

Property Library for Acetone

FluidEXLGraphics with LibC3H6O for Excel®

Prof. Dr. Hans-Joachim Kretzschmar Prof. Dr. Matthias Kunick Dr. Sebastian Herrmann M.Eng Martin Suender Ines Jaehne Tobias Goepfert

Software for the Calculation of the Properties of Acetone Including DLL and Add-In for Excel[®] FluidEXL*Graphics* LibC3H6O

Contents

- 0. Package Contents
 - 0.1 Zip-files for 32-bit Office®
 - 0.2 Zip-files for 64-bit Office®
- 1. Property Functions
- 2. Application of FluidEXL in Excel®
 - 2.1 Installing FluidEXL
 - 2.2 Registering FluidEXL as Add-In in Excel®
 - 2.3 Licensing the LibC3H6O Property Library
 - 2.4 Example calculation
 - 2.5 The FluidEXL Help System
 - 2.6 Removing FluidEXL
- 3. Program Documentation
- 4. Property Libraries for Calculating Heat Cycles, Boilers, Turbines, and Refrigerators
- 5. References
- 6. Satisfied Customers
- KCE-ThermoFluidProperties Prof. Dr. Hans-Joachim Kretzschmar Haager Weg 6, 92224 Amberg, Germany Phone: +49-9621-1762047 Mobile: +49-172-7914607 Fax: +49-3222-1095810 Email: info@thermofluidprop.com Internet: www.thermofluidprop.com

0 Package Contents

0.1 Zip files for 64-bit Office[®]

The following zip file has been delivered for your computer running a 64-bit Office[®] version:

CD_FluidEXL_Graphics_Eng_LibC3H6O_x64.zip including the following folders an files:

\FLUFT\ \Formulation97\ FluidEXL_Graphics_LibC3H6O_Docu_Eng.pdf FluidEXL_Graphics_Eng.xla LC.dll LibC3H6O.dll LibC3H6O.chm.

0.2 Zip files for 32-bit Office®

The following zip file has been delivered for your computer running a 32-bit Office[®] version:

CD_FluidEXL_Graphics_Eng_LibC3H6O.zip

including the following folders and files:

\FLUFT\ \Formulation97\ FluidEXL_Graphics_LibC3H6O_Docu_Eng.pdf FluidEXL_Graphics_Eng.xla LC.dll LibC3H6O.dll LibC3H6O.chm.

1. Property Functions

Functional Dependence	Function Name	Call from Fortran Program	Property or Function	Unit of the Result
a = f(p, t, x)	a_ptx_C3H6O	A_PTX_C3H6O(P,T,X)	Thermal diffusivity	m²/s
$c_p = f(p, t, x)$	cp_ptx_C3H6O	CP_PTX_C3H6O(P,T,X)	Specific isobaric heat capacity	kJ/(kg K)
$c_v = f(p, t, x)$	cv_ptx_C3H6O	CV_PTX_C3H6O(P,T,X)	Specific isochoric heat capacity	kJ/(kg K)
$\eta = f(p,t,x)$	eta_ptx_C3H6O	ETA_PTX_C3H6O(P,T,X)	Dynamic viscosity	Pa.s
h = f(p, t, x)	h_ptx_C3H6O	H_PTX_C3H6O(P,T,X)	Specific enthalpy	kJ/kg
$\kappa = f(p, t, x)$	ka_ptx_C3H6O	KA_PTX_C3H6O(P,T,X)	Isentropic exponent	-
$\lambda = f(p, t, x)$	lam_ptx_C3H6O	LAM_PTX_C3H6O(P,T,X)	Thermal conductivity	W/(m . K)
v = f(p, t, x)	ny_ptx_C3H6O	NY_PTX_C3H6O(P,T,X)	Kinematic viscosity	m²/s
Pr = f(p, t, x)	pr_ptx_C3H6O	PR_PTX_C3H6O(P,T,X)	Prandtl-number	-
$p_{\rm s} = f(t)$	ps_t_C3H6O	PS_T_C3H6O(T)	Vapor pressure from temperature	bar
$\rho = f(\rho, t, x)$	rho_ptx_C3H6O	RHO_PTX_C3H6O(P,T,X)	Density	kg/m ³
s = f(p, t, x)	s_ptx_C3H6O	S_PTX_C3H6O(P,T,X)	Specific entropy	kJ/(kg K)
$\sigma = f(t)$	sigma_t_C3H6O	SIGMA_T_C3H6O(T)	Surface tension from temperature	N/m
t = f(p,h)	t_ph_C3H6O	T_PH_C3H6O(P,H)	Backward function: Temperature from pressure and enthalpy	°C
t = f(p, s)	t_ps_C3H6O	T_PS_C3H6O(P,S)	Backward function: Temperature from pressure and entropy	°C
$t_{\rm s} = f(p)$	ts_p_C3H6O	TS_P_C3H6O(P)	Saturation temperature from pressure	°C
u = f(p, t, x)	u_ptx_C3H6O	U_PTX_C3H6O(P,T,X)	Specific internal energy	kJ/kg
v = f(p, t, x)	v_ptx_C3H6O	V_PTX_C3H6O(P,T,X)	Specific volume	m³/kg
w = f(p, t, x)	w_ptx_C3H6O	W_PTX_C3H6O(P,T,X)	Isentropic speed of sound	m/s

Functional Dependence	Function Name	Call from Fortran Program	Property or Function	Unit of the Result
x = f(p,h)	x_ph_C3H6O	X_PH_C3H6O(P,H)	Backward function: Vapor fraction from pressure and enthalpy	kg/kg
x = f(p, s)	x_ps_C3H6O	X_PS_C3H6O(P,S)	Backward function: Vapor fraction from pressure and entropy	kg/kg

Units:

t in °C *p* in bar *x* in (kg saturated steam)/(kg wet steam)

Range of validity

for transport properties (*a*, η , λ , *v*, *Pr*):

Temperature range:	from	- 94.65 °C to 276.85 °C
Pressure range:	from	2.3265 x 10 ⁻⁵ bar to 3200 bar

for other properties:

Temperature range:	from - 94.65 °C to 276.85 °C	
Pressure range:	from 2.3265 x 10 ⁻⁵ bar to 7000 bar	

Reference state

h = 0 kJ/kg and s = 0 kJ/(kg K) at p = 1,01325 bar on the saturated liquid line (x = 0)

Details on the vapor fraction x

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction x are to be considered:

Single-phase region

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

Wet-steam region

If the state point to be calculated is located in the wet steam region, a value for x between 0 and 1 (x = 0 for saturated liquid, x = 1 for saturated steam) must be entered. In this case, the backward functions result in the appropriate value between 0 and 1 for x. When calculating wet steam either the given value for t and p = -1000 or the given value for p and t = -1000 and in both cases the value for x between 0 and 1 must be entered.

If p and t and x are entered as given values, the program considers p and t to be appropriate to represent the vapor pressure curve. If this is not the case the calculation for the property of the chosen function results in -1.

Wet steam region: Temperature ranges from t_{min} = - 94.65 °C to t_c = 234.95 °C

Pressure ranges from $p_{min} = 2.3265 \times 10^{-5}$ bar to $p_c = 46.9215$ bar

Note:

If the input values are located outside the range of validity, the calculated function will always result in – 1000. Please find more exact details on every function and its corresponding range of validity in the enclosed program documentation in Chapter 3.

2. Application of FluidEXLGraphics in Excel®

The FluidEXL^{Graphics} Add-In has been developed to calculate thermodynamic properties in Excel[®] more conveniently. Within Excel[®], it enables the direct call of functions relating to Water and Steam from the LibC3H6O property program library.

2.1 Installing FluidEXL^{Graphics}

Complete the following steps for initial installation of FluidEXL^{Graphics}. Before you begin, it is best to uninstall any older version of FluidEXL^{Graphics}.

The installation routine for 32-bit and 64-bit versions of Excel is similar. The following instructions are valid for both versions.

After you have downloaded and extracted the zip-file:

CD_FluidEXL_Graphics_LibC3H6O_x64_Eng.zip (for 64 bit version)

or

CD_FluidEXL_Graphics_LibC3H6O_Eng.zip" (for 32 bit version).

you will see the folder

\CD_FluidEXL_Graphics_LibC3H6O_Eng\ (for 32 bit version)

in your Windows Explorer, Total Commander etc.

Now, open this folder by double-clicking on it.

Within this folder you will see the following folders and files:

\FLUFT\ \Formulation97\ FluidEXL_Graphics_Eng.xla FluidEXL_Graphics_LibC3H6O_Docu_Eng LC.dll LibC3H6O.dll LibC3H6O.chm Reg_.reg

Now, please copy the following folders and files

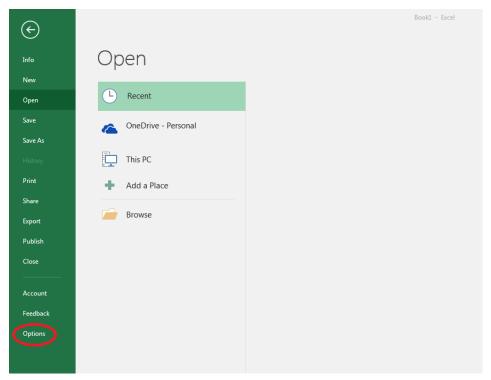
\FLUFT\ \Formulation97\ FluidEXL_Graphics_Eng.xla LibC3H6O.dll LibC3H6O.chm LC.dll

into the folder

C:\Users\[your name]\AppData\Roaming\Microsoft\AddIns\,

where [your name] is your name in the Windows system.

If this folder is not found, follow the next section anyway.


2.2 Registering FluidEXL^{Graphics} as Add-In in Excel[®]

After installation in Windows[®], FluidEXL^{*Graphics*} must be registered in Excel[®] as an Add-In. To do this, start Excel[®] and carry out the following steps:

Η		.⇒ - <u>A</u>											
File	⊢	me In	sert Pag	ge Layout	Formulas	Data	Review	View	♀ Tell me	what you wa	ant to do		
P	🔏 Cut		Calibri	· ·	11 · A	≡ =	= %	岸 Wra	ap Text	Gene	ral	-	
Paste		y ▼ nat Painter								er 👻 😨 🛪	% *	€.0 .00 .00 →.0	Conditional For Formatting * T
	Clipboar	d	5	Font		G.	Ali	gnment		G.	Number	G.	
A1		-	x 🗸	f_X									
	А	В	С	D	E	F	G	н	I	J	к	L	м
1													
2													
3													
4 5													
6													
7													
8													
9													
10													
11													
12													
13													
14													
15													
16													
17													

- Click the "File" button in the upper left hand corner of Excel[®] (see Fig. 2.1)

Figure 2.1: Registering FluidEXL^{Graphics} as Add-In in Excel[®] 2016

- Click on the "Options" button in the menu which appears (see Fig. 2.2)

Figure 2.2: Registering FluidEXL^{Graphics} as Add-In in Excel[®] 2016

9 XX Excel Options General 🙀 View and manage Microsoft Office Add-ins. Formulas Proofing Add-ins Save Name 🔺 Location Туре Analysis ToolPak C:\...nalysis\ANALYS32.XLL Excel Add-in Language Analysis ToolPak - VBA C:\...lysis\ATPVBAEN.XLAM Excel Add-in Ease of Access Date (XML) C:\...\Smart Tag\MOFL.DLL Action Euro Currency Tools C:\...rary\EUROTOOL.XLAM Excel Add-in Advanced Financial Symbol (XML) C:\...\Smart Tag\MOFL.DLL Action Inquire C:\...16\DCF\NativeShim.dll COM Add-in Customize Ribbon Microsoft Actions Pane 3 XML Expansion Pack ss Toolbar Microsoft Power Map for Excel C:\...XCELPLUGINSHELL.DLL COM Add-in Microsoft Power Pivot for Excel C:\...ivotExcelClientAddIn.dll COM Add-in Add-ins Microsoft Power View for Excel C:\...ReportingExcelClient.dll COM Add-in Solver Add-in C:\...SOLVER\SOLVER.XLAM Excel Add-in Team Foundation Add-in "C:\...s\TFSOfficeAdd-in.dll" COM Add-in Visual Studio Tools for Office Design-Time Adaptor for Excel C:\...6\VSTOExcelAdaptor.dll COM Add-in Document Related Add-ins No Document Related Add-ins **Disabled Application Add-ins** Add-in: Analysis ToolPak ublisher: Microsoft Corporation npatibility: No compatibility information available Loc C:\Program Files (x86)\Microsoft Office\root\Office16\Library\Analysis\ANALYS32.XLL Descrip Provides data ols for statistical and engineering analysis Excel Add-ins Manaq Go. OK Cancel

- Click on "Add-Ins" in the next menu (Fig. 2.3)

Figure 2.3: Dialog window "Excel Options"

- Select "Excel Add-ins" next to "Manage:" in the lower area of the menu
- Then click the "Go..." button
- Click "Browse" in the following window (Fig. 2.4)

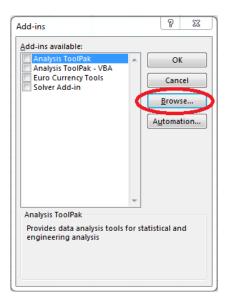


Figure 2.4: Dialog window "Add-ins"

- Excel opens the AddIns folder. This is usually
 C:\Users\[your name]\AppData\Roaming\Microsoft\AddIns\.
- If the FluidEXL files have already been copied to this directory in section 2.1, please skip the following indented section. If not, follow the indented instructions to successful paste the needed files for the FluidEXL Add-In:

In the upper part of the "Browse" window the correct Add-In path is displayed (see Figure 2.5). Please note that not the entire path is displayed.

XII Browse		×
AppData > Roaming > Microsoft > AddIns	∨ ບັ ,> s	earch AddIns
Organise 👻 New folder		::: • 🔟 😮
Quick access Desktop Downloads Documents Pictures Microsoft Excel OneDrive This PC	Date modified 10/01/2022 16:55 10/01/2022 16:55 10/01/2022 15:45	Type Size File folder File folder Microsoft Excel A
≥ 2D Objecte V <		:
File name:		ıs (*.xlam;*.xla;*.xll)

Figure 2.5: "Browse"-Window

Please copy this path and paste it into your file manager. Now, please copy the following directories and files:

\FLUFT\ \Formulation97\ LC.dll FluidEXL_Graphics_Eng.xla LibC3H6O.dll LibC3H6O.chm from the delivered CD-folder into this folder.

- Click "FluidEXL_Graphics_Eng.xla" in this folder (see Fig. 2.5) and click "OK."
- Now, "FluidEXL Graphics Eng" will be shown in the list of Add-ins (see Fig. 2.6).
 (If a checkmark is in the box next to the name "FluidEXL Graphics Eng", this Add-In will automatically be loaded whenever Excel starts. This will continue to occur unless the checkmark is removed from the box by clicking on it.)
- In order to register the Add-In click the "OK" button in the "Add-ins" window (see Fig. 2.6).

Add-ins available:		\sim
Analysis ToolPak	- (ОК
Analysis ToolPak - VBA		\sim
Euro Currency Tools	_	Cancel
FluidEXL Graphics Eng Solver Add-in		
Solver Add-In		Browse
		Automation
	-	
FluidEXL Graphics Eng		
Libraries for the Calculation	n of Th	ermophysical
Properties		
for Fluids of the Power Tec	hnolog	1V

Figure 2.6: Dialog window "Add-Ins"

In order to use FluidEXL^{Graphics} in the following example, click on the menu item "Add-Ins" shown in Fig. 2.7.

H	5-0-	<u>A</u> =								В	ook1 - Excel
File	Home	Inser	t Page Layout	Formulas	Data Re	view View	Add-ins	Ω Τ¢	ell me what you w	ant to c	lo
Paste	X Cut E Copy → V Format Pa			11 · A A · <u>A</u> ·			€ Wrap Text ∃ Merge & Center		General ☞ • % • 5	▼ 00.00.00	Conditional Format as Formatting ▼ Table ▼
(Clipboard	- G	Font	E.		Alignmen	t	Б.	Number	E.	

Figure 2.7: Menu item "Add-Ins"

In the upper menu region of Excel[®], the FluidEXL^{Graphics} menu bar will appear as marked with the red circle in Fig. 2.8.

🗄 5ਾਟਾ	<u>A</u> =							Book1 - Excel
File Home	Insert	Page Layout	Formulas	Data	Review	View	Add-ins	${f Q}$ Tell me what you want to do
Calculate Diagrams	Number	Format ?•						

Figure 2.8: FluidEXLGraphics menu bar

The Installation of FluidEXL*Graphics* in Excel[®] is now complete.

An example calculation of "LibC3H6O" DLL library property functions can be found in chapter 2.4.

2.3 Licensing the LibC3H6O Property LibC3H6Orary

The licensing procedure has to be carried out when Excel[®] starts up and a FluidEXL*Graphics* prompt message appears. In this case, you will see the "License Information" window (see figure below).

Figure 2.12: "License Information" window

Here you will have to type in the license key. You can find contact information on the "Content" page of this User's Guide or by clicking the yellow question mark in the "License Information" window. Then the following window will appear:

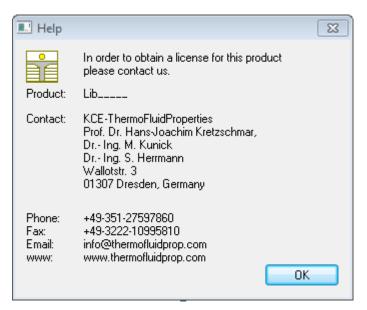


Figure 2.13: "Help" window

If you do not enter a valid license it is still possible to start Excel[®] by clicking "Cancel" twice. In this case, the LibC3H6O property library will display the result "-11111111" for every calculation.

The "License Information" window will appear every time you start Excel[®] unless you uninstall FluidEXL^{Graphics} according to the description in section 2.6 of this User's Guide.

Should you not wish to license the LibC3H6O property library, you have to delete the files LibC3H6O.dll

LibC3H6O.chm

in the installation folder of FluidEXLGraphics (the standard being)

C:\Program Files\FluidEXL_Graphics_Eng

using an appropriate program such as Explorer® or Norton Commander.

Note:

The product name "LibC3H6O____ in Figure 2.12 and 2.13 stands for the LibC3H6Orary you are installing. In this case it is the LibC3H6O library.

2.4 Example calculation

Now we will calculate, step by step, the specific enthalpy h as a function of pressure p, temperature t, and vapor fraction x, using FluidEXLGraphics.

- Start Excel®
- Enter a value for *p* in bar in a cell
 (Range of validity: *p*t = 2.3265 x 10⁻⁵ bar to 7000 bar)
 ⇒ e. g.: Enter the value 10 into cell A2
- Enter a value for *t* in °C in a cell (Range of validity: t = - 94.65 °C to 276.85 °C)
 ⇒ e. g.: Enter the value 200 into cell B2
- Enter a value for x in kg saturated steam/kg wet steam in a cell
 Since the wet steam region is calculated automatically by the subprograms, the following fixed details on the vapor fraction x are to be considered when the value for x is entered:

Single-phase region

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

Wet-steam region

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

If the state point to be calculated is located in the wet steam region, a value for x between 0 and 1 (x = 0 for saturated liquid, x = 1 for saturated steam) must be entered. When calculating wet steam either the given value for t and p = -1000 or the given value for p and t = -1000 and in both cases the value for x between 0 and 1 must be entered. If p and t and x are entered as given values, the program considers p and t to be appropriate to represent the vapor pressure curve.

(Vapor-pressure curve of ethanol:	$t_{min} = -95.65 \text{ °C}$ to $t_{c} = 234.95 \text{ °C}$
	$p_{min} = 2.3265 \times 10^{-5}$ bar to $p_{c} = 46.9215$ bar

\Rightarrow e.g.: Enter –1 into the C2 cell.

- Click the cell in which the enthalpy *h* in kJ/kg is to be displayed.

 \Rightarrow e.g.: Click the D2 cell.

 Click "Calculate" in the menu bar of FluidEXLGraphics. Now the "Insert Function" window appears (see Figure 2.14).

Cal	<mark>culate</mark> Diagrams ▼ Num	ber Format	t ? *								
	Custom Toolba	rs									
	D2 •	x)	✓ <u>f</u> x =								
	A B		С	D	E	F					
1	p in bar tin °C	x i	n kg/kg	h in kJ/kg							
2	10	200	-1	=							
3 4	3 Insert Function										
5	Search for a function:										
6 7	Type a brief descrip Go	tion of wha	at you want t	o do and then cli	ck <u>G</u> o						
8	Or select a <u>c</u> ategory	: Acetone	LibC3H6O		-						
9	Select a function:	Logical Informati	ion		^						
10 11	a_ptx_C3H6O cp_ptx_C3H6O	User Defi Engineeri									
11	cv_ptx_C3H60 eta_ptx_C3H60	Cube Compatib	-		=	=					
13	h_ptx_C3H6O		PWS-IF97 LibAmWa								
14	ka_ptx_C3H6O lam_ptx_C3H6O	Propane	LibPropane			-					
15		Acetone Cyclopen	LibC3H6O Itane LibC5H	10							
16	specific enthalpy h in	h_ptx_C3H6O(p in Cyclopentane LibC5H10 specific enthalpy h in Decane LibC10H22									
17											
18											
19											
20	Help on this function			ОК	Cance						
21											

Figure 2.14: Choice of library and function name

- Search and click the "Acetone LibC3H6O" library under "Or select a category:" in the upper part of the window.
- Search and click the h_ptx_C3H6O function under "Select a function:" right below.

Here it is possible to get more information on the range of validity, measuring units, error responses, etc. by clicking the "Help on this function" button.

- Click "OK".

The window shown in the next figure will now appear.

Function Argun	nents		? ×
h_ptx_C3H6O			
p in bar		=	
t in ℃		=	
X in kg/kg		=	
		= -1000	
specific enthalp			
	p in bar Pressure.		
Formula result =	= -1000		
			Cancel
Help on this fun		ОК	Cancel

Figure 2.15: Input menu for the function

- The cursor is now situated on the line next to " p in bar ". You can now enter the value for p either by clicking the cell with the value for p by entering the name of the cell with the value for p, or by entering the value for p directly.

 \Rightarrow e. g.: Click on the cell A2

- Situate the cursor next to "t in °C" and enter the value for *t* by clicking the cell with the value for *t*, by entering the name of the cell with the value for *t*, or by entering the value for *t* directly.
- \Rightarrow e. g.: Type B2 into the window next to "p"
- Situate the cursor next to "x in kg/kg" and enter the value for x by clicking the cell with the value for x, by entering the name of the cell with the value for x, or by entering the value for x directly.

 \Rightarrow e. g.: Click on the cell C2

The window should now look like the following figure:

Calculate Diagrams * Number Format ? *									
	Custo	om Toolbars							
	DATE	- (0	$X \checkmark f_x =$	h_ptx_C3H6O	(A2;B2;C2)				
	А	В	С	D	E	F	G		
1	p in bar	tin °C	x in kg/kg	h in kJ/kg					
2	10	200	-1	42;B2;C2)					
3 4	Function A	rguments				?	×		
5	h_ptx_C3	H6O							
6	p in t	ar A2		E =	10				
7	tin	°C B2		(10)	200				
8 9	X in kg	X in kg/kg C2 = -1							
10				= 3	712.4491477				
11	specific ent	halpy h in kJ/kg.							
12		X in kg/kg Vapor fraction							
13									
14 15									
	Formula re	sult = 712.4491	4//						
17	16 Image: Help on this function 17 OK								
18									

Figure 2.16: Input menu showing the result

- Click the "OK" button.

The result for h in kJ/kg appears in the cell selected above.

 \Rightarrow The result for *h* in our sample calculation here is: 712.4491477 kJ/kg.

The calculation of h = f(p, t, x) has thus been carried out. You can now arbitrarily change the values for p, t or x in the appropriate cells. This shows that the Excel[®] data flow and the DLL calculations are working together successfully.

Note:

If the calculation results in -1000, this indicates that the values entered are located outside the range of validity shown in Chapter 1. More detailed information on each function and its range of validity is available in Chapter 3.

For further property functions calculable in FluidEXLGraphics, see the function table in Chapter 1.

Number Formats

When using FluidEXL^{Graphics} you have the option of choosing special number formats in advance.

Changes can be made as follows:

- Click the cell or select and click on the cells you wish to format. (In empty cells the new format will be applied once a value has been entered.)
- Click "Number Format" in the FluidEXL^{Graphics} menu bar.

- Select the desired number format in the dialog box which appears:

"STD – Standard":	Insignificant zeros behind the decimal point are not shown.
"FIX – Fixed Number of Digits":	All set decimal places are shown, including insignificant zeros.
"SCI – Scientific Format":	Numbers are always shown in the exponential form with the set number of decimal places.

- Set the "Number of decimal places" by entering the number into the appropriate window.
- Confirm this by clicking the "OK" button.

As an example, the table below shows the three formats for the number 1.230 adjusted for three decimal places:

STD	1.23
FIX	1.230
SCI	1.230E+00

This formatting can also be applied to cells which have already been calculated.

2.5 The FluidEXL^{Graphics} Help System

As mentioned earlier, FluidEXL^{Graphics} also provides detailed help functions. Information on individual property functions may be accessed via the following steps:

- Click "Calculate" in the FluidEXL Graphics menu bar.
- Click on the "LibC3H6O" library under "Or select a <u>category</u>:" in the "Insert Function" window which will appear.
- Click the "Help on this function" button in the lower left-hand edge of the "Insert Function" window.

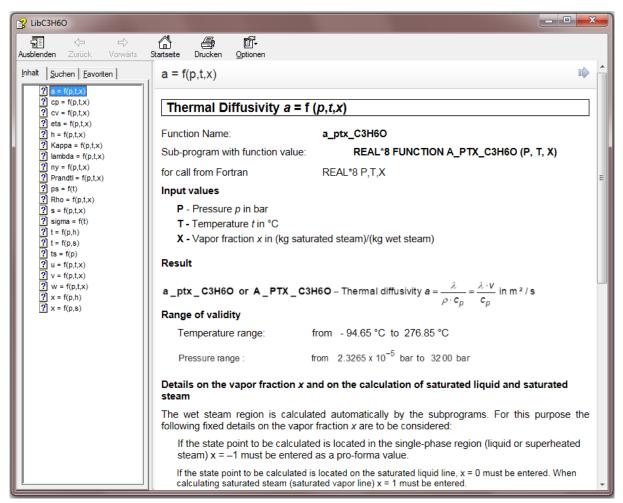


Figure 2.17: Help Window

If the LibC3H6O.chm function help cannot be found, you will be redirected to a Microsoft[®] help website by your standard browser. In this case, the LibC3H6O.chm file has to be copied into the folder of FluidEXL^{Graphics}, in the standard case

```
C:\Program Files\FluidEXL_Graphics_Eng
```

to use the help system.

2.6 Removing FluidEXLGraphics

2.6.1 Removing LibC3H6O Library

Should you wish to remove only the LibC3H6O library, delete the files

LibC3H6O.dll LibC3H6O.chm

in the directory selected for the installation of FluidEXLGraphics, in the standard case,

C:\Program Files\FluidEXL_Graphics_Eng

by using an appropriate program such as Explorer[®] or Norton Commander.

2.6.2 Unregistering and uninstalling FluidEXL^{Graphics} as Add-In in versions of Excel[®] from 2007 onwards (for earlier versions see 2.6.3)

In order to unregister the FluidEXL^{Graphics} Add-In in versions of Excel[®] from 2007 onwards start Excel[®] and carry out the following commands:

- Click the "File" button in the upper left corner of Excel®
- Click on the "Options" button in the menu which appears

B	ف م	<i>с</i> ≥ - <u>A</u>	Ŧ									Bo	ook1 - Excel
File	н	ome In	sert Pag	e Layout	Formulas	Data	Review	View	Q Tell me	what you wa	ant to do		
Paste	Cut Cop Forr	oy ▼ mat Painter			11 · A .							▼ .00 →.0	Conditional Form Formatting ▼ Tal
	Clipboar	rd r		Font		r _a	AI	ignment		Gi .	Number	G.	-
A1		• : [X V	f_{x}									
	А	В	С	D	E	F	G	н	I	J	к	L	М
1 2													
2													
з													
4													
5													
6													
7													
8 9													
10													
11 12													
13													
14													
15													
16													
17													

Figure 2.18: Unregistering FluidEXLGraphics as Add-In in Excel® 2016

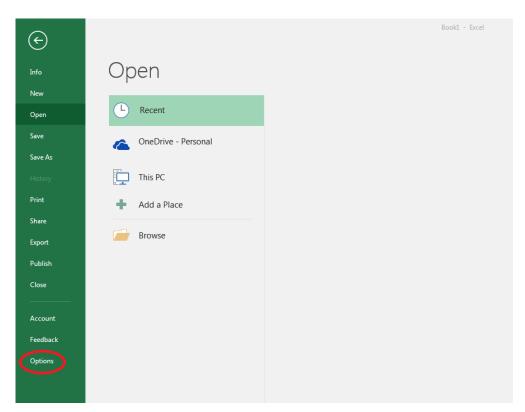


Figure 2.19 Unregistering FluidEXL^{Graphics} as Add-In in Excel[®] 2016

- Click on "Add-Ins" in the next menu (Figure 2.20)

eneral	View and manage Microsoft Office Add-ins.		
ormulas			
roofing	Add-ins		
ave	Name 🔶	Location	Type
	Analysis ToolPak	C:\nalysis\ANALYS32.XLL	Excel Add-in
anguage	Analysis ToolPak - VBA	C:\lysis\ATPVBAEN.XLAM	Excel Add-in
ase of Access	Date (XML)	C:\\Smart Tag\MOFL.DLL	Action
	Euro Currency Tools	C:\rary\EUROTOOL.XLAM	Excel Add-in
dvanced	Financial Symbol (XML)	C:\\Smart Tag\MOFL.DLL	Action
ustomize Ribbon	Inquire	C:\16\DCF\NativeShim.dll	COM Add-in
disconnize habbon	Microsoft Actions Pane 3		XML Expansion Pack
nick Ascess Toolbar	Microsoft Power Map for Excel	C:\XCELPLUGINSHELL.DLL	COM Add-in
dd-ins	Microsoft Power Pivot for Excel	C:\ivotExcelClientAddIn.dll	COM Add-in
dd-ins	Microsoft Power View for Excel	C:\ReportingExcelClient.dll	COM Add-in
sust Constr	Solver Add-in	C:\SOLVER\SOLVER.XLAM	Excel Add-in
— \ II	Team Foundation Add-in	"C:\s\TFSOfficeAdd-in.dll"	COM Add-in
	Visual Studio Tools for Office Design-Time Adaptor for Excel	C:\6\VSTOExcelAdaptor.dll	COM Add-in
	Document Related Add-ins		
N	No Document Related Add-ins		
	Disabled Application Add-ins		
	Add-in: Analysis ToolPak		
	Publisher: Microsoft Corporation		
	Compatibility: No compatibility information available		
	Location: C:\Program Files (x86)\Microsoft Office\roo	ot\Office16\Libran\Analysis\A	
	Eocation: C: (Program Files (xoo) (Microsoft Office(roo	ot/Officero/Library/Analysis/An	VAL 1552.ALL
	Description: Provides data analysis cools for statistical an	nd engineering analysis	
	M <u>a</u> nage: Excel Add-ins <u>G</u> o		

Figure 2.20: Dialog window "Add-Ins"

- If it is not shown in the list automatically, chose and click "Excel Add-ins" next to "Manage:" in the lower area of the menu

- Afterwards click the "Go..." button
- Remove the checkmark in front of "FluidEXL Graphics Eng"

in the window which now appears. Click the "OK" button to confirm your entry.

Add-ins	8 ×
Add-ins available: Analysis ToolPak Analysis ToolPak - VEA Euro Currency Tools FuideXL Graphics Eng FluidexL_Graphics Solver Add-in	OK Cancel <u>B</u> rowse A <u>u</u> tomation
FluidEXL Graphics Eng Libraries for the Calculation of Th Properties for Fluids of the Power Technolog	

Figure 2.21: Dialog window "Add-Ins"

In order to remove FluidEXL^{Graphics} from Windows and the hard drive, click "Start" in the Windows task bar, select "Settings" and click "Control Panel."

Now, double click on "Add or Remove Programs."

In the list box of the "Add or Remove Programs" window that appears, select

"FluidEXL Graphics Eng"

by clicking on it and then clicking the "Add/Remove..." button.

Click "Automatic" in the following dialog box and then the "Next >" button.

Click "Finish" in the "Perform Uninstall" window.

Answer the question of whether all shared components should be removed with "Yes to All." Finally, close the "Add or Remove Programs" and "Control Panel" windows.

Now FluidEXLGraphics has been completely removed from your computer.

2.6.3 Unregistering and uninstalling FluidEXL^{Graphics} as Add-In in Excel[®], versions 2003 or earlier

To remove FluidEXLGraphics completely, proceed as follows: First the registration of

FluidEXL_Graphics_Eng.xla

has to be cancelled in Excel[®].

In order to do this, click "Tools" in the upper menu bar of Excel[®] and here "Add-Ins...". Untick the box on the left-hand side of

"FluidEXL Graphics Eng"

in the window that appears and click the "OK" button. The additional menu bar of FluidEXL^{Graphics} disappears from the upper part of the Excel[®] window. Afterwards, we

recommend closing Excel[®].

If the FluidEXL^{Graphics} menu bar does not disappear, take the following steps:

Click "View" in the upper menu bar of Excel[®], then "Toolbars" and then "Customize..." in the list box which appears.

"FluidEXL Graphics Eng"

is situated at the bottom of the "Toolbars" entries, which must be selected by clicking on it. Delete the entry by clicking "Delete". You will be asked whether you really want to delete the toolbar – click "OK".

Within the next step delete the files

LibC3H6O.dll LibC3H6O.chm

in the directory selected for the installation of FluidEXL^{Graphics}, in the standard case,

C:\Program Files\FluidEXL_Graphics_Eng

using an appropriate program such as Explorer[®] or Norton Commander.

In order to remove FluidEXL^{Graphics} from Windows and the hard drive, click "Start" in the Windows task bar, select "Settings" and click "Control Panel". Now double-click on "Add or Remove Programs". In the list box of the "Add/Remove Programs" window that appears select

"FluidEXL Graphics Eng"

by clicking on it and click the "Add/Remove..." button. In the following dialog box, click "Automatic" and then "Next >". Click "Finish" in the "Perform Uninstall" window. Answer the question whether all shared components shall be removed with "Yes to All". Finally, close the "Add/Remove Programs" and "Control Panel" windows.

Now FluidEXL^{Graphics} has been removed.

3. Program Documentation

Thermal Diffusivity *a* = f (*p*,*t*,*x*)

Function Name:

a_ptx_C3H6O

Sub-program with function value: for call from Fortran

REAL*8 FUNCTION A_PTX_C3H6O (P, T, X) REAL*8 P,T,X

Input values

- **P** Pressure *p* in bar
- **T** Temperature *t* in °C
- X Vapor fraction x in (kg saturated steam)/(kg wet steam)

Result

a_ptx_C3H6O or A_PTX_C3H6O – Thermal diffusivity $a = \frac{\lambda}{\rho \cdot c_p} = \frac{\lambda \cdot v}{c_p}$ in m²/s

Range of validity

Temperature range:	from	- 94.65 °C to 276.85 °C
Pressure range :	from	2.3265×10^{-5} bar to 3200 bar

Details on the vapor fraction x and on the calculation of saturated liquid and saturated steam

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction *x* are to be considered:

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

If the state point to be calculated is located on the saturated liquid line, x = 0 must be entered. When calculating saturated steam (saturated vapor line) x = 1 must be entered. The calculation for *x*-values between 0 and 1 is not possible.

When calculating saturated liquid or saturated steam, it is adequate to enter either the given value for t = -1000, or the given value for p = -1000, plus the value for x (x = 0 or x = 1). If p = -1000, and t = -1000, plus the value for x (x = 0 or x = 1). If p = -1000, and t = -1000, plus the value for x (x = 0 or x = 1). If p = -1000, and t = -1000, plus the value for x (x = 0 or x = 1). If p = -1000, and t = -1000, plus the value for x (x = 0 or x = 1). If p = -1000, and t = -1000, plus the value for x (x = 0 or x = 1). If p = -1000, and t = -1000, plus the value for x (x = 0 or x = 1). If p = -1000, and t = -1000, plus the value for x (x = 0 or x = 1). If p = -1000, plus the value for x (x = 0 or x = 1). If p = -1000, plus the value for x (x = 0 or x = 1). If p = -1000, plus the value for x (x = 0 or x = 1). If p = -1000, plus the value for x (x = 0 or x = 1). If p = -1000, plus the value for x (x = 0 or x = 1). If p = -1000, plus the value for x (x = 0 or x = 1). If p = -1000, plus the value for x (x = 0 or x = 1). If p = -1000, plus the value for x (x = 0 or x = 1). If p = -1000, plus the value for x (x = 0 or x = 1). If p = -1000, plus the value for x (x = 0 or x = 1). If p = -1000, plus the value for x (x = 0 or x = 1). If p = -1000, plus the value for x (x = 0 or x = 1). If p = -1000, plus the value for x (x = 0 or x = 1). If p = -1000, plus the value for x (x = 0 or x = 1). If p = -1000, plus the value for x (x = 0 or x = 1). If p = -1000, plus the value for x (x = 0 or x = 1). If p = -1000, plus the value for x = 0 or x = -1.

Wet steam region: Temperature ranges from $t_{min} = -94.65$ °C to $t_c = 234.95$ °C Pressure ranges from $p_{min} = 2.3265 \times 10^{-5}$ bar to $p_c = 46.9215$ bar

Results for wrong input values

Result A_PTX_C3H6O = -1000 or a_ptx_C3H6O = -1000 for input values:

Single phase region:

Liquid or overheated steam (x = -1):

- at $p < 2.3265 \times 10^{-5}$ bar or p > 3200 bar

- at *t* < - 94.65 °C or *t* > 276.85 °C

Wet steam region $(0 \le x \le 1)$:

- at 0 < x < 1, i.e. calculation in the wet steam region not possible!

- at p = -1000 bar and $t < t_{min}$ or $t > t_{c}$

- at t = -1000 bar and $p < p_{min}$ or $p > p_{c}$

- at $p < p_{\min}$ or $p > p_{C}$ or at $t < t_{\min}$ or $t > t_{C}$

References: [1], [3], [4], [5], [7]

Specific Isobaric Heat Capacity $c_p = f(p,t,x)$

Function Name:

cp_ptx_C3H6O

Sub-program with function value: for call from Fortran

REAL*8 FUNCTION CP_PTX_C3H6O (P, T, X) REAL*8 P,T,X

Input values

- P Pressure p in bar
- T Temperature t in °C
- X Vapor fraction x in (kg saturated steam)/(kg wet steam)

Result

cp_ptx_C3H6O or CP_PTX_C3H6O - Specific isobaric heat capacity cp in kJ/ (kg K)

Range of validity

Temperature range:	from	- 94.65 °C to 276.85 °C
Pressure range :	from	2.3265×10^{-5} bar to 7000 bar

Details on the vapor fraction *x* and on the calculation of saturated liquid and saturated steam

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction *x* are to be considered:

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

If the state point to be calculated is located on the saturated liquid line, x = 0 must be entered. When calculating saturated steam (saturated vapor line) x = 1 must be entered. The calculation for *x*-values between 0 and 1 is not possible.

When calculating saturated liquid or saturated steam, it is adequate to enter either the given value for tand p = -1000, or the given value for p and t = -1000, plus the value for x (x = 0 or x = 1). If p and tand x are entered as given values, the program will consider p and t to be appropriate to represent the vapor pressure curve.

Wet steam region: Temperature ranges from $t_{min} = -94.65$ °C to $t_c = 234.95$ °C Pressure ranges from $p_{min} = 2.3265 \times 10^{-5}$ bar to $p_c = 46.9215$ bar

Results for wrong input values

Result CP_PTX_C3H6O = -1000 or cp_ptx_C3H6O = -1000 for input values:

Single phase region:

Liquid or overheated steam (x = -1):

- at $p < 2.3265 \times 10^{-5}$ bar or p > 7000 bar
- at t < 94.65 °C or t > 276.85 °C

Wet steam region $(0 \le x \le 1)$:

- at 0 < x < 1, i.e. calculation in the wet steam region not possible!
- at p = -1000 bar and $t < t_{min}$ or $t > t_{c}$
- at t = -1000 bar and $p < p_{min}$ or $p > p_{c}$
- at $p < p_{\min}$ or $p > p_{c}$ or at $t < t_{\min}$ or $t > t_{c}$

Specific Isochoric Heat Capacity $c_v = f(p, t, x)$

Function Name:

cv_ptx_C3H6O

Sub-program with function value: for call from Fortran

REAL*8 FUNCTION CV_PTX_C3H6O (P, T, X) REAL*8 P,T,X

Input values

- **P** Pressure *p* in bar
- T Temperature t in °C
- X Vapor fraction x in (kg saturated steam)/(kg wet steam)

Result

cv_ptx_C3H6O or CV_PTX_C3H6O - Specific isochoric heat capacity cv in kJ/ (kg K)

Range of validity

Temperature range:	from	- 94.65 °C to 2	276.85 °	С
Pressure range :	from	2.3265 x 10 ⁻⁵	bar to	7000 bar

Details on the vapor fraction x and on the calculation of saturated liquid and saturated steam

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction *x* are to be considered:

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

If the state point to be calculated is located on the saturated liquid line, x = 0 must be entered. When calculating saturated steam (saturated vapor line) x = 1 must be entered. The calculation for *x*-values between 0 and 1 is not possible.

When calculating saturated liquid or saturated steam, it is adequate to enter either the given value for tand p = -1000, or the given value for p and t = -1000, plus the value for x (x = 0 or x = 1). If p and tand x are entered as given values, the program will consider p and t to be appropriate to represent the vapor pressure curve.

Wet steam region: Temperature ranges from $t_{min} = -94.65$ °C to $t_c = 234.95$ °C Pressure ranges from $p_{min} = 2.3265 \times 10^{-5}$ bar to $p_c = 46.9215$ bar

Results for wrong input values

Result CP_PTX_C3H6O = -1000 or cp_ptx_C3H6O = -1000 for input values:

Single phase region:

Liquid or overheated steam (x = -1):

- at $p < 2.3265 \times 10^{-5}$ bar or p > 7000 bar
- at t < 94.65 °C or t > 276.85 °C

Wet steam region $(0 \le x \le 1)$:

- at 0 < x < 1, i.e. calculation in the wet steam region not possible!

- at p = -1000 bar and $t < t_{min}$ or $t > t_{c}$

- at t = -1000 bar and $p < p_{min}$ or $p > p_{c}$
- at $p < p_{min}$ or $p > p_{c}$ or at $t < t_{min}$ or $t > t_{c}$

Dynamic Viscosity $\eta = f(p, t, x)$

Function Name:

eta_ptx_C3H6O

Sub-program with function value: for call from Fortran

REAL*8 FUNCTION ETA_PTX_C3H6O (P, T, X) REAL*8 P,T,X

Input values

- **P** Pressure *p* in bar
- T Temperature t in °C
- **X** Vapor fraction *x* in (kg saturated steam)/(kg wet steam)

Result eta_ptx_C3H6O or ETA_PTX_C3H6O - Dynamic viscosity *η* in Pa s

Range of validity

Temperature range:	from	- 94.65 °C to 2	276.85 °	С
Pressure range :	from	2.3265 x 10 ⁻⁵	bar to	3200 bar

Details on the vapor fraction x and on the calculation of saturated liquid and saturated steam

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction *x* are to be considered:

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

If the state point to be calculated is located on the saturated liquid line, x = 0 must be entered. When calculating saturated steam (saturated vapor line) x = 1 must be entered. The calculation for *x*-values between 0 and 1 is not possible.

When calculating saturated liquid or saturated steam, it is adequate to enter either the given value for t and p = -1000, or the given value for p and t = -1000, plus the value for x (x = 0 or x = 1). If p and t and x are entered as given values, the program will consider p and t to be appropriate to represent the vapor pressure curve.

Wet steam region: Temperature ranges from $t_{min} = -94.65$ °C to $t_{c} = 234.95$ °C Pressure ranges from $p_{min} = 2.3265 \times 10^{-5}$ bar to $p_{c} = 46.9215$ bar

Results for wrong input values

Result ETA_PTX_C3H6O = -1000 or eta_ptx_C3H6O = -1000 for input values:

Single phase region:

Liquid or overheated steam (x = -1):

- at $p < 2.3265 \times 10^{-5}$ bar or p > 3200 bar
- at t < 94.65 °C or t > 276.85 °C

Wet steam region $(0 \le x \le 1)$:

- at 0 < x < 1, i.e. calculation in the wet steam region not possible!

- at p = -1000 bar and $t < t_{min}$ or $t > t_{c}$

- at t = -1000 bar and $p < p_{min}$ or $p > p_{c}$
- at $p < p_{\min}$ or $p > p_c$ or at $t < t_{\min}$ or $t > t_c$

Specific Enthalpy *h* = f(*p*,*t*,*x*)

Function Name:

h_ptx_C3H6O

Sub-program with function value: for call from Fortran

REAL*8 FUNCTION H_PTX_C3H6O (P, T, X) REAL*8 P,T,X

Input values

- **P** Pressure *p* in bar
- **T** Temperature *t* in °C
- X Vapor fraction x in (kg saturated steam)/(kg wet steam)

Result h_ptx_C3H6O or H_PTX_C3H6O – specific enthalpy h in kJ/kg

Range of validity

Temperature range:	from	- 94.65 °C to 276.85 °C
Pressure range :	from	2.3265×10^{-5} bar to 7000 bar

Details on the vapor fraction x and on the calculation of saturated liquid and saturated steam

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction *x* are to be considered:

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

If the state point to be calculated is located on the saturated liquid line, x = 0 must be entered. When calculating saturated steam (saturated vapor line) x = 1 must be entered. The calculation for *x*-values between 0 and 1 is not possible.

When calculating saturated liquid or saturated steam, it is adequate to enter either the given value for tand p = -1000, or the given value for p and t = -1000, plus the value for x (x = 0 or x = 1). If p and tand x are entered as given values, the program will consider p and t to be appropriate to represent the vapor pressure curve.

Wet steam region: Temperature ranges from $t_{min} = -94.65 \text{ °C}$ to $t_{c} = 234.95 \text{ °C}$ Pressure ranges from $p_{min} = 2.3265 \times 10^{-5}$ bar to $p_{c} = 46.9215$ bar

Results for wrong input values

Result H_PTX_C3H6O = -1000 or h_ptx_C3H6O = -1000 for input values:

Single phase region:

Liquid or overheated steam (x = -1):

- at $p < 2.3265 \times 10^{-5}$ bar or p > 7000 bar

- at t < - 94.65 °C or t > 276.85 °C

Wet steam region ($0 \le x \le 1$):

- at x < 0 or x > 1

- at p = -1000 bar and $t < t_{min}$ or $t > t_{c}$

- at
$$t = -1000$$
 bar and $p < p_{min}$ or $p > p_{c}$

- at $p < p_{min}$ or $p > p_{c}$ or at $t < t_{min}$ or $t > t_{c}$

Isentropic Exponent $\kappa = f(p, t, x)$

Function Name:

ka_ptx_C3H6O

Sub-program with function value: for call from Fortran

REAL*8 FUNCTION KA_PTX_C3H6O (P, T, X) REAL*8 P,T,X

Input values

- **P** Pressure *p* in bar
- **T** Temperature *t* in °C
- X Vapor fraction x in (kg saturated steam)/(kg wet steam)

Result ka_ptx_C3H6O or KA_PTX_C3H6O – Isentropic exponent K

Range of validity

Temperature range:from - 94.65 °C to 276.85 °CPressure range :from 2.3265×10^{-5} bar to 7000 bar

Details on the vapor fraction x and on the calculation of saturated liquid and saturated steam

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction *x* are to be considered:

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

If the state point to be calculated is located on the saturated liquid line, x = 0 must be entered. When calculating saturated steam (saturated vapor line) x = 1 must be entered. The calculation for *x*-values between 0 and 1 is not possible.

When calculating saturated liquid or saturated steam, it is adequate to enter either the given value for tand p = -1000, or the given value for p and t = -1000, plus the value for x (x = 0 or x = 1). If p and tand x are entered as given values, the program will consider p and t to be appropriate to represent the vapor pressure curve.

Wet steam region: Temperature ranges from $t_{min} = -94.65$ °C to $t_{c} = 234.95$ °C

Pressure ranges from $p_{\rm min} = 2.3265 \times 10^{-5}$ bar to $p_{\rm C} = 46.9215$ bar

Results for wrong input values

Result KA_PTX_C3H6O = -1000 or ka_ptx_C3H6O = -1000 for input values:

Single phase region:

Liquid or overheated steam (x = -1):

- at $p < 2.3265 \times 10^{-5}$ bar or p > 7000 bar

- at t < - 94.65 °C or t > 276.85 °C

Wet steam region $(0 \le x \le 1)$:

- at 0 < x < 1, i.e. calculation in the wet steam region not possible!

- at p = -1000 bar and $t < t_{min}$ or $t > t_{c}$

- at t = -1000 bar and $p < p_{min}$ or $p > p_{c}$
- at $p < p_{\min}$ or $p > p_c$ or at $t < t_{\min}$ or $t > t_c$

Thermal Conductivity $\lambda = f(p, t, x)$

Function Name:

lam_ptx_C3H6O

Sub-program with function value: for call from Fortran

REAL*8 FUNCTION LAM_PTX_C3H6O (P, T, X) REAL*8 P,T,X

Input values

- **P** Pressure *p* in bar
- **T** Temperature *t* in °C
- X Vapor fraction x in (kg saturated steam)/(kg wet steam)

Result

Iam_ptx_C3H6O or LAM_PTX_C3H6O – Thermal conductivity λ in W/ (m K)

Range of validity

Temperature range:from - 94.65 °C to 276.85 °CPressure range :from 2.3265×10^{-5} bar to 3200 bar

Details on the vapor fraction x and on the calculation of saturated liquid and saturated steam

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction *x* are to be considered:

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

If the state point to be calculated is located on the saturated liquid line, x = 0 must be entered. When calculating saturated steam (saturated vapor line) x = 1 must be entered. The calculation for *x*-values between 0 and 1 is not possible.

When calculating saturated liquid or saturated steam, it is adequate to enter either the given value for tand p = -1000, or the given value for p and t = -1000, plus the value for x (x = 0 or x = 1). If p and tand x are entered as given values, the program will consider p and t to be appropriate to represent the vapor pressure curve.

Wet steam region: Temperature ranges from $t_{min} = -94.65$ °C to $t_{c} = 234.95$ °C Pressure ranges from $p_{min} = 2.3265 \times 10^{-5}$ bar to $p_{c} = 46.9215$ bar

Results for wrong input values

Result LAM_PTX_C3H6O = -1000 or lam_ptx_C3H6O = -1000 for input values:

Single phase region:

Liquid or overheated steam (x = -1):

- at $p < 2.3265 \times 10^{-5}$ bar or p > 3200 bar

- at t < - 94.65 °C or t > 276.85 °C

Wet steam region $(0 \le x \le 1)$:

- at 0 < x < 1, i.e. calculation in the wet steam region not possible!
- at p = -1000 bar and $t < t_{min}$ or $t > t_{c}$
- at t = -1000 bar and $p < p_{min}$ or $p > p_{c}$
- at $p < p_{min}$ or $p > p_c$ or at $t < t_{min}$ or $t > t_c$

References: [1], [3], [4], [5], [7]

Kinematic Viscosity v = f(p, t, x)

Function Name:

ny_ptx_C3H6O

Sub-program with function value: for call from Fortran

REAL*8 FUNCTION NY_PTX_C3H6O (P, T, X) REAL*8 P,T,X

Input values

- **P** Pressure *p* in bar
- T Temperature t in °C
- X Vapor fraction x in (kg saturated steam)/(kg wet steam)

Result

ny_ptx_C3H6O or NY_PTX_C3H6O – kinematic viscosity v in m²/s

Range of validity

Temperature range:from - 94.65 °C to 276.85 °CPressure range :from 2.3265×10^{-5} bar to 3200 bar

Details on the vapor fraction x and on the calculation of saturated liquid and saturated steam

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction *x* are to be considered:

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

If the state point to be calculated is located on the saturated liquid line, x = 0 must be entered. When calculating saturated steam (saturated vapor line) x = 1 must be entered. The calculation for *x*-values between 0 and 1 is not possible.

When calculating saturated liquid or saturated steam, it is adequate to enter either the given value for tand p = -1000, or the given value for p and t = -1000, plus the value for x (x = 0 or x = 1). If p and tand x are entered as given values, the program will consider p and t to be appropriate to represent the vapor pressure curve.

Wet steam region: Temperature ranges from $t_{min} = -94.65$ °C to $t_c = 234.95$ °C Pressure ranges from $p_{min} = 2.3265 \times 10^{-5}$ bar to $p_c = 46.9215$ bar

Results for wrong input values

Result NY_PTX_C3H6O = -1000 or ny_ptx_C3H6O = -1000 for input values:

Single phase region:

Liquid or overheated steam (x = -1):

- at $p < 2.3265 \times 10^{-5}$ bar or p > 3200 bar

- at t < - 94.65 °C or t > 276.85 °C

Wet steam region $(0 \le x \le 1)$:

- at 0 < x < 1, i.e. calculation in the wet steam region not possible!
- at p = -1000 bar and $t < t_{min}$ or $t > t_{c}$
- at t = -1000 bar and $p < p_{min}$ or $p > p_{c}$
- at $p < p_{min}$ or $p > p_c$ or at $t < t_{min}$ or $t > t_c$

References: [1], [3], [4], [6], [7]

Prandtl Number Pr = f(p, t, x)

Function Name:

pr_ptx_C3H6O

Sub-program with function value: for call from Fortran

REAL*8 FUNCTION PR_PTX_C3H6O (P, T, X) REAL*8 P,T,X

Input values

- **P** Pressure *p* in bar
- **T** Temperature *t* in °C
- X Vapor fraction x in (kg saturated steam)/(kg wet steam)

Result

Pr_ptx_C3H6Oor PR_PTX_C3H6O – Prandtl number $Pr = \frac{\eta \cdot c_p}{\lambda}$

Range of validity

Temperature range:	from	- 94.65 °C to 276.85 °C
Pressure range :	from	2.3265×10^{-5} bar to 3200 bar

Details on the vapor fraction x and on the calculation of saturated liquid and saturated steam

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction *x* are to be considered:

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

If the state point to be calculated is located on the saturated liquid line, x = 0 must be entered. When calculating saturated steam (saturated vapor line) x = 1 must be entered. The calculation for *x*-values between 0 and 1 is not possible.

When calculating saturated liquid or saturated steam, it is adequate to enter either the given value for tand p = -1000, or the given value for p and t = -1000, plus the value for x (x = 0 or x = 1). If p and tand x are entered as given values, the program will consider p and t to be appropriate to represent the vapor pressure curve.

Wet steam region: Temperature ranges from $t_{min} = -94.65$ °C to $t_{c} = 234.95$ °C Pressure ranges from $p_{min} = 2.3265 \times 10^{-5}$ bar to $p_{c} = 46.9215$ bar

Results for wrong input values

Result PR_PTX_C3H6O = -1000 or pr_ptx_C3H6O = -1000 for input values:

Single phase region:

Liquid or overheated steam (x = -1):

- at $p < 2.3265 \times 10^{-5}$ bar or p > 3200 bar

- at t < - 94.65 °C or t > 276.85 °C

Wet steam region $(0 \le x \le 1)$:

- at 0 < x < 1, i.e. calculation in the wet steam region not possible!
- at p = -1000 bar and $t < t_{min}$ or $t > t_{c}$
- at t = -1000 bar and $p < p_{min}$ or $p > p_{c}$
- at $p < p_{\min}$ or $p > p_c$ or at $t < t_{\min}$ or $t > t_c$

References: [1], [3], [4], [5], [6], [7]

Vapor Pressure $p_s = f(t)$

Function Name:

ps_t_C3H6O

Sub-program with function value: for call from Fortran

REAL*8 FUNCTION PS_T_C3H6O (T) REAL*8 T

Input values

T - Temperature t in °C

Result

ps_t_C3H6O or PS_T_C3H6O - Vapor pressure ps in bar

Range of validity

Temperature range: from $t_{min} = -94.65^{\circ}$ C to $t_{c} = 234.95^{\circ}$ C

Results for wrong input values

Result PS_T_C3H6O = -1000 or ps_t_C3H6O = -1000 for input values:

Wet steam region $(0 \le x \le 1)$:

- at $t < t_{min}$ or $t > t_{c}$

Density $\rho = f(p, t, x)$

Function Name:

rho_ptx_C3H6O

Sub-program with function value: for call from Fortran

REAL*8 FUNCTION RHO_PTX_C3H6O (P, T, X) REAL*8 P,T,X

Input values

- **P** Pressure *p* in bar
- **T** Temperature *t* in °C
- X Vapor fraction x in (kg saturated steam)/(kg wet steam)

Result rho_ptx_C3H6O or RHO_PTX_C3H6O - Density ρ in kg/m³

Range of validity

Temperature range:	from	- 94.65 °C to 2	276.85 °	С
Pressure range :	from	2.3265 x 10 ⁻⁵	bar to	7000 bar

Details on the vapor fraction x and on the calculation of saturated liquid and saturated steam

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction *x* are to be considered:

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

If the state point to be calculated is located on the saturated liquid line, x = 0 must be entered. When calculating saturated steam (saturated vapor line) x = 1 must be entered. The calculation for *x*-values between 0 and 1 is not possible.

When calculating saturated liquid or saturated steam, it is adequate to enter either the given value for tand p = -1000, or the given value for p and t = -1000, plus the value for x (x = 0 or x = 1). If p and tand x are entered as given values, the program will consider p and t to be appropriate to represent the vapor pressure curve.

Wet steam region: Temperature ranges from $t_{min} = -94.65$ °C to $t_{c} = 234.95$ °C Pressure ranges from $p_{min} = 2.3265 \times 10^{-5}$ bar to $p_{c} = 46.9215$ bar

Results for wrong input values

Result RHO_PTX_C3H6O = -1000 or rho_ptx_C3H6O = -1000 for input values:

Single phase region:

Liquid or overheated steam (x = -1):

- at $p < 2.3265 \times 10^{-5}$ bar or p > 7000 bar
- at t < 94.65 °C or t > 276.85 °C

Wet steam region ($0 \le x \le 1$):

- at x < 0 or x > 1
- at p = -1000 bar and $t < t_{min}$ or $t > t_{c}$
- at t = -1000 bar and $p < p_{min}$ or $p > p_{c}$
- at $p < p_{\min}$ or $p > p_{c}$ or at $t < t_{\min}$ or $t > t_{c}$

Specific Entropy *s* = f(*p*,*t*,*x*)

Function Name:

s_ptx_C3H6O

Sub-program with function value: for call from Fortran

REAL*8 FUNCTION S_PTX_C3H6O (P, T, X) REAL*8 P,T,X

Input values

- **P** Pressure *p* in bar
- **T** Temperature *t* in °C
- X Vapor fraction x in (kg saturated steam)/(kg wet steam)

Result s_ptx_C3H6O or S_PTX_C3H6O – specific entropy s in kJ/(kg K)

Range of validity

Temperature range:	from	- 94.65 °C to 276.85 °C	
Pressure range :	from	2.3265×10^{-5} bar to 7000 ba	ır

Details on the vapor fraction x and on the calculation of saturated liquid and saturated steam

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction *x* are to be considered:

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

If the state point to be calculated is located on the saturated liquid line, x = 0 must be entered. When calculating saturated steam (saturated vapor line) x = 1 must be entered. The calculation for *x*-values between 0 and 1 is not possible.

When calculating saturated liquid or saturated steam, it is adequate to enter either the given value for tand p = -1000, or the given value for p and t = -1000, plus the value for x (x = 0 or x = 1). If p and tand x are entered as given values, the program will consider p and t to be appropriate to represent the vapor pressure curve.

Wet steam region: Temperature ranges from $t_{min} = -94.65$ °C to $t_c = 234.95$ °C Pressure ranges from $p_{min} = 2.3265 \times 10^{-5}$ bar to $p_c = 46.9215$ bar

Results for wrong input values

Result S_PTX_C3H6O = -1000 or s_ptx_C3H6O = -1000 for input values:

Single phase region:

Liquid or overheated steam (x = -1):

- at $p < 2.3265 \times 10^{-5}$ bar or p > 7000 bar
- at t < 94.65 °C or t > 276.85 °C

Wet steam region $(0 \le x \le 1)$:

- at x < 0 or x > 1 - at p = -1000 bar and $t < t_{min}$ or $t > t_{c}$
- at t = -1000 bar and $p < p_{min}$ or $p > p_{c}$
- at $p < p_{\min}$ or $p > p_c$ or at $t < t_{\min}$ or $t > t_c$

Surface Tension $\sigma = f(t)$

Function Name:

sigma_t_C3H6O

Sub-program with function value: for call from Fortran

REAL*8 FUNCTION SIGMA_T_C3H6O (T) REAL*8 T

Input values

T - Temperature *t* in °C

Result

Sigma_t_C3H6O or SIGMA_T_C3H6O – Surface tension σ in N/m

Range of validity

Temperature range: from $t_{min} = -94.65^{\circ}$ C to $t_{c} = 234.95^{\circ}$ C

Results for wrong input values

Result SIGMA_T_C3H6O = -1000 or sigma_t_C3H6O = -1000 for input values:

Wet steam region $(0 \le x \le 1)$:

- at $t < t_{min}$ or $t > t_{c}$

Backward Function: Temperature t = f(p,h)

Function Name:

t_ph_C3H6O

Sub-program with function value: for call from Fortran

REAL*8 FUNCTION T_PH_C3H6O (P, H) REAL*8 P,H

Input values

P - Pressure *p* in bar

H - Specific enthalpy h in kJ/kg

Result t_ph_C3H6O or T_PH_C3H6O – Temperature t in °C

Range of validity

Temperature range:	from	- 94.65 °C to 2	276.85 °	С
Pressure range :	from	2.3265 x 10 ⁻⁵	bar to	7000 bar

Details on the vapor fraction *x* and on the calculation of saturated liquid and saturated steam

The wet steam region is calculated automatically. This means that from the given values of p and h the function will determine whether the state point to be calculated is located within the single-phase region (liquid or steam) or the wet steam region. Afterwards the calculation of t in the appropriate region will be carried out.

Wet steam region: Pressure ranges from $p_{min} = 2.3265 \times 10^{-5}$ bar to $p_{c} = 46.9215$ bar

Results for wrong input values

Result **T_PH_C3H6O = -1000 or t_ph_C3H6O = -1000** for input values:

Single phase region:

Liquid or overheated steam (x = -1): - at $p < 2.3265 \times 10^{-5}$ bar or p > 7000 bar - at t < - 94.65 °C or t > 276.85 °C

Wet steam region ($0 \le x \le 1$):

- -atx < 0 or x > 1
- at p = -1000 bar and $t < t_{min}$ or $t > t_{c}$
- at t = -1000 bar and $p < p_{min}$ or $p > p_{c}$
- at $p < p_{min}$ or $p > p_c$ or at $t < t_{min}$ or $t > t_c$

Backward Function: Temperature t = f(p, s)

Function Name:

t_ps_C3H6O

Sub-program with function value: for call from Fortran

REAL*8 FUNCTION T_PS_C3H6O (P, S) REAL*8 P,S

Input values

P - Pressure p in bar

s – Specific entropy s in kJ/ (kg K)

Result t_ps_C3H6O or T_PS_C3H6O – Temperature t in °C

Range of validity

Temperature range:	from	- 94.65 °C to 276.85 °C
Pressure range :	from	2.3265×10^{-5} bar to 7000 bar

Details on the vapor fraction *x* and on the calculation of saturated liquid and saturated steam

The wet steam region is calculated automatically. This means that from the given values of p and h the function will determine whether the state point to be calculated is located within the single-phase region (liquid or steam) or the wet steam region. Afterwards the calculation of t in the appropriate region will be carried out.

Wet steam region : P	Pressure ranges from	$p_{\rm min} = 2.3265 \times 10^{-5}$	bar to $p_{\rm c} =$	46.9215 bar
----------------------	----------------------	---------------------------------------	----------------------	-------------

Results for wrong input values

Result T_PS_C3H6O = -1000 or t_ps_C3H6O = -1000 for input values:

Single phase region:

Liquid or overheated steam (x = -1): - at $p < 2.3265 \times 10^{-5}$ bar or p > 7000 bar

- att < - 94.65 °C or t > 276.85 °C

Wet steam region ($0 \le x \le 1$):

- at x < 0 or x > 1
- at p = -1000 bar and $t < t_{min}$ or $t > t_{c}$
- at t = -1000 bar and $p < p_{min}$ or $p > p_{C}$
- at $p < p_{\min}$ or $p > p_c$ or at $t < t_{\min}$ or $t > t_c$

Saturation Temperature $t_s = f(p)$

Function Name:

ts_p_C3H6O

Sub-program with function value: for call from Fortran

REAL*8 FUNCTION TS_P_C3H6O (P) REAL*8 P

Input values

P - Pressure *p* in bar

Result

ts_p_C3H6O or TS_P_C3H6O - Saturation temperature ts in °C

Range of validity

Pressure range: from $p_{min} = 2.3265 \times 10^{-5}$ bar to $p_{c} = 46.9215$ bar

Results for wrong input values

Result **TS_P_C3H6O = -1000 or ts_p_C3H6O = -1000** for input values:

Wet steam region ($0 \le x \le 1$):

- at $p < p_{min}$ or $p > p_{c}$

Specific Internal Energy u = f(p, t, x)

Function Name:

u_ptx_C3H6O

Sub-program with function value: for call from Fortran

REAL*8 FUNCTION U_PTX_C3H6O (P, T, X) REAL*8 P,T,X

Input values

- **P** Pressure *p* in bar
- **T** Temperature *t* in °C
- **X** Vapor fraction *x* in (kg saturated steam)/(kg wet steam)

Result u_ptx_C3H6O or U_PTX_C3H6O – specific internal energy u in kJ/kg

Range of validity

Temperature range:	from	- 94.65 °C to 276.85 °C	
Pressure range :	from	2.3265×10^{-5} bar to 7000 bar	ar

Details on the vapor fraction x and on the calculation of saturated liquid and saturated steam

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction *x* are to be considered:

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

If the state point to be calculated is located on the saturated liquid line, x = 0 must be entered. When calculating saturated steam (saturated vapor line) x = 1 must be entered. The calculation for *x*-values between 0 and 1 is not possible.

When calculating saturated liquid or saturated steam, it is adequate to enter either the given value for tand p = -1000, or the given value for p and t = -1000, plus the value for x (x = 0 or x = 1). If p and tand x are entered as given values, the program will consider p and t to be appropriate to represent the vapor pressure curve.

Wet steam region: Temperature ranges from $t_{min} = -94.65 \text{ °C}$ to $t_{c} = 234.95 \text{ °C}$ Pressure ranges from $p_{min} = 2.3265 \times 10^{-5}$ bar to $p_{c} = 46.9215$ bar

Results for wrong input values

Result U_PTX_C3H6O = -1000 or u_ptx_C3H6O = -1000 for input values:

Single phase region:

Liquid or overheated steam (x = -1):

- at $p < 2.3265 \times 10^{-5}$ bar or p > 7000 bar

- at t < - 94.65 °C or t > 276.85 °C

Wet steam region ($0 \le x \le 1$):

- at x < 0 or x > 1
 - at p = -1000 bar and $t < t_{min}$ or $t > t_{c}$
- at t = -1000 bar and $p < p_{min}$ or $p > p_{c}$
- at $p < p_{\min}$ or $p > p_c$ or at $t < t_{\min}$ or $t > t_c$

Specific Volume v = f(p, t, x)

Function Name:

v_ptx_C3H6O

Sub-program with function value: for call from Fortran

REAL*8 FUNCTION V_PTX_C3H6O (P, T, X) REAL*8 P,T,X

Input values

- **P** Pressure *p* in bar
- **T** Temperature *t* in °C
- **X** Vapor fraction *x* in (kg saturated steam)/(kg wet steam)

Result v_ptx_C3H6O or V_PTX_C3H6O – specific volume v in m³/kg

Range of validity

Temperature range:	from	- 94.65 °C to 2	76.85 °	С
Pressure range :	from	2.3265 x 10 ⁻⁵	bar to	7000 bar

Details on the vapor fraction x and on the calculation of saturated liquid and saturated steam

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction *x* are to be considered:

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

If the state point to be calculated is located on the saturated liquid line, x = 0 must be entered. When calculating saturated steam (saturated vapor line) x = 1 must be entered. The calculation for *x*-values between 0 and 1 is not possible.

When calculating saturated liquid or saturated steam, it is adequate to enter either the given value for tand p = -1000, or the given value for p and t = -1000, plus the value for x (x = 0 or x = 1). If p and tand x are entered as given values, the program will consider p and t to be appropriate to represent the vapor pressure curve.

Wet steam region: Temperature ranges from $t_{min} = -94.65$ °C to $t_{c} = 234.95$ °C Pressure ranges from $p_{min} = 2.3265 \times 10^{-5}$ bar to $p_{c} = 46.9215$ bar

Results for wrong input values

Result V_PTX_C3H6O = -1000 or v_ptx_C3H6O = -1000 for input values:

Single phase region:

Liquid or overheated steam (x = -1):

- at $p < 2.3265 \times 10^{-5}$ bar or p > 7000 bar

- at t < - 94.65 °C or t > 276.85 °C

Wet steam region ($0 \le x \le 1$):

- at x < 0 or x > 1
 - at p = -1000 bar and $t < t_{min}$ or $t > t_{c}$
- at t = -1000 bar and $p < p_{min}$ or $p > p_{C}$
- at $p < p_{\min}$ or $p > p_c$ or at $t < t_{\min}$ or $t > t_c$

Isentropic Speed of Sound w = f(p, t, x)

Function Name:

w_ptx_C3H6O

Sub-program with function value: for call from Fortran

REAL*8 FUNCTION W_PTX_C3H6O (P, T, X) REAL*8 P,T,X

Input values

- **P** Pressure *p* in bar
- **T** Temperature *t* in °C
- **X** Vapor fraction *x* in (kg saturated steam)/(kg wet steam)

Result w_ptx_C3H6O or W_PTX_C3H6O – isentropic speed of sound w in m/s

Range of validity

Temperature range:	from	- 94.65 °C to 276.85 °C	
Pressure range :	from	2.3265×10^{-5} bar to 7000 bar	ar

Details on the vapor fraction x and on the calculation of saturated liquid and saturated steam

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction *x* are to be considered:

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

If the state point to be calculated is located on the saturated liquid line, x = 0 must be entered. When calculating saturated steam (saturated vapor line) x = 1 must be entered. The calculation for *x*-values between 0 and 1 is not possible.

When calculating saturated liquid or saturated steam, it is adequate to enter either the given value for tand p = -1000, or the given value for p and t = -1000, plus the value for x (x = 0 or x = 1). If p and tand x are entered as given values, the program will consider p and t to be appropriate to represent the vapor pressure curve.

Wet steam region: Temperature ranges from $t_{min} = -94.65 \text{ °C}$ to $t_{c} = 234.95 \text{ °C}$ Pressure ranges from $p_{min} = 2.3265 \times 10^{-5}$ bar to $p_{c} = 46.9215$ bar

Results for wrong input values

Result W_PTX_C3H6O = -1000 or w_ptx_C3H6O = -1000 for input values:

Single phase region:

Liquid or overheated steam (x = -1):

- at $p < 2.3265 \times 10^{-5}$ bar or p > 7000 bar

- at t < - 94.65 °C or t > 276.85 °C

Wet steam region $(0 \le x \le 1)$:

- at 0 < x < 1, i.e. calculation in the wet steam region not possible!
- at p = -1000 bar and $t < t_{min}$ or $t > t_{c}$
- at t = -1000 bar and $p < p_{min}$ or $p > p_{C}$
- at $p < p_{\min}$ or $p > p_c$ or at $t < t_{\min}$ or $t > t_c$

Backward Function: Vapor Fraction x = f(p,h)

Function Name:

x_ph_C3H6O

Sub-program with function value: for call from Fortran

REAL*8 FUNCTION X_PH_C3H6O (P, H) REAL*8 P,H

Input values

P - Pressure p in bar **H** – Specific enthalpy h in kJ/kg

Result

x_ph_C3H6O or X_PH_C3H6O - Vapor fraction x in kg/kg

Details on the vapor fraction x and on the calculation of saturated liquid and saturated steam

The wet steam region is calculated automatically. This means that from the given values of p and h the function will determine whether the state point to be calculated is located within the single-phase region (liquid or steam) or the wet steam region. When calculating wet steam the value for x between 0 and 1 is calculated (0 for saturated liquid, 1 for saturated steam). If the state point to be calculated is located in the single-phase region the result x = -1 will be returned.

Wet steam region: Pressure ranges from $p_{min} = 2.3265 \times 10^{-5}$ bar to $p_{c} = 46.9215$ bar

Results for wrong input values

Result X_PH_C3H6O = -1 or x_ph_C3H6O = -1 for input values:

- at x < 0 or x > 1 - at $p < p_{min}$ or $p > p_{c}$ - at $t < t_{min}$ or $t > t_{c}$

Backward Function: Vapor Fraction *x* = f(*p*,*s*)

Function Name:

x_ps_C3H6O

Sub-program with function value: for call from Fortran

REAL*8 FUNCTION X_PH_C3H6O (P, S) REAL*8 P,S

Input values

P - Pressure *p* in bar

S - Specific entropy s in kJ/ (kg K)

Result

x_ps_C3H6O or X_PS_C3H6O - Vapor fraction x in kg/kg

Details on the vapor fraction x and on the calculation of saturated liquid and saturated steam

The wet steam region is calculated automatically. This means that from the given values of p and h the function will determine whether the state point to be calculated is located within the single-phase region (liquid or steam) or the wet steam region. When calculating wet steam the value for x between 0 and 1 is calculated (0 for saturated liquid, 1 for saturated steam). If the state point to be calculated is located in the single-phase region the result x = -1 will be returned.

Wet steam region: Pressure ranges from $p_{min} = 2.3265 \times 10^{-5}$ bar to $p_{c} = 46.9215$ bar

Results for wrong input values

Result X_PS_C3H6O = -1 or x_ps_C3H6O = -1 for input values:

- at x < 0 or x > 1 - at $p < p_{min}$ or $p > p_{c}$ - at $t < t_{min}$ or $t > t_{c}$ References: [1]

KCE-ThermoFluidProperties www.thermofluidprop.com

Property Libraries for Calculating Heat Cycles, Boilers, Turbines and Refrigerators

Water and Steam

Library LiblF97

- Industrial Formulation IAPWS-IF97 (Revision 2007)
- Supplementary Standards IAPWS-IF97-S01, -S03rev, -S04, and -S05
- IAPWS Revised Advisory Note No. 3 on Thermodynamic Derivatives (2008)

Library LibIF97_META

 Industrial Formulation IAPWS-IF97 (Revision 2007) for metastable steam

Humid Combustion Gas Mixtures

Library LibHuGas

Model: Ideal mixture of the real fluids: CO₂ - Span, Wagner H₂O - IAPWS-95

- O_2 Schmidt, Wagner N₂ Span et al. Ar - Tegeler et al.
 - and of the ideal gases: SO₂, CO, Ne
- (Scientific Formulation of Bücker et al.) Consideration of:
 - Dissociation from VDI 4670
 - Poynting effect

Humid Air

Library LibHuAir

Model: Ideal mixture of the real fluids:

 Dry air from Lemmon et al.
 Steam, water and ice from IAPWS-IF97 and IAPWS-06

Consideration of:

- Condensation and freezing of steam
- Dissociation from VDI 4670
 Poynting effect from
- ASHRAE RP-1485

Extremely Fast Property Calculations

Spline-Based Table Look-up Method (SBTL)

Library LibSBTL_IF97 Library LibSBTL_95 Library LibSBTL_HuAir

For steam, water, humid air, carbon dioxide and other fluids and mixtures according IAPWS Guideline 2015 for Computational Fluid Dynamics (CFD), real-time and non-stationary simulations

Carbon Dioxide Including Dry Ice

Library LibCO2

Formulation of Span and Wagner (1996)

Seawater

Library LibSeaWa

IAPWS Industrial Formulation 2013

lce

Library LibICE

Ice from IAPWS-06, Melting and sublimation pressures from IAPWS-08, Water from IAPWS-IF97, Steam from IAPWS-95 and -IF97

Ideal Gas Mixtures

Library LibIdGasMix

Model: Ideal mixture of the ideal gases:

			•
Ar	NO	He	Propylene
Ne	H ₂ O	F ₂	Propane
N ₂	SO ₂	NH ₃	Iso-Butane
0 ₂	H ₂	Methane	n-Butane
CO	H₂S	Ethane	Benzene
CO ₂	ОН	Ethylene	Methanol
Air			

Consideration of: • Dissociation from the VDI Guideline 4670

Library LibIDGAS

Model: Ideal gas mixture from VDI Guideline 4670

Consideration of: • Dissociation from the VDI Guideline 4670

Humid Air

Library ASHRAE LibHuAirProp

Model: Virial equation from ASHRAE Report RP-1485 for real mixture of the real fluids:

- Dry air
- Steam
- Consideration of
- Enhancement of the partial
- saturation pressure of water vapor at elevated total pressures
 - www.ashrae.org/bookstore

Dry Air Including Liquid Air

Library LibRealAir

Formulation of Lemmon et al. (2000)

Refrigerants

Ammonia

Library LibNH3

Formulation of Tillner-Roth et al. (1993)

R134a

Library LibR134a

Formulation of Tillner-Roth and Baehr (1994)

Iso-Butane

Library LibButane_Iso

Formulation of Bücker and Wagner (2006)

n-Butane

Library LibButane_n

Formulation of Bücker and Wagner (2006)

Mixtures for Absorption Processes

Ammonia/Water Mixtures

Library LibAmWa

IAPWS Guideline 2001 of Tillner-Roth and Friend (1998) Helmholtz energy equation for the mixing term (also useable for calculating the Kalina Cycle)

Water/Lithium Bromide Mixtures

Library LibWaLi

Formulation of Kim and Infante Ferreira (2004) Gibbs energy equation for the mixing term

Liquid Coolants

Liquid Secondary Refrigerants

Library LibSecRef

Liquid solutions of water with				
$C_2H_6O_2$	Ethylene glycol			
C ₃ H ₈ O ₂	Propylene glycol			
C₂H₅OH	Ethanol			
CH₃OH	Methanol			
C ₃ H ₈ O ₃	Glycerol			
K ₂ CO ₃	Potassium carbonate			
CaCl ₂	Calcium chloride			
MgCl ₂	Magnesium chloride			
NaCl	Sodium chloride			
$C_2H_3KO_2$	Potassium acetate			
CHKO ₂	Potassium formate			
LiCl	Lithium chloride			
NH ₃	Ammonia			
mulation of the International Institute				

Formulation of the International Institute of Refrigeration (IIR 2010)

Ethanol

Library LibC2H5OH

Formulation of Schroeder et al. (2014)

Methanol

Library LibCH3OH

Formulation of de Reuck and Craven (1993)

Propane

Library LibPropane

Formulation of Lemmon et al. (2009)

Siloxanes as ORC Working Fluids

Octamethylcyclotetrasiloxane $C_8H_{24}O_4Si_4$ Library LibD4 Decamethylcyclopentasiloxane $C_{10}H_{30}O_5Si_5$ Library LibD5 Tetradecamethylhexasiloxane $C_{14}H_{42}O_5Si_6$ Library LibMD4M Hexamethyldisiloxane $C_6H_{18}OSi_2$ Library LibMM Formulation of Colonna et al. (2006)

Dodecamethylcyclohexasiloxane $C_{12}H_{36}O_6Si_6$ Library LibD6 Decamethyltetrasiloxane $C_{10}H_{30}O_3Si_4$ Library LibMD2M Dodecamethylpentasiloxane $C_{12}H_{36}O_4Si_5$ Library LibMD3M Octamethyltrisiloxane $C_8H_{24}O_2Si_3$ Library LibMDM Formulation of Colonna et al. (2008)

Nitrogen and Oxygen

Libraries LibN2 and LibO2

Formulations of Span et al. (2000) and Schmidt and Wagner (1985)

Hydrogen

Library LibH2

Formulation of Leachman et al. (2009)

Helium

Library LibHe Formulation of Arp et al. (1998)

Hydrocarbons

Decane $C_{10}H_{22}$ Library LibC10H22 Isopentane C_5H_{12} Library LibC5H12_Iso Neopentane C_5H_{12} Library LibC5H12_Neo Isohexane C_6H_{14} Library LibC6H14 Toluene C_7H_8 Library LibC7H8 Formulation of Lemmon and Span (2006)

Further Fluids

Carbon monoxide CO Library LibCO Carbonyl sulfide COS Library LibCOS Hydrogen sulfide H_2S Library LibH2S Nitrous oxide N_2O Library LibN2O Sulfur dioxide SO₂ Library LibSO2 Acetone C_3H_6O Library LibC3H6O Formulation of Lemmon and Span (2006)

For more information please contact:

KCE-ThermoFluidProperties UG & Co. KG Prof. Dr. Hans-Joachim Kretzschmar Wallotstr. 3 01307 Dresden, Germany

Internet: www.thermofluidprop.com Email: info@thermofluidprop.com Phone: +49-351-27597860 Mobile: +49-172-7914607 Fax: +49-3222-1095810

The following thermodynamic and transport properties can be calculated^a:

Thermodynamic Properties

- Vapor pressure p_s
- Saturation temperature T_s
- Density ρ
- Specific volume v
- Enthalpy h
- Internal energy u
- Entropy s
- Exergy e
- Isobaric heat capacity c_p
- Isochoric heat capacity c_v
- Isentropic exponent κ
- Speed of sound w
- Surface tension σ

Transport Properties

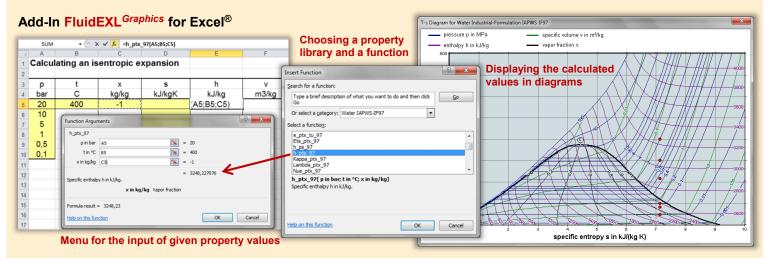
- Dynamic viscosity η
- Kinematic viscosity v
- Thermal conductivity λ
- Prandtl number Pr
- Thermal diffusivity a

Backward Functions

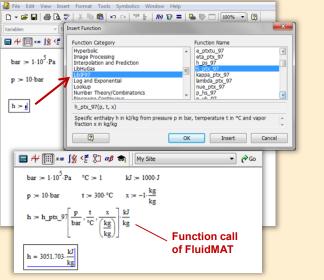
- *T*, *v*, *s* (*p*,*h*)
- *T*, *v*, *h* (*p*,*s*)
- *p*, *T*, *v* (*h*,*s*)
- p, T (v,h)
- p, T (v,u)

Thermodynamic Derivatives

 Partial derivatives used in process modeling can be calculated.


a Not all of these property functions are available in all property libraries.

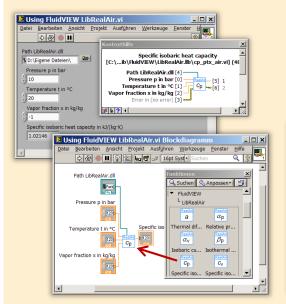
KCE-ThermoFluidProperties www.thermofluidprop.com



Property Software for Calculating Heat Cycles, Boilers, Turbines and Refrigerators

Add-On FluidMAT for Mathcad[®] Add-On FluidPRIME for Mathcad Prime[®]

The property libraries can be used in Mathcad[®] and Mathcad Prime[®].


Add-On FluidLAB for MATLAB[®] and SIMULINK[®]

Using the Add-In FluidLAB the property functions can be called in ${\rm MATLAB}^{\circledast}$ and ${\rm SIMULINK}^{\circledast}.$

Ele Edt Debug Desktop Window Image: State S	6 🗹 🖬	C:\Programme\FluidL	ABIJLIBHUAr_Example
Current Directory - C:\Programme	e\FluidLAB\Lib	oHuAir_Example 🔻 🗙	Editor - C:\Programme\FluidLAB\LibHuAir_Example\Example_hl ?
Al Files Bi hi_ ptxy_HuAir.mexw32 bi LibHuAir.dll bi libmmdd.dll bi libmmdd.dll bi msyc71.d.dll Example_hi_ptxw_HuAir.m Workspace_current.Directory Command History - % 20.06.07 10:50	File Type MEX-file DLL File DLL File DLL File DLL File DLL File DLL File M-file	Description hl_ptxw_HuAir.m	I * i i i i i x %* % Q 1 * h1 ptx Builtrim x %* % Q 1 * h1 ptx Builtrim x %* % Q 1 * * pt: * ptessure in bar * * 2 * * * * * * * 3 - pt: *
Start Click and drag to move Com	nand History		OVR

Add-On FluidVIEW for LabVIEW™

The property functions can be calculated in LabVIEW[™].

File Edit 🖻 🖬 🔍 🖨 ○ 🎸 A 🔳 🚣 • 🏝 • 🛱 🍡 🖾 • 🖏 • 🔶 ቅ 🖨 🖪 🛃 🛃 100% 💌 ₩ 1/ □ fluidDYM_LibSeaWa_Input in FluidDYM_SeaWa.TestMo ackage Browser Packages 🖲 🕕 Modelica Rei Add modifiers Modelica k=1 Name fluidDYM LibSeaWa Inpu FluidDYM_SeaWa Interfaces FluidDYM_Lib luidDYM_LibSeaVVa_Input FluidDYM_SeaWa.FluidDYM_LibSeaWa_Inpu TestModelle

The property functions can be called in DYMOLA® and SimulationX®.

Add-On FluidDYM for DYMOLA® (Modelica) and SimulationX®

Add-On FluidEES for Engineering Equation Solver[®]

?× Function Informatio C EES library routines Math functions Fluid properties External routines ○ Boiling and Condensation 💌 C Solid/liquid properties CIENCONTINO uer_EES\HuAirProp_SI\Be Tables Plots Windows Help Exa E_{ES} Equ ulating the Enthalpy - h_ptWHuAirPi p=11 Main t=20 Unit Settings: [kJ]/[C]/[kPa]/[kg]/[degrees] W=(h = 45.4866 [kJ/kg] p = 101.3 [kPa] t = 20 [C] W = 0.01 [kg/kg] CAL No unit problems were detected. Calculation time = .1 sec.

App International Steam Tables for iPhone, iPad, iPod touch, Android Smartphones and Tablets

International Steam Tables

IAPWS-IF97

p,x t,x p,h p,s

Spe Den

Enti

Ent

Online Property Calculator at www.thermofluidprop.com

luid:	Water and Steam IAPWS-I	F97 - LiblF97 🔹		
unction:	Specific enthalpy h(p.t,x)	• //		
Init System	si 💌			
nter given	values: Range of validity			XX
Pressure p		100	bar	- XX
				NV
Temperatur	et	400	.c	•
				XX
Vapor fracti	on x	-1	kg/kg	
	he vapor fraction x		SUHAM	XY
	Calculat	e / Recalculate		
			HARRING	
Result:		A A A A	14/1/14	S V
	thalpy h	= 3097.38	kJ/kg	-
Specific en or further in ingineering I	thalpy h formation on property librarie Equation Solver®, DYMOLAG	s available for EXCEL®	, MATLAB®, Mathc	ad®,
Specific ent or further in ingineering I ere.	formation on property librarie Equation Solver®, DYMOLA®	s available for EXCEL® (Modelica), Simulation	, MATLAB®, Mathc X®, and LabView®	ad®, click
Specific ent or further in ingineering l ere. In App for ca	formation on property librarie Equation Solver®, DYMOLAG	s available for EXCEL® (Modelica), Simulation	, MATLAB®, Mathc X®, and LabView®	ad®, click
ingineering l ere. In App for ca	formation on property librarie Equation Solver®, DYMOLA®	s available for EXCEL® (Modelica), Simulation	, MATLAB®, Mathc X®, and LabView®	ad®, click
Specific ent or further in ingineering I ere n App for ca 'DF with the	formation on property librarie Equation Solver®, DYMOLAG	s available for EXCEL® (Modelica), Simulation	o, MATLAB®, Mathc X®, and LabView® d touch can be four	ad®, click
Specific ent or further in ingineering I ere. n App for ca DF with the o Zittau/Goerin	formation on property librarie Equation Solver®, DYMOLA® advulating steam properties of description.	s available for EXCEL® 9 (Modelica), Simulation n iPhone, iPad, and iPo	b, MATLAB®, Mathc IX®, and LabView® d touch can be four	ad®, click
Specific ent or further in ingineering le ere. In App for ca DF with the Szittau Goerin Faculty of Me Department	formation on property librane Equation Solver®, DYMOLAR alculating steam properties or description. It Univership of Applied Sciences schanical Engineering of Technical Thermodynamics	s available for EXCEL® 9 (Modelica), Simulation n iPhone, iPad, and iPo Tel: +49-3583-61-184 Fax +49-3583-61-184 E-mail: info@thermoo	MATLAB®, Mathc X®, and LabView® d touch can be four 16 or -1881 16 mamics-zillau de	ad®, click
Specific ent or further in ingineering le ere n App for ca 'DF with the DE with the Department Prof. Hans-J	formation on property librarie Equation Solver®, DYMOLAR diculating steam properties or description. It University of Applied Sciences chanical Engineering of Technical Thermodynamics loachim Kretschmar	s available for EXCEL® 6 (Modelica), Simulation n iPhone, iPad, and iPo Tel. +49-3583-61-18 Fax, +49-3583-61-18 Fax, +49-3583-61-18 Fax, +49-3583-61-18	MATLAB®, Mathc X®, and LabView® d touch can be four 16 or -1881 16 Innamics-zitau de	ad®, click
Specific ent or further in ingineering I ere. n App for ca 'DF with the DEP with the Department Prof. Hans-J Dr. Ines Stoe	formation on property librarie Equation Solver®, DYMOLA alculating steam properties or description to University of Applied Sciences chancial Engineering of Technical Thermodynamics loachin Kretzschmar Icker	s available for EXCEL® 6 (Modelica), Simulation ni Phone, iPad, and iPo Tel. +49-358-61-18: Fax +49-358-61-18: E-mail: info@themoo www.thermoof.namic- www.thermoof.namic-	b, MATLAB®, Matho X®, and LabView® d touch can be four 16 or -1881 16 Innamics-Jitau de Istitau de Istitau de	ad®, click
Specific ent or further in ingineering I ere. n App for ca 'DF with the DEP with the Department Prof. Hans-J Dr. Ines Stoe	formation on property librarie Equation Solver®, DYMOLAR diculating steam properties or description. It University of Applied Sciences chanical Engineering of Technical Thermodynamics loachim Kretschmar	s available for EXCEL® 6 (Modelica), Simulation n iPhone, iPad, and iPo Tel. +49-3583-61-18 Fax, +49-3583-61-18 Fax, +49-3583-61-18 Fax, +49-3583-61-18	MATLAB®, Mathc X®, and LabView® d touch can be four 16 or - 1881 16 Imamics-2ifau de Insettau de properh-libraries.com	ad®, click

Property Software for Pocket Calculators

For more information please contact:

KCE-ThermoFluidProperties UG & Co. KG Prof. Dr. Hans-Joachim Kretzschmar Wallotstr. 3 01307 Dresden, Germany Internet: www.thermofluidprop.com Email: info@thermofluidprop.com Phone: +49-351-27597860 Mobile: +49-172-7914607 Fax: +49-3222-1095810

The following thermodynamic and transport properties^a can be calculated in Excel[®], MATLAB[®], Mathcad[®], Engineering Equation Solver[®] (EES), DYMOLA[®] (Modelica), SimulationX[®] and LabVIEW™:

Thermodynamic Properties

- Vapor pressure p_s
- Saturation temperature $T_{\rm s}$
- Density ρ
- Specific volume v
- Enthalpy h
- Internal energy u
- Entropy s
- Exergy e
- Isobaric heat capacity c_p
- Isochoric heat capacity c_v
- Isentropic exponent κ
- Speed of sound w
- Surface tension σ

Transport Properties

- Dynamic viscosity η
- Kinematic viscosity v
- Thermal conductivity λ
- Prandtl number Pr
- Thermal diffusivity a

Backward Functions

- *T*, *v*, *s* (*p*,*h*)
- T, v, h (p,s)
- p, T, v (h,s)
- p, T (v,h)
- p, T (v,u)

Thermodynamic Derivatives

 Partial derivatives used in process modeling can be calculated.

a Not all of these property functions are available in all property libraries.

5. References

- E.W. Lemmon, R.Span: Short Fundamental Equation of State for 20 Industrial Fluids J.Chem.Eng.Data,51,p.785.850,2006
- Kahl, H., Wadewitz, T., Winkelmann, J.: Surface tension of pure liquids and binary liquid mixtures J. Chem. Eng. Data, 48(3):580-586, 2003
- M.L. Huber, A. Laeseck, R.A. Perkins, Model for the Viscosity and Thermal Conductivity of Refrigerants, Including a New Correlation for the Viscosity of R134a Ind. Eng. Chem. Res.,42, 3163-3178, 2003
- [4] E.W. Lemmon: Personal Communication with E.W. Lemmon, 2012
- K. Marsh, R. Perkins, M.L.V. Ramires: Measurement and Correlation of the Thermal Conductivity of Propane from 86 to 600 K at Pressures to 70 MPa J. Chem. Eng. Data, 47(4), 932-940, 2002
- [6] E. Vogel, C. Kuechenmeister, E. Bich, A. Laesecke: Reference Correlation of the Viscosity of Propane J. Phys. Chem. Ref. Data, 2, 947-970, 1998.
- [7] E.W. Lemmon, M.O. McLinden, W. Wagner: Thermodynamic Properties of Propane. III. A Reference Equation of State for Temperatures from Melting Line to 650 K and Pressure up to 1000 MPa J.Chem.Eng.Data, 54, 3141-3180, 2009

6. Satisfied Customers

Period from 2018 to 2022

The following companies and institutions use the property libraries:

- FluidEXL^{Graphics} for Excel[®] incl. VBA
- FluidLAB for $\ensuremath{\mathsf{MATLAB}}\xspace^{\ensuremath{\mathbb{R}}}$ and $\ensuremath{\mathsf{Simulink}}\xspace$
- FluidMAT for Mathcad®
- FluidPRIME for Mathcad Prime®
- FluidEES for Engineering Equation Solver[®] EES
- FluidDYM for Dymola $^{I\!\!R}$ (Modelica) and Simulation $X^{I\!\!R}$
- FluidVIEW for LabVIEW[™]
- FluidPYT for Python
- FluidJAVA for Java
- DLLs for Windows Applications
- Shared Objects for Linux
- Shared Objects for macOS.

2022

ASTG, Graz, Austria	12/2022
Wandschneider + Gutjahr, Hamburg	
RWE Supply & Trading, Essen	11/2022
Stadtwerke Rosenheim	
CEA, Saclay, France	10/2022
RWE Supply & Trading, Essen	
SEEC Saudi Energy Efficiency Center, Riyadh, Saudi Arabia	
MAN, Copenhagen, Denmark	
Hermeler & Partner Consulting Engineers, Sassenberg	09/2022
Envi Con, Nürnberg	
Drill Cool Systems, Bakersfield CA, USA	
RWE Supply & Trading, Essen	
Maerz Ofenbau, Zürich, Switzerland	
Saale Energie, Schkopau	
ERGO, Dresden	
Mainova, Frankfurt/Main	
Bundeswehr, Koblenz	08/2022
RWE Supply & Trading, Essen	
Grenzebach Corporation, Newnan GE, USA	
AGRANA, Gmuend, Austria	07/2022
MIBRAG, Zeitz	
Hochschule Niederrhein, Krefeld	
ULT, Löbau	06/2022
LEAG, Cottbus	
VPC Group, Vetschau	

Wärme, Hamburg	
ILK, Dresden	
Stricker IB, Küssnacht a. Rigi, Switzerland	
LEAG, Cottbus	05/2022
RWE Supply & Trading, Essen	
IGT Tomalla, Kreuztal	
B+T Engineering, Dübendorf, Switzerland	
Stricker IB, Küssnacht a. Rigi, Switzerland	
Vogelsang & Benning, Bochum	04/2022
Frischli, Rehburg-Loccum	
BPS Consulting, Sprenge	03/2022
HS Hannover, Maschinenbau & BioVT	
M+M Turbinentechnik, Bad Salzuflen	
Uni. Strathclyde, Glasgow, UK	02/2022
Delta Energy Group, Jiaozhou City, Qingdao, China	
Wetzel IB, Guben	
Wijbenga, PC Geldermalsen, The Netherlands	
Voith Paper, Heidenheim	
HS Zittau/Görlitz, Maschinenwesen	01/2022
Thermische Abfallbehandlung, Lauta	
Webb Institute, Glen Cove NY, USA	
TU Berlin, Umweltverfahrenstechnik	
SachsenEnergie, Dresden	
Doosan, Chang-won-si, Gyeongsangnam-do, South K	orea
KW3, LH Veenendaal, The Netherlands	
Université du Luxembourg, Esch-sur-Alzette	
Enseleit IB, Mansfeld	
Caliqua/Equans, Zürich, Switzerland	
Rudnick & Enners, Alpenrod	
2021	
Wenisch IB, Vetschau	12/2021
PPCHEM, Hinwil, Switzerland	
KW3, The Netherlands	
BASF Ludwigshafen	
Air-Consult, Jena	
Sjerp & Jongeneel, RB Zoetermeer, The Netherlands	11/2021
Maerz Ofenbau, Zürich, Switzerland	11/2021
RWE Supply & Trading, Essen	
Hahn IB, Dresden	10/2021
Therm, South Africa	10/2021
RWE Supply & Trading, Essen	
TH Nürnberg, Verfahrenstechnik	09/2021
RWE Supply & Trading, Essen	03/2021
Enseleit IB, Mansfeld	
SachsenEnergie, Dresden	
Cuonochenorgio, Diosuch	

BSH Hausgeräte, Berlin

Norsk Energi, Oslo, Norway	08/2021
AKM Industrieanlagen, Haltern	
Drill Cool Systems, Bakersfield CA, USA	
Siemens Energy Global, Erlangen	07/2021
Wulff & Umag, Husum	
Planungsbüro Waidhas, Chemnitz	
Burkhardt Energie Technik, Mühlhausen	
Lücke IB, Paderborn	06/2021
TU Dresden, Energieverfahrenstechnik	
Wärme, Hamburg	
AL-KO Therm, Kötz	
PCK Raffinerie, Schwedt	
Vogelsang & Benning, Bochum	05/2021
MTU, München	
VPC Group, Vetschau	
AVG, Köln	04/2021
TH Ulm, Institut für Fahrzeugtechnik	
Marty IB, Oberwil, Switzerland	
HypTec, Lebring, Austria	
Lopez IB, Getxo, Bizkaia, Spain	03/2021
GM Remediation Systems, Leoben, Austria	
Jager Kältetechnik, Osnabrück	
T&M Automation, GR Leidschendam, The Netherlands	
RWE Supply & Trading, Essen	
Stadtwerke Leipzig	
Beuth Hochschule für Technik, Berlin	
Beleth IB, Woeth	02/2021
ZTL, Thal, Austria	
ETABO Bochum	
RWE Supply & Trading, Essen	
Onyx Germany, Berlin	
TU Dresden, Kältetechnik	
GOHL-KTK, Durmersheim	
Therm Development, South Africa	
thermofin, Heinsdorfergrund	
RWE Supply & Trading, Essen	01/2021
STEAG, Essen	
ETA Energieberatung, Pfaffenhofen	
Enex Power, Kirchseeon	
2020	
Drill Cool, Bakersfield CA, USA	12/2020
Manders, The Netherlands	12/2020
RWE Supply & Tranding, Essen	
NEOWAT Lodz, Poland	
University of Duisburg-Essen, Duisburg	11/2020
	11/2020

University of Duisburg-Essen, Duisburg Stellenbosch University, South Africa 6/3

University De France-COMTe, France	
RWE, Essen	
STEAG, Herne	
Isenmann Ingenierbüro	
University of Stuttgart, ITLR, Stuttgart	
Norsk Energi, Oslo, Norway	
TGM Kanis, Nürnberg	
Stadtwerke Neuburg	10/2020
Smurfit Kappa, Roermond, The Netherlands	
RWE, Essen	
Hochschule Zittau/Görlitz, Wirtschaftsingenieurwesen	
Stadtwerke, Neuburg	
ILK, Dresden	
ATESTEO, Alsdorf	
Hochschule Zittau/Görlitz, Maschinenwesen	
TH Nürnberg, Verfahrenstechnik	
Drill Cool, Bakersfield CA,USA	09/2020
RWE, Essen	
2Meyers Ingenieurbüro, Nürnberg	
FELUWA, Mürlenbach	
Stadtwerke Neuburg	
Caverion, Wien, Austria	
GMVA Niederrhein, Oberhausen	
INWAT Lodz, Poland	
Troche Ingenieurbüro, Hayingen	08/2020
CEA Saclay, France	
VPC, Vetschau	07/2020
FSK System-Kälte-Klima, Dortmund	
Exergie Etudes, Sarl, Switzerland	
AWG Wuppertal	
STEAG Energy Services, Zwingenberg	
Hochschule Braunschweig	06/2020
DBI, Leipzig	
GOHL-KTK, Dumersheim	
TU Dresden, Energieverfahrenstechnik	
BASF SE, ESI/EE, Ludwigshafen	
Wärme Hamburg	
Ruchti Ingenieurbüro, Uster, Switzerland	
IWB, Basel, Switzerland	
Midiplan, Bietingen-Bissingen	05/2020
Knieschke, Ingenieurbüro	
RWE, Essen	
Leser, Hamburg	
AGRANA, Gmünd, Austria	
EWT Wassertechnik, Celle	
Hochschule Darmstadt	04/2020
MTU München CCP	
HAW Hamburg	03/2020
-	

Hanon, Novi Jicin, Czech Republic TU Dresden, Kältetechnik	
MAN, Copenhagen, Denmark	
EnerTech, Radebeul	02/2020
LEAG, Cottbus	
B+B Enginering Magdeburg	
Hochschule Offenburg	
WIB, Dennheritz	01/2020
Universität Duisburg-Essen, Strömungsmaschinen	
Kältetechnik Dresen-Bremen	
TH Ingolstadt	
Vattenfall AB, Jokkmokk, Sweden	
Fraunhofer UMSICHT	

2019

PEU Leipzig, Rötha	12/2019
MB-Holding, Vestenbergsgreuth	
RWE, Essen	
Georg-Büchner-Hochschule, Darmstadt	11/2019
EEB ENERKO, Aldenhoven	
Robert Benoufa Energietechnik, Wiesloch	
Kehrein & Kubanek Klimatechnik, Moers	10/2019
Hanon Systems Autopal Services, Hluk, Czech Republic	
CEA Saclay, Gif Sur Yvette cedex, France	
Saudi Energy Efficiency Center SEEC, Riyadh, Saudi Arabia	
VPC, Vetschau	09/2019
jGanser PM + Engineering, Forchheim	
Endress+Hauser Flowtec AG, Reinach, Switzerland	
Ruchti IB, Uster, Switzerland	
ZWILAG Zwischenlager Würenlingen, Switzerland	08/2019
Hochschule Zittau/Görlitz, Faculty Maschinenwesen	
Stadtwerke Neubrandenburg	
Physikalisch Technische Bundesanstalt PTB, Braunschweig	
GMVA Oberhausen	07/2019
Endress+Hauser Flowtec AG, Reinach, Switzerland	
WARNICA, Waterloo, Canada	
MIBRAG, Zeitz	06/2019
Pöyry, Zürich, Switzerland	
RWTH Aachen, Institut für Strahlantriebe und Turbomaschinen	
Midiplan, Bietigheim-Bissingen	
GKS Schweinfurt	
HS Zittau/Görlitz, Wirtschaftswissenschaften und Wirtschaftsingenieurwesen	
ILK Dresden	
HZDR Helmholtz Zentrum Dresden-Rossendorf	
TH Köln, Technische Gebäudeausrüstung	05/2019
IB Knittel, Braunschweig	
Norsk Energi, Oslo, Norway	

STEAG, Essen Stora Enso, Eilenburg IB Lücke, Paderborn Haarslev, Sonderso, Denmark MAN Augsburg Wieland Werke, Ulm 04/2019 Fels-Werke, Elbingerode Univ. Luxembourg, Luxembourg BTU Cottbus, Power Engineering 03/2009 Eins-Energie Sachsen, Schwarzenberg TU Dresden, Kälte- und Kryotechnik ITER, St. Paul Lez Durance Cedex, France Fraunhofer UMSICHT, Oberhausen Comparex Leipzig for Spedition Thiele HEMMERSBACH Rückert NaturGas, Lauf/Pegnitz BASF, Basel, Switzerland 02/2019 Stadtwerke Leipzig Maerz Ofenbau Zürich, Switzerland Hanon Systems Germany, Kerpen Thermofin, Heinsdorfergrund 01/2019 **BSH Berlin** 2018 Jaguar Energy, Guatemala 12/2018 WEBASTO, Gilching Smurfit Kappa, Oosterhout, Netherlands Univ. BW München RAIV, Liberec for VALEO, Prague, Czech Republic 11/2018 VPC Group Vetschau SEITZ, Wetzikon, Switzerland MVV, Mannheim 10/2018 **IB** Troche KANIS Turbinen, Nürnberg TH Ingolstadt, Institut für neue Energiesysteme IB Kristl & Seibt, Graz, Austria 09/2018 INEOS, Köln IB Lücke, Paderborn 08/2018 Südzucker, Ochsenfurt K&K Turbinenservice, Bielefeld 07/2018 OTH Regensburg, Elektrotechnik Comparex Leipzig for LEAG, Berlin 06/2018 Münstermann, Telgte 05/2018 TH Nürnberg, Verfahrenstechnik Universität Madrid, Madrid, Spanien HS Zittau/Görlitz, Wirtschaftsingenieurwesen HS Niederrhein, Krefeld

Wilhelm-Büchner HS, Pfungstadt

03/2018

GRS, Köln WIB, Dennheritz RONAL AG, Härklingen, Schweiz Ingenieurbüro Leipert, Riegelsberg AIXPROCESS, Aachen KRONES, Neutraubling Doosan Lentjes, Ratingen

02/2018

01/2018