transport properties can be calculated^a:

Thermodynamic Properties

- Vapor pressure p_s
- Saturation temperature T_s
- Density ρ
- Specific volume v
- Enthalpy h
- Internal energy u
- Entropy s
- Exergy e
- Isobaric heat capacity c_p
- Isochoric heat capacity c_v
- Isentropic exponent κ Speed of sound w
- Surface tension σ

Transport Properties

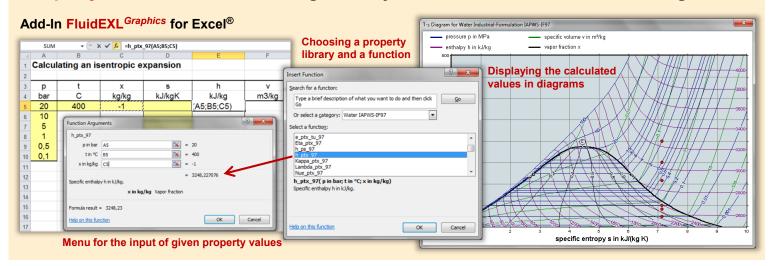
- Dynamic viscosity η
- Kinematic viscosity v
- Thermal conductivity λ
- Prandtl number Pr
- · Thermal diffusivity a

Backward Functions

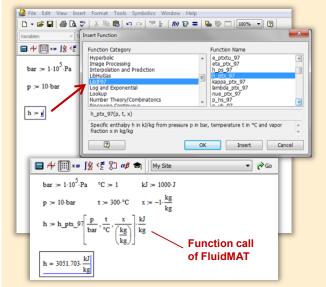
- T, v, s (p,h)
- T, v, h (p,s)
- p, T, v (h,s) • p, T (v,h)
- p, T (v,u)

Thermodynamic Derivatives

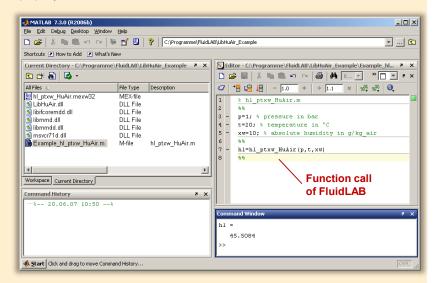
· Partial derivatives used in process modeling can be calculated.


^a Not all of these property functions are available in all property libraries.

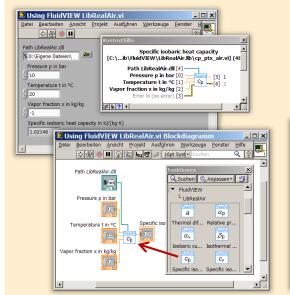
KCE-ThermoFluidProperties www.thermofluidprop.com



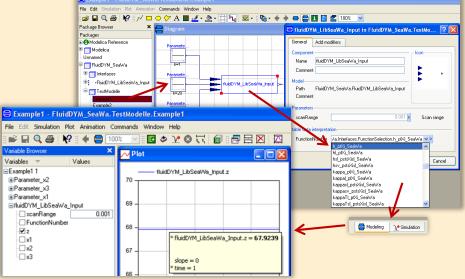
Property Software for Calculating Heat Cycles, Boilers, Turbines and Refrigerators


Add-On FluidMAT for Mathcad[®] Add-On FluidPRIME for Mathcad Prime[®]

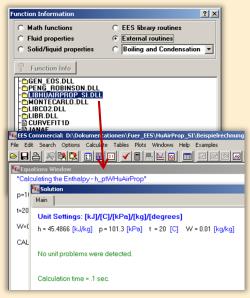
The property libraries can be used in Mathcad® and Mathcad Prime®.


Add-On FluidLAB for MATLAB® and SIMULINK®

Using the Add-In FluidLAB the property functions can be called in MATLAB® and SIMULINK®.


Add-On FluidVIEW for LabVIEW™

The property functions can be calculated in LabVIEW™.



Add-On FluidDYM for DYMOLA® (Modelica) and SimulationX®

The property functions can be called in DYMOLA® and SimulationX®.

Add-On FluidEES for Engineering Equation Solver®

App International Steam Tables for iPhone, iPad, iPod touch, Android Smartphones and Tablets

Online Property Calculator at www.thermofluidprop.com

Property Software for Pocket Calculators

For more information please contact:

KCE-ThermoFluidProperties UG & Co. KG Prof. Dr. Hans-Joachim Kretzschmar Wallotstr. 3

01307 Dresden, Germany

Internet: www.thermofluidprop.com Email: info@thermofluidprop.com

Phone: +49-351-27597860 Mobile: +49-172-7914607 Fax: +49-3222-1095810

The following thermodynamic and transport properties^a can be calculated in Excel[®], MATLAB[®], Mathcad[®], Engineering Equation Solver[®] (EES), DYMOLA[®] (Modelica), SimulationX[®] and LabVIEW™:

Thermodynamic Properties

- Vapor pressure p_s
- Saturation temperature T_s
- Density ρ
- Specific volume v
- Enthalpy h
- · Internal energy u
- Entropy s
- Exergy e
- Isobaric heat capacity c_{p}
- Isochoric heat capacity c_{ν}
- Isentropic exponent κ
- Speed of sound w
- Surface tension σ

Transport Properties

- Dynamic viscosity η
- Kinematic viscosity v
- Thermal conductivity λ
- Prandtl number Pr
- · Thermal diffusivity a

Backward Functions

- T, v, s (p,h)
- T, v, h (p,s)
- p, T, v (h,s)
- p, T (v,h)
- p, T (v,u)

Thermodynamic Derivatives

 Partial derivatives used in process modeling can be calculated.

^a Not all of these property functions are available in all property libraries.

5. References

K. M. de Reuck, R. J. B. Craven:
 Methanol, International Thermodynamic Tables Of The Fluid State – 12.
 IUPAC Thermodynamic Tables Project Centre, Imperial College, London, UK (1993)

6. Satisfied Customers

Period from 2018 to 2022

The following companies and institutions use the property libraries:

- FluidEXL^{Graphics} for Excel[®] incl. VBA
- FluidLAB for MATLAB® and Simulink
- FluidMAT for Mathcad®
- FluidPRIME for Mathcad Prime®
- FluidEES for Engineering Equation Solver® EES
- FluidDYM for Dymola[®] (Modelica) and SimulationX[®]
- FluidVIEW for LabVIEW[™]
- FluidPYT for Python
- FluidJAVA for Java
- DLLs for Windows Applications
- Shared Objects for Linux
- Shared Objects for macOS.

2022

ASTG, Graz, Austria	12/2022
Wandschneider + Gutjahr, Hamburg	
RWE Supply & Trading, Essen	11/2022
Stadtwerke Rosenheim	
CEA, Saclay, France	10/2022
RWE Supply & Trading, Essen	
SEEC Saudi Energy Efficiency Center, Riyadh, Saudi Arabia	
MAN, Copenhagen, Denmark	
Hermeler & Partner Consulting Engineers, Sassenberg	09/2022
Envi Con, Nürnberg	
Drill Cool Systems, Bakersfield CA, USA	
RWE Supply & Trading, Essen	
Maerz Ofenbau, Zürich, Switzerland	
Saale Energie, Schkopau	
ERGO, Dresden	
Mainova, Frankfurt/Main	
Bundeswehr, Koblenz	08/2022
RWE Supply & Trading, Essen	
Grenzebach Corporation, Newnan GE, USA	
AGRANA, Gmuend, Austria	07/2022
MIBRAG, Zeitz	
Hochschule Niederrhein, Krefeld	
ULT, Löbau	06/2022
LEAG, Cottbus	
VPC Group, Vetschau	

09/2021

Wärme, Hamburg ILK, Dresden Stricker IB, Küssnacht a. Rigi, Switzerland LEAG, Cottbus 05/2022 RWE Supply & Trading, Essen IGT Tomalla, Kreuztal B+T Engineering, Dübendorf, Switzerland Stricker IB, Küssnacht a. Rigi, Switzerland Vogelsang & Benning, Bochum 04/2022 Frischli, Rehburg-Loccum BPS Consulting, Sprenge 03/2022 HS Hannover, Maschinenbau & BioVT M+M Turbinentechnik, Bad Salzuflen Uni. Strathclyde, Glasgow, UK 02/2022 Delta Energy Group, Jiaozhou City, Qingdao, China Wetzel IB, Guben Wijbenga, PC Geldermalsen, The Netherlands Voith Paper, Heidenheim HS Zittau/Görlitz, Maschinenwesen 01/2022 Thermische Abfallbehandlung, Lauta Webb Institute, Glen Cove NY, USA TU Berlin, Umweltverfahrenstechnik SachsenEnergie, Dresden Doosan, Chang-won-si, Gyeongsangnam-do, South Korea KW3, LH Veenendaal, The Netherlands Université du Luxembourg, Esch-sur-Alzette Enseleit IB, Mansfeld Caliqua/Equans, Zürich, Switzerland Rudnick & Enners, Alpenrod 2021 Wenisch IB, Vetschau 12/2021 PPCHEM, Hinwil, Switzerland KW3, The Netherlands BASF Ludwigshafen Air-Consult, Jena Sjerp & Jongeneel, RB Zoetermeer, The Netherlands 11/2021 Maerz Ofenbau, Zürich, Switzerland RWE Supply & Trading, Essen Hahn IB, Dresden 10/2021 Therm, South Africa

Enseleit IB, Mansfeld SachsenEnergie, Dresden BSH Hausgeräte, Berlin

RWE Supply & Trading, Essen TH Nürnberg, Verfahrenstechnik

RWE Supply & Trading, Essen

Norsk Energi, Oslo, Norway AKM Industrieanlagen, Haltern	08/2021
Drill Cool Systems, Bakersfield CA, USA	
Siemens Energy Global, Erlangen	07/2021
Wulff & Umag, Husum	01/2021
Planungsbüro Waidhas, Chemnitz	
Burkhardt Energie Technik, Mühlhausen	
Lücke IB, Paderborn	06/2021
TU Dresden, Energieverfahrenstechnik	39,232.
Wärme, Hamburg	
AL-KO Therm, Kötz	
PCK Raffinerie, Schwedt	
Vogelsang & Benning, Bochum	05/2021
MTU, München	
VPC Group, Vetschau	
AVG, Köln	04/2021
TH Ulm, Institut für Fahrzeugtechnik	
Marty IB, Oberwil, Switzerland	
HypTec, Lebring, Austria	
Lopez IB, Getxo, Bizkaia, Spain	03/2021
GM Remediation Systems, Leoben, Austria	
Jager Kältetechnik, Osnabrück	
T&M Automation, GR Leidschendam, The Netherlands	
RWE Supply & Trading, Essen	
Stadtwerke Leipzig	
Beuth Hochschule für Technik, Berlin	
Beleth IB, Woeth	02/2021
ZTL, Thal, Austria	
ETABO Bochum	
RWE Supply & Trading, Essen	
Onyx Germany, Berlin	
TU Dresden, Kältetechnik	
GOHL-KTK, Durmersheim	
Therm Development, South Africa	
thermofin, Heinsdorfergrund	
RWE Supply & Trading, Essen	01/2021
STEAG, Essen	
ETA Energieberatung, Pfaffenhofen	
Enex Power, Kirchseeon	
2020	
	12/2020
Drill Cool, Bakersfield CA, USA	12/2020
Manders, The Netherlands	
RWE Supply & Tranding, Essen NEOWAT Lodz, Poland	
University of Duisburg-Essen, Duisburg	11/2020
Stellenbosch University, South Africa	1 1/2020
Stelletibusori Otilversity, Suutii Airica	

University De France-COMTe, France

RWE, Essen

STEAG, Herne

Isenmann Ingenierbüro

University of Stuttgart, ITLR, Stuttgart

Norsk Energi, Oslo, Norway

TGM Kanis, Nürnberg

Stadtwerke Neuburg 10/2020

Smurfit Kappa, Roermond, The Netherlands

RWE, Essen

Hochschule Zittau/Görlitz, Wirtschaftsingenieurwesen

Stadtwerke, Neuburg

ILK, Dresden

ATESTEO, Alsdorf

Hochschule Zittau/Görlitz, Maschinenwesen

TH Nürnberg, Verfahrenstechnik

Drill Cool, Bakersfield CA,USA 09/2020

RWE, Essen

2Meyers Ingenieurbüro, Nürnberg

FELUWA, Mürlenbach

Stadtwerke Neuburg

Caverion, Wien, Austria

GMVA Niederrhein, Oberhausen

INWAT Lodz, Poland

Troche Ingenieurbüro, Hayingen 08/2020

CEA Saclay, France

VPC, Vetschau 07/2020

FSK System-Kälte-Klima, Dortmund Exergie Etudes, Sarl, Switzerland

AWG Wuppertal

STEAG Energy Services, Zwingenberg

Hochschule Braunschweig 06/2020

DBI, Leipzig

GOHL-KTK, Dumersheim

TU Dresden, Energieverfahrenstechnik

BASF SE, ESI/EE, Ludwigshafen

Wärme Hamburg

Ruchti Ingenieurbüro, Uster, Switzerland

IWB, Basel, Switzerland

Midiplan, Bietingen-Bissingen 05/2020

Knieschke, Ingenieurbüro

RWE, Essen

Leser, Hamburg

AGRANA, Gmünd, Austria

EWT Wassertechnik, Celle

Hochschule Darmstadt 04/2020

MTU München CCP

HAW Hamburg 03/2020

Hanon, Novi Jicin, Czech Republic TU Dresden, Kältetechnik MAN, Copenhagen, Denmark EnerTech, Radebeul 02/2020 LEAG, Cottbus B+B Enginering Magdeburg Hochschule Offenburg WIB, Dennheritz 01/2020 Universität Duisburg-Essen, Strömungsmaschinen Kältetechnik Dresen-Bremen TH Ingolstadt Vattenfall AB, Jokkmokk, Sweden Fraunhofer UMSICHT 2019 PEU Leipzig, Rötha 12/2019 MB-Holding, Vestenbergsgreuth RWE, Essen Georg-Büchner-Hochschule, Darmstadt 11/2019 EEB ENERKO, Aldenhoven Robert Benoufa Energietechnik, Wiesloch Kehrein & Kubanek Klimatechnik, Moers 10/2019 Hanon Systems Autopal Services, Hluk, Czech Republic CEA Saclay, Gif Sur Yvette cedex, France Saudi Energy Efficiency Center SEEC, Riyadh, Saudi Arabia VPC, Vetschau 09/2019 jGanser PM + Engineering, Forchheim Endress+Hauser Flowtec AG, Reinach, Switzerland Ruchti IB, Uster, Switzerland ZWILAG Zwischenlager Würenlingen, Switzerland 08/2019 Hochschule Zittau/Görlitz, Faculty Maschinenwesen Stadtwerke Neubrandenburg Physikalisch Technische Bundesanstalt PTB, Braunschweig GMVA Oberhausen 07/2019 Endress+Hauser Flowtec AG, Reinach, Switzerland WARNICA, Waterloo, Canada MIBRAG, Zeitz 06/2019 Pöyry, Zürich, Switzerland RWTH Aachen, Institut für Strahlantriebe und Turbomaschinen Midiplan, Bietigheim-Bissingen **GKS Schweinfurt** HS Zittau/Görlitz, Wirtschaftswissenschaften und Wirtschaftsingenieurwesen **ILK Dresden** HZDR Helmholtz Zentrum Dresden-Rossendorf 05/2019 TH Köln, Technische Gebäudeausrüstung IB Knittel, Braunschweig

Norsk Energi, Oslo, Norway

STEAG, Essen Stora Enso, Eilenburg IB Lücke, Paderborn Haarslev, Sonderso, Denmark MAN Augsburg Wieland Werke, Ulm 04/2019 Fels-Werke, Elbingerode Univ. Luxembourg, Luxembourg BTU Cottbus, Power Engineering 03/2009 Eins-Energie Sachsen, Schwarzenberg TU Dresden, Kälte- und Kryotechnik ITER, St. Paul Lez Durance Cedex, France Fraunhofer UMSICHT, Oberhausen Comparex Leipzig for Spedition Thiele HEMMERSBACH Rückert NaturGas, Lauf/Pegnitz BASF, Basel, Switzerland 02/2019 Stadtwerke Leipzig Maerz Ofenbau Zürich, Switzerland Hanon Systems Germany, Kerpen Thermofin, Heinsdorfergrund 01/2019 **BSH** Berlin 2018 Jaguar Energy, Guatemala 12/2018 WEBASTO, Gilching Smurfit Kappa, Oosterhout, Netherlands Univ. BW München RAIV, Liberec for VALEO, Prague, Czech Republic 11/2018 VPC Group Vetschau SEITZ, Wetzikon, Switzerland MVV, Mannheim 10/2018 **IB Troche** KANIS Turbinen, Nürnberg TH Ingolstadt, Institut für neue Energiesysteme IB Kristl & Seibt, Graz, Austria 09/2018 INEOS, Köln IB Lücke, Paderborn 08/2018 Südzucker, Ochsenfurt K&K Turbinenservice, Bielefeld 07/2018 OTH Regensburg, Elektrotechnik Comparex Leipzig for LEAG, Berlin 06/2018 Münstermann, Telgte 05/2018 TH Nürnberg, Verfahrenstechnik Universität Madrid, Madrid, Spanien HS Zittau/Görlitz, Wirtschaftsingenieurwesen HS Niederrhein, Krefeld Wilhelm-Büchner HS, Pfungstadt 03/2018

GRS, Köln

WIB, Dennheritz

RONAL AG, Härklingen, Schweiz 02/2018

Ingenieurbüro Leipert, Riegelsberg

AIXPROCESS, Aachen

KRONES, Neutraubling

Doosan Lentjes, Ratingen 01/2018