

Property Library for Carbon Dioxide

FluidEES
with LibCO2
for Engineering Equation Solver®

Prof. Hans-Joachim Kretzschmar
Dr. Sebastian Herrmann
Dr. Matthias Kunick
S. Hasch
F. Elschner
M. Sünder

Software for the Calculation of the Properties of Carbon Dioxide FluidEES LibCO2

Contents

- 0. Package Contents
- 1. Property Functions
- 2. Application of FluidEES in Engineering Equation Solver®
 - 2.1 Installing FluidEES
 - 2.2 The FluidEES Help System
 - 2.3 Example: Calculation of h = f(p,t,x)
 - 2.4 Removing FluidEES
- 3. Program Documentation
- 4. Property Libraries for Calculating Heat Cycles, Boilers, Turbines, and Refrigerators
- 5. References
- 6. Satisfied Customers

© KCE-ThermoFluidProperties UG & Co. KG Professor Hans-Joachim Kretzschmar Wallotstr. 3, 01307 Dresden, Germany

Phone: +49-351-27597860 Mobile: +49-172-7914607 Fax: +49-3222-1095810

Email: info@thermofluidprop.com Internet: www.thermofluidprop.com

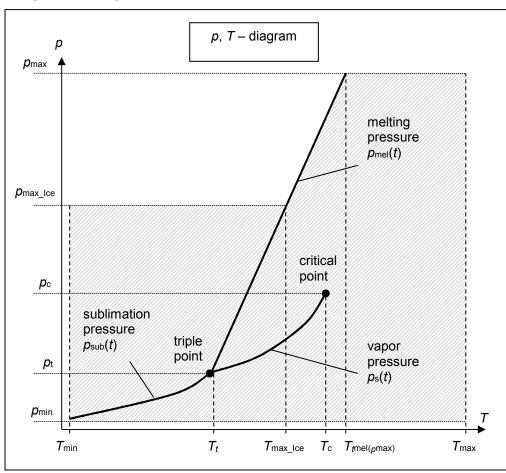
0 Package Contents

Zip-file "CD_FluidEES_LibCO2.zip" includes the following files:

FluidEES_LibCO2_Setup.exe - Self-extracting and self-installing program
LibCO2.dll - DLL with functions of the LibCO2 library

FluidEES_LibCO2_Docu.pdf - User's Guide

LibCO2.chm - Help file for the LibCO2 property library


1. Property Functions

Units: $t \text{ in } {}^{\circ}\text{C}$

p in bar

x in kg /kg (Phase fraction, see the following explanations)

Range of Validity:

Reference State:

At p = 1.01325 bar and T = 298.15 K (25 °C):

h = -0.938457860 kJ/kg and s = -0.00219606205 kJ/(kg K)

Factor	Abbreviation	Value and Unit
Minimum temperature	$T_{\min}(t_{\min})$	85 K (–188.15 °C)
Maximum temperature	$T_{\max}(t_{\max})$	1500 K (1226.85 °C)
Triple temperature	$T_{t}(t_{t})$	216.592 K (-56.558 °C)
Temperature at the critical point	T _c (t _c)	304.1282 K (30.9782 °C)
Maximum temperature of solid region	T _{max_lce} (t _{miax_lce})	236.0309 K (–37.119 °C)
Maximum temperature of melting pressure curve	$T_{\text{mel}}(p_{\text{max}}) \ (t_{\text{mel}}(p_{\text{max}}))$	327.671 K (54.521 °C)
Minimum pressure	$p_{\min} = p_{\text{sub}}(T_{\min})$	2.9081875815·10 ⁻¹⁰ bar
Maximum pressure	<i>p</i> _{max}	8000 bar
Triple pressure	p_{t}	5.179618369088 bar
Pressure at the critical point	p _c	73.773 bar
Maximum pressure of solid region	pmax_lce	1000 bar

General Property Functions

Functional Dependence	Function Name	Call from Fortran program	Call from the DLL LibCO2 as Parameter	Property or Function	Unit of the Result
a = f(p,t,x)	a_ptx_CO2	APTXCO2(P,T,X)	C_APTXCO2(A,P,T,X)	Thermal diffusivity	m ² /s
$c_p = f(p,t,x)$	cp_ptx_CO2	CPPTXCO2(P,T,X)	C_CPPTXCO2(CP,P,T,X)	Specific isobaric heat capacity	kJ/(kg K)
$\eta = f(p,t,x)$	eta_ptx_CO2	ETAPTCO2(P,T,X)	C_ETAPTXCO2(ETA,P,T,X)	Dynamic viscosity	Pa s
h = f(p,t,x)	h_ptx_CO2	HPTXCO2(P,T,X)	C_HPTXCO2(H,P,T,X)	Specific enthalpy	kJ/kg
$\kappa = f(\rho, t, x)$	kappa_ptx_CO2	KAPTXCO2(P,T,X)	C_KAPTXCO2(KAP,P,T,X)	Isentropic exponent	-
$\lambda = f(\rho, t, x)$	lambda_ptx_CO2	LAMPTCO2(P,T,X)	C_LAMPTXCO2(LAM,P,T,X)	Thermal conductivity	W/(m K)
v = f(p,t,x)	ny_ptx_CO2	NYPTXCO2(P,T,X)	C_NYPTXCO2(NY,P,T,X)	Kinematic viscosity	m ² /s
$p_{\text{mel}} = f(t)$	pmel_t_CO2	PMELCO2(T)	C_PMELCO2(PMEL,T)	Melting pressure from temperature	bar
$p_{\text{sub}} = f(t)$	psub_t_CO2	PSUBCO2(T)	C_PSUBCO2(PSUB,T)	Sublimation pressure from temperature	bar
$p_{\rm S} = f(t)$	ps_t_CO2	PSTCO2(T)	C_PSTCO2(PS,T)	Vapor pressure from temperature	bar
Pr = f(p,t,x)	Pr_ptx_CO2	PRPTXCO2(P,T,X)	C_PRPTXCO2(PR,P,T,X)	Prandtl-Number	-
$\rho = f(p,t,x)$	rho_ptx_CO2	ROPTXCO2(P,T,X)	C_ROPTXCO2(RHO,P,T,X)	Density	kg/ m³
$s = f(\rho, t, x)$	s_ptx_CO2	SPTXCO2(P,T,X)	C_SPTXCO2(S,P,T,X)	Specific entropy	kJ/(kg K)
t = f(p,h)	t_ph_CO2	TPHCO2(P,H)	C_TPHCO2(T,P,H)	Backward function: Temperature from pressure and enthalpy	°C
t = f(p,s)	t_ps_CO2	TPSCO2(P,S)	C_TPSCO2(T,P,S)	Backward function: Temperature from pressure and entropy	°C

Functional Dependence	Function Name	Call from Fortran program	Call from the DLL LibCO2 as Parameter	Property or Function	Unit of the Result
$t_{\text{mel}} = f(p)$	tmel_p_CO2	TMELCO2(P)	C_TMELCO2(TMEL,P)	Melting temperature from pressure	°C
$t_{\text{sub}} = f(p)$	tsub_p_CO2	TSUBCO2(P)	C_TSUBCO2(TSUB,P)	Sublimation temperature from pressure	°C
$t_{\rm S} = f(p)$	ts_p_CO2	TSPCO2(P)	C_TSPCO2(TS,P)	Saturation temperature from pressure	°C
$v = f(\rho, t, x)$	v_ptx_CO2	VPTXCO2(P,T,X)	C_VPTXCO2(V,P,T,X)	Specific volume	m³/kg
w = f(p,t,x)	w_ptx_CO2	WPTXCO2(P,T,X)	C_WPTXCO2(W,P,T,X)	Isentropic speed of sound	m/s
x = f(p,h)	x_ph_CO2	XPHCO2(P,H)	C_XPHCO2(X,P,H)	Backward function: Phase fraction from pressure and enthalpy	kg/kg
x = f(p,s)	x_ps_CO2	XPSCO2(P,S)	C_XPSCO2(X,P,S)	Backward function: Phase fraction from pressure and entropy	kg/kg

Property Functions for Solid Carbon Dioxide (Dry Ice)

Functional Dependence	Function Name	Call from Fortran program	Call from the DLL LibCO2 as Parameter	Property or Function	Unit of the Result
a = f(p,t)	alCE_pt_CO2	APICETCO2(P,T)	C_APICEPTCO2 (A, P, T)	Thermal diffusivity	m²/s
$c_p = f(p,t)$	cpICE_pt_CO2	CPICETCO2(P,T)	C_CPICEPTCO2 (CP, P, T)	Specific isobaric heat capacity	kJ/(kg K)
h = f(p,t)	hICE_pt_CO2	HICETCO2(P,T)	C_HICEPTCO2 (H, P, T)	Specific enthalpy	kJ/ kg
$\lambda = f(t)$	lambdalCE_t_CO2	LAMICETCO2(T)	C_LAMICETCO2 (LAM,T)	Thermal conductivity	W/(m K)
$ \rho = f(p,t) $	rhoICE_pt_CO2	RHOICETCO2(P,T)	C_RHOICEPTCO2 (RHO, P, T)	Density	kg/ m³
s = f(p,t)	sICE_pt_CO2	SICETCO2(P,T)	C_SICEPTCO2 (S, P, T)	Specific entropy	kJ/ (kg K)

Functional Dependence	Function Name	Call from Fortran program	Call from the DLL LibCO2 as Parameter	Property or Function	Unit of the Result
v = f(p,t)	vICE_pt_CO2	VICETCO2(P,T)	C_VICEPTCO2 (V, P, T)	Specific volume	m³/kg
t = f(p,h)	tICE_ph_CO2	TICEHCO2(P,H)	C_TICEPHCO2 (T, P, H)	Backward function: Temperature from pressure and enthalpy	°C
t = f(p,s)	tICE_ps_CO2	TICESCO2(P,S)	C_TICEPSCO2 (T, P, S)	Backward function: Temperature from pressure and entropy	°C

Details on the Phase Fraction x

If the state point to be calculated is located in the single phase region (solid, liquid or superheated vapor), x = -1 must be entered as a pro-forma value. Here the backward functions will also result in x = -1.

The two phase regions wet vapor region, melting region and sublimation region (cp. the following $\lg p,h$ -diagram) are calculated automatically by the subprograms. Please consider the following facts:

1. Wet Vapor Region $(0 \le x \le 1)$:

The phase fraction *x* equates to the vapor fraction *x* in the wet vapor region in (kg dry saturated vapor)/(kg wet vapor).

In this case it is adequate to enter either the given value for t and p = -1000, or the given value for p and t = -1000, plus the value for x between 0 and 1. If values for both p and t are entered when calculating wet vapor, the program will consider p and t to be appropriate to represent the vapour pressure curve. If it is not the case the calculation for the quantity of the chosen function to be calculated results in -1000.

When calculating wet vapor, x results in a value between 0 and 1 (x = 0 for boiling liquid, x = 1 for dry saturated vapor). In this case, the backward functions result in the appropriate value between 0 and 1 for x.

Wet vapor region: Temperature range from $T_{\rm t}$ = 216.592 K ($t_{\rm t}$ =–56.558 °C) to $T_{\rm c}$ = 304.1282 K ($t_{\rm t}$ = 30.9782 °C) Pressure ranges from $p_{\rm t}$ = 5.179618369088 bar to $p_{\rm c}$ = 73.773 bar

2. Melting Region ($10 \le x \le 11$):

The phase fraction *x* equates to the liquid fraction *x* in the melting region in (kg solidifying liquid)/(kg melt), whereas melt is a mixture of melting solid and solidifying liquid.

In this case it is adequate to enter either the given value for t and p = -1000, or the given value for p and t = -1000, plus the value for x between 10 and 11. If values for both p and t are entered, the program will consider p and t to be appropriate to represent the melting pressure curve. If it is not the case the calculation for the quantity of the chosen function to be calculated results in -1000.

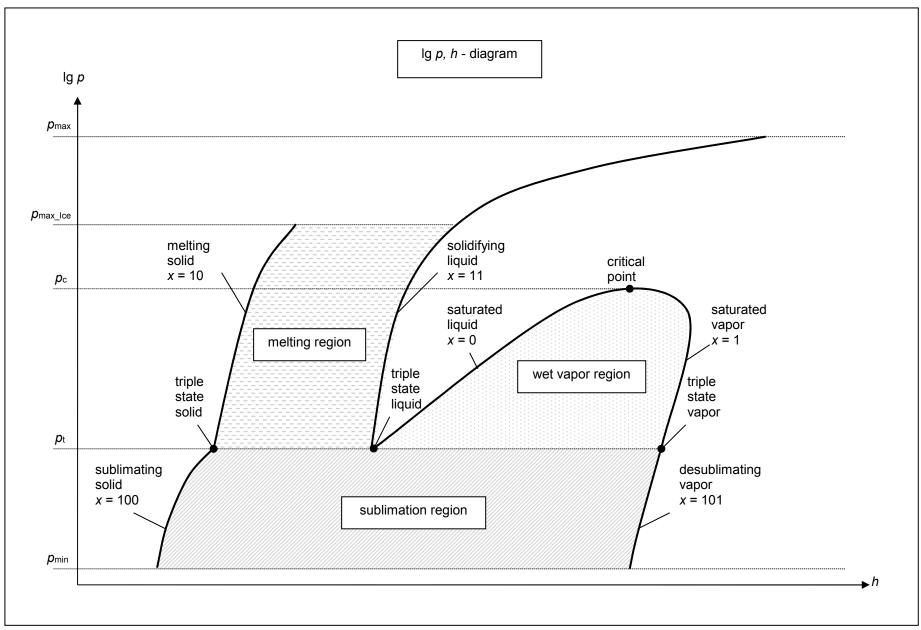
When calculating a melt, x results in a value between 10 and 11 (x = 10 for melting solid, x = 11 for solidifying liquid). In this case, the backward functions result in the appropriate value between 10 and 11 for x.

```
Melting region: Temperature range from T_{\text{max\_lce}} = 236.0309 K (t_{\text{max\_lce}} =-37.119 °C) to T_{\text{t}} = 216.592 K (t_{\text{t}} =-56.558 °C) Pressure range from p_{\text{t}} = 5.179618369088 bar to p_{\text{max\_lce}} = 1000 bar
```

Only the limiting curve on the right hand side, thus solidifying liquid (x = 11) is calculated for pressures p for which applies $p_{\text{max lce}} .$

3. Sublimation Region (100 \leq x \leq 101):

The phase fraction *x* equates to the vapor fraction *x* in the sublimation region in (kg desublimating vapor)/(kg sublimation powder), whereas sublimation powder is a mixture of sublimating solid and desublimating vapor.


In this case it is adequate to enter either the given value for t and p = -1000, or the given value for p and t = -1000, plus the value for x between 100 and 101. If values for both p and t are entered, the program will consider p and t to be appropriate to represent the sublimation pressure curve. If it is not the case the calculation for the quantity of the chosen function to be calculated results in -1000.

When calculating sublimation powder, x takes a value between 100 and 101 (x = 100 for sublimating solid, x = 101 for desublimating vapor). In this case, the backward functions result in the appropriate value between 100 and 101 for x.

Sublimation region: Temperature range from T_{min} = 85 K (t_{min} =–188.15 °C) to T_{t} = 216.592 K (t_{t} =–56.558 °C) Pressure range from p_{min} = 2.9081875815·10⁻¹⁰ bar to p_{t} = 5.179618369088 bar

Note:

If the input values are located outside the range of validity, the calculated function will always result in –1000. Please find more exact details on every function and its corresponding range of validity in the enclosed software documentation in Chapter 3. The same information may also be accessed via the online help pages.

KCE-ThermoFluidProperties, Prof. Dr. Hans-Joachim Kretzschmar

2 Application of FluidESS in Engineering Equation Solver®

The FluidEES Add-In has been developed to conveniently calculate thermodynamic properties in the Engineering Equation Solver® (EES). It enables, within EES, the direct call of functions relating to carbon dioxide calculated from the LibCO2 property library.

2.1 Installing FluidEES LibCO2

FluidEES is installed by means of a self-extracting setup file.

Before you begin, it is best to close any Windows® applications, since Windows® may need to be rebooted during the installation process and to remove any a FluidEES version which has been delivered before April 2010.

After you have downloaded and extracted the zip-file "CD_FluidEES_LibCO2.zip", you will see the folder

CD FluidEES LibCO2

in your Windows Explorer®, Norton Commander® etc.

Now, open this folder by double-clicking on it.

Within this folder you will see the following files:

FluidEES_LibCO2_Docu_Eng.pdf FluidEES_LibCO2_Setup.exe.

In order to run the installation of FluidEES including the LibCO2 property library double-click the file

FluidEES_LibCO2_Setup.exe.

Installation may start with a window noting that all Windows® programs should be closed. When this is the case, the installation can be continued. Click the "Next >" button.

In the following dialog box, "Destination Location" (see figure below), the default path where Engineering Equation Solver has been installed will be shown (the standard being:

C:\Program Files\EES32\Userlib\LibCO2

(for English version of Windows)

C:\Programme\EES32\Userlib\LibCO2

(for German version of Windows)).

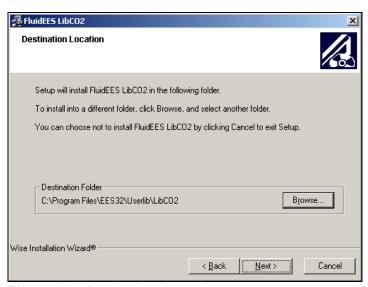


Figure 2.1: Destination Location

Click on "Next >" in the window "Destination Location".

Click on the "Next >" button in the "Start Installation" window.

The FluidEES files are now being copied onto your hard disk drive into the "\LibCO2" folder.

Click the "Finish>" button in the following window to finish installation.

The installation program has copied the following files into the directory

C:\Program Files\EES32\Userlib\LibCO2 (for English version of Windows)
C:\Programme\EES32\Userlib\LibCO2 (for German version of Windows)):

advapi32.dll - Dynamic link library for use in Windows® programs

Dformd.dll - Dynamic link library for use in Windows® programs

Dforrt.dll - Dynamic link library for use in Windows® programs

DFORRTD.dll - Dynamic link library for use in Windows® programs

INSTALL.LOG - Log file

LC.dll - Dynamic link library for use in Windows® programs

LibCO2.ctx - Interface including property functions of LibCO2 for EES®

LibCO2.dll - Dynamic link library with property functions of LibCO2

LibCO2.chm - Help file of the LibCO2 property library

msvcp60.dll - Dynamic link library for use in Windows® programs
msvcrt.dll - Dynamic link library for use in Windows® programs
MSVCRTD.dll - Dynamic link library for use in Windows® programs

UNWISE.EXE - File to remove the LibCO2 library
UNWISE.INI - File belonging to the UNWISE.EXE

Now, you have to overwrite the following files

"LibCO2.dll"
"LibCO2.chm"
"LibCO2.ctx"

in your Engineering Equation Solver directory with the files of the same names provided in your extracted CD_FluidEES_LibCO2 folder.

To do this, open the "CD_FluidEES_LibCO2" folder in "My Computer" and click on the file "LibCO2.dll" in order to highlight it. Then click on the "Edit" menu in your Explorer and select "Copy".

Now, open your EES directory (the standard being:

C:\Program Files\EES32\Userlib\LibCO2 (for English version of Windows)
C:\Programme\EES32\Userlib\LibCO2 (for German version of Windows))

and insert the file "LibCO2.dll" by clicking the "Edit" menu in your Explorer and then select "Paste". Answer the question whether you want to replace the file by clicking the "Yes" button.

Now, you have overwritten the file "LibCO2.dll" successfully.

Repeat these steps in order to copy the other files listed above.

Licensing the LibCO2 Property Library

The licensing procedure has to be carried out when Engineering Equation Solver[®] starts up and a FluidEES prompt message appears. In this case, you will see the "License Information" window for LibCO2 (see figure below).

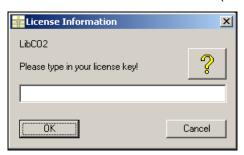


Figure 2.2: "License Information" window

Here you will have to type in the license key which you have obtained from the Zittau/Goerlitz University of Applied Sciences. You can find contact information on the "Content" page of this User's Guide or by clicking the yellow question mark in the "License Information" window. Then the following window will appear:

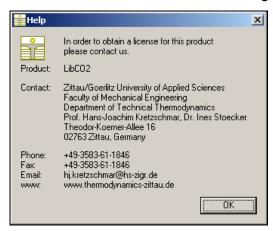


Figure 2.3: "Help" window

If you do not enter a valid license it is still possible to start EES® by clicking "Cancel". In this case, the LibCO2 property library will display the result "–11111111" for every calculation. The "License Information" window will appear every time you use FluidEES unless you uninstall FluidEES according to the description in section 2.3 of this User's Guide. Should you not wish to license the LibCO2 property library, you have to delete the files

LibCO2.ctx LibCO2.dll LibCO2.chm

in the installation folder of FluidEES (the standard being

C:\Program Files\EES32\Userlib\LibCO2 (for English version of Windows)
C:\Programme\EES32\Userlib\LibCO2 (for German version of Windows)).

using an appropriate program such as Windows Explorer® or Norton Commander®.

2.2 The FluidEES Help System

As mentioned earlier, FluidEES also provides detailed online help functions. Information on individual property functions may be accessed via the following steps:

- Click "Options" in the EES menu bar and select "Function Info".
- The "Function Information" window will appear. Select "External routines" and double-click on the entry "LibCO2.DLL".
- A list with calculable functions of the "LibCO2" library appears.
- Find and select the desired function, e.g. "h_ptx_CO2" and click the Function Info button above.

If the "LibCO2.chm" function help cannot be found, confirm the question whether you want to look for it yourself with "Yes." Select the "LibCO2.chm" file in the installation menu of FluidEES in the window which is opened, the standard being

C:\Program Files\EES32\Userlib\LibCO2 (for English version of Windows)

C:\Programme\EES32\Userlib\LibCO2 (for German version of Windows))

and click "Yes" in order to complete the search.

2.3 Example: Calculation of the Specific Enthalpy h = f(p,t,x) for Carbon Dioxide

Now we will calculate, step by step, the specific enthalpy h as a function of total pressure p, temperature t and vapor fraction x for carbon dioxide, using FluidEES with LibCO2 in the Engineering Equation Solver[®].

Please carry out the following instructions:

- Start Engineering Equation Solver (EES).
- The LibCO2 library is loaded by the program automatically.
- It is recommended that you prepare an EES sheet, as shown in Figure 2.4. Note: The units of *p*, *t*, and *x* must correspond to those in Chapter 1.

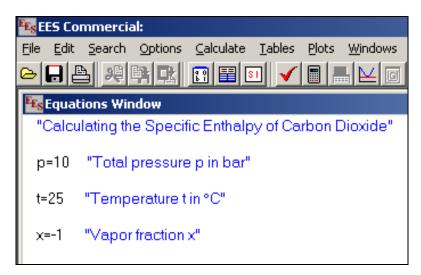


Figure 2.4: Preparing an EES sheet for the calculation

- The values of the function parameters stand for:
 - First operand: Total pressure p = 10 bar (Range of validity: $p = 2.9081875815 \cdot 10^{-10}$ bar... 8000 bar)
 - Second operand: Temperature t = 25 °C (Range of validity: $t = t_{mel}$... 826.85 °C)
 - Third operand: Vapor fraction x = -1

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction *x* are to be considered:

If the state point to be calculated is located in the single phase region (liquid or superheated steam), i.e. pressure p and temperature t are given, x = -1 must be entered as a pro-forma value.

If the state point to be calculated is located in the wet steam region, values between 0 and 1 have to be entered for x (the value 0 for saturated liquid, the value 1 for saturated steam).

Here, it is adequate to enter either the given value for t and p = -1000, or the given value for p and t = -1000, plus the value for x between 0 and 1.

If t and p and x are entered, the program will consider p and t to be appropriate to represent the saturation-line. If this is not the case the calculation for the quantity of the chosen function to be calculated results in -1000.

(CO2 saturation line: $t_{\rm t} = -56.558~{\rm ^{\circ}C}~...~t_{\rm C} = 30.9782~{\rm ^{\circ}C}$ $p_{\rm t} = 5.179618369088~{\rm bar...}~p_{\rm C} = 73.773~{\rm bar})$

Confirm your entry by pressing the "ENTER" key.

Note:

If you run Engineering Equation Solver® on an English version of Windows®, the decimal separator will be a dot (as shown in Figure 2.3 and in the following sample calculation). If you run a German version the decimal separator will be a comma. In other words, EES adapts to the language that is set in the "Regional and Language Options" which can be found in the Windows "Control Panel". You can find additional information on this issue by clicking on "Help" in the EES menu bar and then select "Help Index". Click on "Search" in the window which appears, type "decimal separator" and press the "ENTER" key.

- For calculating h = f(p,t,x) you have to call the function "h_ptx_CO2" of the property library LibCO2 as follows:
- Click on "Options" in the EES menu bar and select "Function Info".
- The "Function Information" window will appear. Select "External routines" and you will see the screen shown here in Figure 2.5.

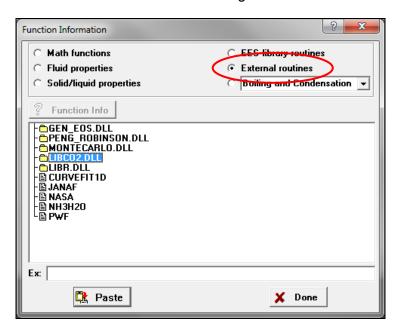


Figure 2.5: "Function Information" window offering different libraries (routines)

- Double-click on the entry "LIBCO2.DLL".
- A list with calculable functions of the "LibCO2" library appears.
- Search and click the "h_ptx_CO2" function (see Figure 2.6) and then click the "Paste" button below.

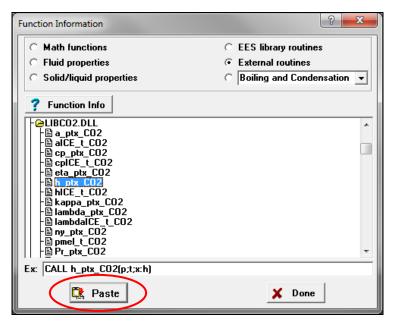


Figure 2.6: Selecting the "h_ptx_CO2" function

- The selected function will be copied and appears in the "Equations Window" (see Figure 2.7).

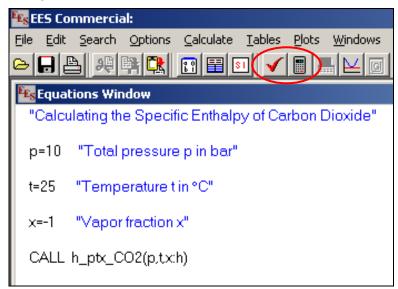


Figure 2.7: "Equations Window" with the call of the property function

- Now, you can check the syntax of the instructions in the "Equations Window" by clicking the symbol in the upper menu bar of EES. The program tests whether or not the syntax is correct. Confirm the "Information" window which appears by clicking the "OK" button.
- Then click the symbol in the upper menu bar of EES to start the calculation.
- Soon you will see the "Calculations Completed" window. Leave this window by clicking the "Continue" button.
- The result for the specific enthalpy h appears in the "Solution" window (see Figure 2.8).

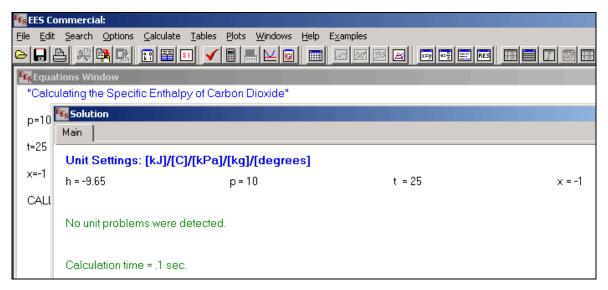


Figure 2.8: "Solution" window showing the result

- You can add units and/or change the number of decimal figures by right-clicking or double-clicking the result or the values of the other variables.
- For our example of the specific enthalpy h, double-click "h = -9.65". The dialog window shown in Figure 2.9 appears.
 - Select "Fixed decimal" in the dialog window and choose 5 decimals. Then type "kJ/kg" next to "Units:" corresponding to the table of property functions in Chapter 1 and click the "OK" button.

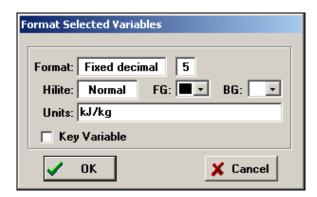


Figure 2.9: Formatting the result

- The same procedure will be done for adding the appropriate units to all variables. Please add the unit bar for the total pressure *p*, C for °C for the temperature *t* and kg/kg for the vapor fraction *x* corresponding to the table of property functions which can be found in Chapter 1.

Note:

You can find additional information on this issue by clicking on "Help" in the EES menu bar and then select "Help Index". Click on "Search" in the window which appears, type "format of variable" and press the "ENTER" key.

- Afterwards, the "Solution" window looks like this (see Figure 2.10):

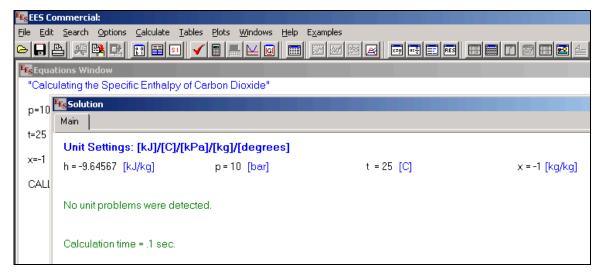


Figure 2.10: "Solution" window with formatted result and variables including units

The calculation of h = f(p,t,x) has thus been carried out.

 \Rightarrow The result in our sample calculation here is: "h = -9.64567". The corresponding unit is kJ/kg (see table of the property functions in Chapter 1).

For further property functions calculable in FluidEES see the function table in Chapter 1.

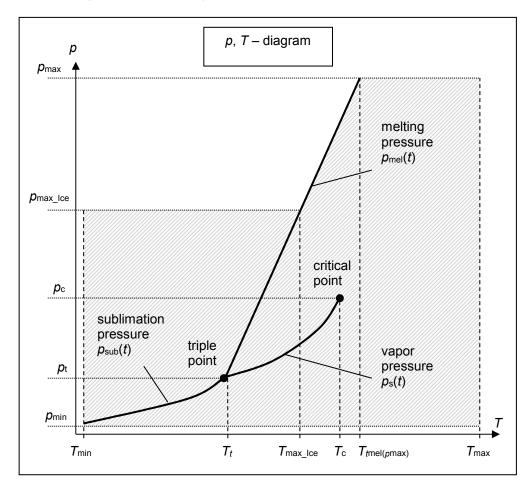
2.4 Removing FluidEES LibCO2

In order to remove the property library "LibCO2" from your hard disk drive in Windows[®], click "Start" in the lower task bar, then "Settings" and "Control Panel".

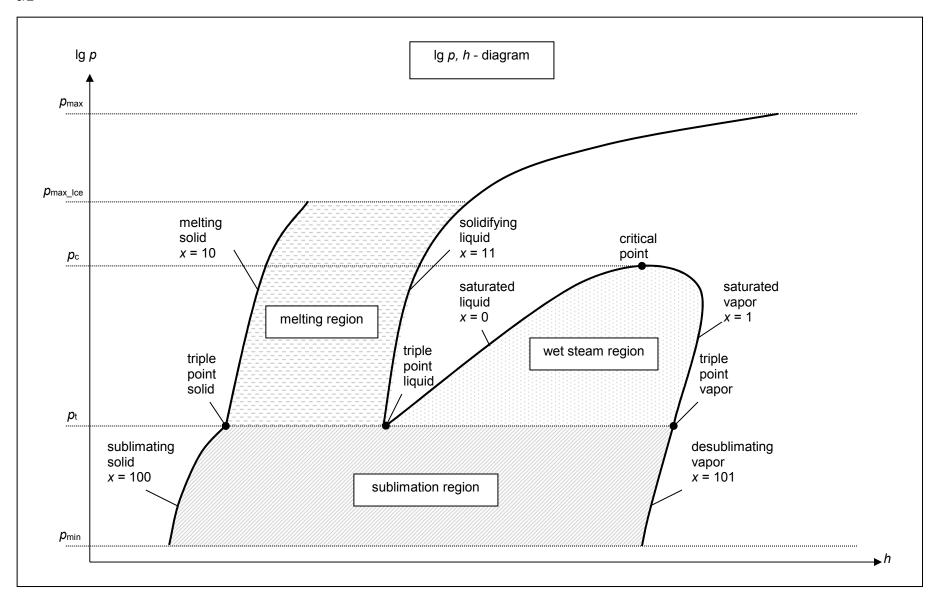
Afterwards double-click on "Add or Remove Programs".

In the list box of the "Add or Remove Programs" menu which appears, select "FluidEES LibCO2" by clicking on it and click the "Change/Remove" button.

In the following dialog box select "Automatic" and then click the "Next>" button.


Then confirm the menu "Perform Uninstall" by clicking the "Finish" button.

Finally, close the "Add or Remove Programs" and "Control Panel" windows.


"FluidEES LibCO2" has now been removed.

3. Program Documentation

3.1 Ranges of Validity

Reference State:			
At $p = 1.01325$ bar and $T = 298.15$ K (25 °C): h = -0.938457860 kJ/kg and $s = -0.00219606205$ kJ/(kg K)			
Factor	Abbreviation	Value and Unit	
Minimum temperature	T _{min} (t _{min})	85 K (–188.15 °C)	
Maximum temperature	T _{max} (t _{max})	1500 K (1226.85 °C)	
Triple temperature	$T_{t}(t_{t})$	216.592 K (-56.558 °C)	
Temperature at the critical point	T _c (t _c)	304.1282 K (30.9782 °C)	
Maximum temperature of solid region	T _{max_lce} (t _{miax_lce})	236.0309 K (-37.119 °C)	
Maximum temperature of melting pressure curve	$T_{\text{mel}}(p_{\text{max}})$ $(t_{\text{mel}}(p_{\text{max}}))$	327.671 K (54.521 °C)	
Minimum pressure	$p_{\min} = p_{\text{sub}}(T_{\min})$	2.9081875815·10 ⁻¹⁰ bar	
Maximum pressure	p _{max}	8000 bar	
Triple pressure	p _t	5.179618369088 bar	
Pressure at the critical point	p _c	73.773 bar	
Maximum pressure of solid region	<i>p</i> max_lce	1000 bar	

3.2 General Property Functions

Thermal Diffusivity a = f(p,t,x)

Function Name: a_ptx_CO2

Subprogram with value of the function: REAL*8 FUNCTION APTXCO2(P,T,X)

for call from Fortran REAL*8 P,T,X

Subprogram with parameter: INTEGER*4 FUNCTION C_APTXCO2(A,P,T,X)

for call from the DLL REAL*8 A,P,T,X

Input Values

P - Pressure p in bar

T - Temperature t in °C

X - *x* in kg / kg (Phase fraction, see the following explanations)

Result

APTXCO2, **A** or **a_ptx_CO2** – Thermal diffusivity $a = \frac{\lambda^* v}{c_p}$ in m²/s

Range of Validity (cp. p,t-diagram in chapter 3.1)

Temperature range: from t_{min} to t_{max}

Pressure range: from p_{min} to p_{max} for liquid and steam

from p_{min} to p_{max_lce} for solid

Details on the phase fraction x

If the state point to be calculated is located in the single phase region (solid, liquid or superheated steam), x=-1 must be entered as a pro-forma value.

The two phase regions wet steam region, melting region and sublimation region are calculated automatically by the subprograms. For this purpose the following facts have to be considered (cp. $\lg p,h$ -diagram chapter 3.1):

1. Wet Vapor Region $(0 \le x \le 1)$:

The phase fraction x equates to the vapor fraction x in the wet steam region in (kg dry saturated steam)/(kg wet steam).

The calculation for *x* values between 0 and 1 is not possible.

If boiling liquid (boiling curve) is to be calculated, the value 0 has to be entered for x. In case of dry saturated steam (dew curve) x = 1 has to be entered.

Concerning pressure and temperature either the given value for t and p = -1000 or the given value for p and t = -1000 and in both cases the value 0 or 1 for t must be entered when calculating boiling liquid or dry saturated steam. If t and t are entered, the program will consider t and t to represent the vapor pressure curve.

Boiling and dew curve: Temperature range from t_1 to t_2

Pressure range from p_t to p_c

2. Melting Region $(10 \le x \le 11)$:

The phase fraction x equates to the liquid fraction x in the melting region in (kg solidifying liquid)/(kg melt), whereas melt is a mixture of melting solid and solidifying liquid.

The calculation for *x* values between 10 and 11 is not possible.

If melting solid (melting curve) is to be calculated, the value 10 has to be entered for x. In case of solidifying liquid (solidification curve) x = 11 has to be entered.

When calculating a melting solid or solidifying liquid it is adequate, Concerning pressure and temperature, to put in either the value given for t and p = -1000 or the value given for p and t = -1000 and the value for p and p and p and p are entered as given values, the program tests whether p and p and p and p and p and p are entered as given values, the program tests whether p and p a

Melting curve: Temperature range from t_t to t_{max_lce}

Pressure range from pt to pmax Ice

Solidification curve: Temperature range from t_t to t_{max} Pressure range from p_t to p_{max}

Only the solidification curve (x = 11) is calculated for pressures p for which applies $p_{\text{max_lce}} .$

3. Sublimation Region $(100 \le x \le 101)$:

The phase fraction x equates to the vapour fraction x in the sublimation region in (kg desublimating steam)/(kg sublimation powder), whereas sublimation powder is a mixture of sublimating solid and desublimating steam.

The calculation for x values between 100 and 101 is not possible.

If sublimating solid is to be calculated, the value 100 has to be entered for x. In case of desublimating steam x = 101 has to be entered.

When calculating a sublimating solid or desublimating steam it is adequate, Concerning pressure and temperature, to put in either the value given for t and p = -1000 or the value given for p and t = -1000 and the value for p and p and p and p are entered as given values the program tests whether p and p

Sublimation and

desublimation curve Temperatur range from t_{\min} to t_{t} Pressure range from p_{\min} to p_{t}

Results for wrong input values

Result APTXCO2 = -1000, A = -1000 or a_ptx_CO2 = -1000 for input values:

Single phase region:

```
Solid, liquid, overheated steam (x = -1):
```

- at $p < p_{min}$ or $p > p_{max}$ or $p > p_{max_lce}$ at Feststoff
 - at $t < t_{min or} t > t_{max}$ or $t > t_{max_lce}$ at Feststoff

Two phase regions:

Wet steam region $(0 \le x \le 1)$:

- at 0 < x < 1, i.e. calculation in the wet steam region not possible!
- at p = -1000 and $t < t_t$ or $t > t_c$
- at t = -1000 and $p < p_t$ or $p > p_c$
- at $p < p_t$ or $p > p_c$
- at $t < t_t$ or $t > t_c$

Melting region ($10 \le x \le 11$):

- at 10 < x < 11, i.e. calculation in the melting region not possible!
- at p = -1000 and $t < t_t$ or $t > t_{max}$ or $t > t_{max_lce}$ at x = 10
- at t = -1000 and $p < p_t$ or $p > p_{max}$ or $p > p_{max_lce}$ at x = 10
- at $p < p_t$ or $p > p_{max}$ or $p > p_{max lce}$ at x = 10
- at $t < t_t$ or $t > t_{max}$ or $t > t_{max_lce}$ at x = 10

Sublimation region (100 \leq $x \leq$ 101):

- at 100 < x < 101, i.e. calculation in the sublimation region not possible!
- at p = -1000 and $t < t_{min}$ or $t > t_{t}$
- at t = -1000 and $p < p_{min}$ or $p > p_t$
- at $p < p_{min}$ or $p > p_t$
- at $t < t_{\min}$ or $t > t_{t}$

References: [2], [3]

Specific Isobaric Heat Capacity $c_p = f(p,t,x)$

Function Name: cp_ptx_CO2

Subprogram with value of the function: REAL*8 FUNCTION CPPTXCO2(P,T,X)

for call from Fortran REAL*8 P,T,X

Subprogram with parameter: INTEGER*4 FUNCTION C_CPPTXCO2(CP,P,T,X)

for call from the DLL REAL*8 CP,P,T,X

Input Values

P – Pressure *p* in bar

T - Temperature t in °C

X - *x* in kg / kg (Phase fraction, see the following explanations)

Result

CPPTXCO2, **CP** or **cp_ptx_CO2** - specific isobaric heat capacity c_p in kJ/(kg K)

Range of Validity (cp. *p*,*t*-diagram in chapter 3.1)

Temperature range: from t_{min} to t_{max}

Pressure range: from p_{min} to p_{max} for liquid and steam

from p_{min} to p_{max_lce} for solid

Details on the phase fraction x

If the state point to be calculated is located in the single phase region (solid, liquid or superheated steam), x=-1 must be entered as a pro-forma value.

The two phase regions wet steam region, melting region and sublimation region are calculated automatically by the subprograms. For this purpose the following facts have to be considered (cp. $\lg p,h$ -diagram chapter 3.1):

1. Wet Vapor Region $(0 \le x \le 1)$:

The phase fraction x equates to the vapor fraction x in the wet steam region in (kg dry saturated steam)/(kg wet steam).

The calculation for x values between 0 and 1 is not possible.

If boiling liquid (boiling curve) is to be calculated, the value 0 has to be entered for x. In case of dry saturated steam (dew curve) x = 1 has to be entered.

Concerning pressure and temperature either the given value for t and p = -1000 or the given value for p and t = -1000 and in both cases the value 0 or 1 for t must be entered when calculating boiling liquid or dry saturated steam. If t and t are entered, the program will consider t and t to represent the vapor pressure curve.

Boiling and dew curve: Temperature range from t_1 to t_2

Pressure range from p_t to p_c

2. Melting Region $(10 \le x \le 11)$:

The phase fraction x equates to the liquid fraction x in the melting region in (kg solidifying liquid)/(kg melt), whereas melt is a mixture of melting solid and solidifying liquid.

The calculation for x values between 10 and 11 is not possible.

If melting solid (melting curve) is to be calculated, the value 10 has to be entered for x. In case of solidifying liquid (solidification curve) x = 11 has to be entered.

When calculating a melting solid or solidifying liquid it is adequate, Concerning pressure and temperature, to put in either the value given for t and p = -1000 or the value given for p and t = -1000 and the value for p and p and p and p are entered as given values, the program tests whether p and p and p and p and p and p are entered as given values, the program tests whether p and p a

Melting curve: Temperature range from t_t to t_{max_lce} Pressure range from p_t to p_{max_lce}

Solidification curve: Temperature range from t_t to t_{max}

Pressure range from p_t to p_{max}

Only the solidification curve (x = 11) is calculated for pressures p for which applies p_{max} lee .

3. Sublimation Region $(100 \le x \le 101)$:

The phase fraction x equates to the vapor fraction x in the sublimation region in (kg desublimating steam)/(kg sublimation powder), whereas sublimation powder is a mixture of sublimating solid and desublimating steam.

The calculation for x values between 100 and 101 is not possible.

If sublimating solid is to be calculated, the value 100 has to be entered for x. In case of desublimating steam x = 101 has to be entered.

When calculating a sublimating solid or desublimating steam it is adequate, Concerning pressure and temperature, to put in either the value given for t and p = -1000 or the value given for p and t = -1000 and the value for p and p and p and p are entered as given values the program tests whether p and p

Sublimation and

desublimation curve Temperatur range from t_{min} to t_t Pressure range from p_{min} to p_t

Results for wrong input values

Result CPPTXCO2 = -1000, CP = -1000 or cp_ptx_CO2 = -1000 for input values:

Single phase region:

```
Solid, liquid, overheated steam (x = -1):
```

- at $p < p_{min}$ or $p > p_{max}$ or $p > p_{max_lce}$ when calculating solid
- at $t < t_{\min}$ or $t > t_{\max}$ or $t > t_{\max_lce}$ when calculating solid

Two phase regions:

Wet steam region $(0 \le x \le 1)$:

- at 0 < x < 1, i.e. calculation in the wet steam region not possible!
- at p = -1000 and $t < t_t$ or $t > t_c$
- at t = -1000 and $p < p_t$ or $p > p_c$
- at $p < p_t$ or $p > p_c$
- at $t < t_t$ or $t > t_c$

Melting region ($10 \le x \le 11$):

- at 10 < x < 11, i.e. calculation in the melting region not possible!
- at p = -1000 and $t < t_t$ or $t > t_{max}$ or $t > t_{max_lce}$ at x = 10
- at t = -1000 and $p < p_t$ or $p > p_{max}$ or $p > p_{max_lce}$ at x = 10
- at $p < p_t$ or $p > p_{max}$ or $p > p_{max_lce}$ at x = 10
- at $t < t_t$ or $t > t_{max}$ or $t > t_{max lce}$ at x = 10

Sublimation region (100 $\leq x \leq$ 101):

- at 100 < x < 101, i.e. calculation in the sublimation region not possible!
- at p = -1000 and $t < t_{min}$ or $t > t_{t}$
- at t = -1000 and $p < p_{min}$ or $p > p_{t}$
- at $p < p_{min}$ or $p > p_t$
- at $t < t_{\min}$ or $t > t_{t}$

References: [2]

Dynamic Viscosity $\eta = f(p,t,x)$

Function Name: eta_ptx_CO2

Subprogram with value of the function: REAL*8 FUNCTION ETAPTCO2(P,T,X)

for call from Fortran REAL*8 P,T,X

Subprogram with parameter: INTEGER*4 FUNCTION C_ETAPTCO2(ETA,P,T,X)

for call from the DLL REAL*8 ETA,P,T,X

Input Values

 \mathbf{P} – Pressure p in bar

T - Temperature t in °C

X - *x* in kg / kg (Phase fraction, see the following explanations)

Result

ETAPTXCO2, **ETA** or **eta_ptx_CO2** – dynamic viscosity η in Pa s

Range of Validity (cp. *p*,*t*-diagram in chapter 3.1)

Temperature range: from t_t to t_{max}

Pressure range: from p_{min} to p_{max} for liquid and steam

Details on the phase fraction x

If the state point to be calculated is located in the single phase region (liquid or superheated steam), x=-1 must be entered as a pro-forma value. Calculating solid is not possible.

The two phase regions wet steam region, melting region and sublimation region are calculated automatically by the subprograms. For this purpose the following facts have to be considered (cp. $\lg p,h$ -diagram chapter 3.1):

1. Wet Vapor Region $(0 \le x \le 1)$:

The phase fraction x equates to the vapor fraction x in the wet steam region in (kg dry saturated steam)/(kg wet steam).

The calculation for *x* values between 0 and 1 is not possible.

If boiling liquid (boiling curve) is to be calculated, the value 0 has to be entered for x. In case of dry saturated steam (dew curve) x = 1 has to be entered.

Concerning pressure and temperature either the given value for t and p = -1000 or the given value for p and t = -1000 and in both cases the value 0 or 1 for t must be entered when calculating boiling liquid or dry saturated steam. If t and t are entered, the program will consider t and t to represent the vapor pressure curve.

Boiling and dew curve: Temperature range from t_t to t_c Pressure range from p_t to p_c

2. Melting Region $(10 \le x \le 11)$:

The phase fraction x equates to the liquid fraction x in the melting region in (kg solidifying liquid)/(kg melt), whereas melt is a mixture of melting solid and solidifying liquid.

The calculation for x values of x = 10 (melting curve) and between 10 and 11 is not possible. If solidifying liquid (solidification curve) is to be calculated, the value 11 has to be entered for x. Concerning pressure and temperature either the given value for t and t = -1000 or the given value for t and t = -1000 and in both cases the value 11 for t must be entered when calculating solidifying liquid.

If p and t and x are entered as given values, the program tests whether p and t fulfil the melting pressure curve.

Melting curve: Temperature range from t_t to t_{max_lce} Pressure range from p_t to p_{max_lce}

Solidification curve: Temperature range from t_t to t_{max} Pressure range from p_t to p_{max}

3. Sublimation Region $(100 \le x \le 101)$:

The phase fraction x equates to the vapor fraction x in the sublimation region in (kg desublimating steam)/(kg sublimation powder), whereas sublimation powder is a mixture of sublimating solid and desublimating steam.

The calculation for x values of x = 100 (sublimation curve) and between 100 and 101 is not possible. If desublimating steam (desublimation curve) is to be calculated, the value 101 has to be entered for x. Concerning pressure and temperature either the given value for t = -1000 or the given value for t = -1000 and in both cases the value 101 for t = -1000 and in both cases the value 101 for t = -1000 and t = -1

Sublimation and

desublimation curve Temperatur range from t_{min} to t_{t} Pressure range from p_{min} to p_{t}

Results for wrong input values

```
Result ETAPTXCO2 = -1000, ETA = -1000 or eta_ptx_CO2 = -1000 for input values:
```

Single phase region:

```
Liquid and overheated steam (x = -1):

- at p < p_{min} or p > p_{max}

- t t < t_{mt} or t > t_{max}
```

Two phase regions:

```
Wet steam region (0 \le x \le 1):
```

- at 0 < x < 1, i.e. calculation in the wet steam region not possible!
- at p = -1000 and $t < t_t \text{ or } t > t_c$
- at t = -1000 and $p < p_t$ or $p > p_c$
- at $p < p_t$ or $p > p_c$
- at $t < t_t$ or $t > t_c$

Melting region ($10 \le x \le 11$):

- at 10 < x < 11, i.e. calculation on the melting curve and in the melting region not possible!
- at p = -1000 and $t < t_t$ or $t > t_{max}$ or $t > t_{max lce}$ at x = 10
- at t = -1000 and $p < p_t$ or $p > p_{max}$ or $p > p_{max_lce}$ at x = 10
- at $p < p_t$ or $p > p_{\text{max}}$ or $p > p_{\text{max_lce}}$ at x = 10
- at $t < t_t$ or $t > t_{max}$ or $t > t_{max lce}$ at x = 10

Sublimation region (100 $\leq x \leq$ 101):

- at $100 \le x < 101$, i.e. calculation on the sublimation curve and in the sublimation region not possible!
- at p = -1000 and $t < t_{min}$ or $t > t_{t}$
- at t = -1000 and $p < p_{min}$ or $p > p_{t}$
- at $p < p_{min}$ or $p > p_{t}$
- at $t < t_{\min}$ or $t > t_{t}$

References: [2], [3]

Specific Enthalpy h = f(p,t,x)

Function Name: h_ptx_CO2

Subprogram with value of the function: REAL*8 FUNCTION HPTXCO2(P,T,X)

for call from Fortran REAL*8 P,T,X

Subprogram with parameter: INTEGER*4 FUNCTION C_HPTXCO2(H,P,T,X)

for call from the DLL REAL*8 H,P,T,X

Input Values

 \mathbf{P} – Pressure p in bar

T - Temperature t in °C

X - *x* in kg / kg (Phase fraction, see the following explanations)

Result

HPTXCO2, H or h_ptx_CO2 - specific enthalpy h in kJ/kg

Range of Validity (cp. *p*,*t*-diagram in chapter 3.1)

Temperature range: from t_{min} to t_{max}

Pressure range: from p_{min} to p_{max} for liquid and steam

from p_{min} to p_{max_lce} for solid

Details on the phase fraction x

If the state point to be calculated is located in the single phase region (solid, liquid or superheated steam), x=-1 must be entered as a pro-forma value.

The two phase regions wet steam region, melting region and sublimation region are calculated automatically by the subprograms. For this purpose the following facts have to be considered (cp. $\lg p,h$ -diagram chapter 3.1):

1. Wet Vapor Region $(0 \le x \le 1)$:

The phase fraction x equates to the vapor fraction x in the wet steam region in (kg dry saturated steam)/(kg wet steam).

If the state point to be calculated is located in the wet steam region, a value between 0 and 1 must be entered for x.

If boiling liquid (boiling curve) is to be calculated, the value 0 has to be entered for x. In case of dry saturated steam (dew curve) x = 1 has to be entered.

Concerning pressure and temperature either the given value for t and p = -1000 or the given value for p and t = -1000 and in both cases the value 0 or 1 for t must be entered when calculating boiling liquid or dry saturated steam. If t and t are entered, the program will consider t and t to represent the vapor pressure curve.

Boiling and dew curve: Temperature range from t_t to t_c

Pressure range from p_t to p_c

2. Melting Region $(10 \le x \le 11)$:

The phase fraction x equates to the liquid fraction x in the melting region in (kg solidifying liquid)/(kg melt), whereas melt is a mixture of melting solid and solidifying liquid.

If the state point to be calculated is located in the melting region, a value between 10 and 11 must be entered for x.

If melting solid (melting curve) is to be calculated, the value 10 has to be entered for x. In case of solidifying liquid (solidification curve) x = 11 has to be entered.

When calculating a melting solid or solidifying liquid it is adequate, Concerning pressure and temperature, to put in either the value given for t and p = -1000 or the value given for p and t = -1000 and the value for p and p and p and p are entered as given values, the program tests whether p and p and p and p and p and p are entered as given values, the program tests whether p and p a

Melting curve: Temperature range from t_t to $t_{max lce}$

Pressure range from p_t to $p_{\text{max_lce}}$

Solidification curve: Temperature range from t_t to t_{max} Pressure range from p_t to p_{max}

Only the solidification curve (x = 11) is calculated for pressures p for which applies p_{max} les .

3. Sublimation Region $(100 \le x \le 101)$:

The phase fraction x equates to the vapor fraction x in the sublimation region in (kg desublimating steam)/(kg sublimation powder), whereas sublimation powder is a mixture of sublimating solid and desublimating steam.

If the state point to be calculated is located in the melting region, a value between 100 and 101 must be entered for x.

If sublimating solid is to be calculated, the value 100 has to be entered for x. In case of desublimating steam x = 101 has to be entered.

When calculating a sublimating solid or desublimating steam it is adequate, Concerning pressure and temperature, to put in either the value given for t and p = -1000 or the value given for p and t = -1000 and the value for t (t = 100 or t = 101). If t and t are entered as given values the program tests whether t and t fulfil the sublimation-pressure-curve.

Sublimation and

desublimation curve Temperatur range from t_{min} to t_{t} Pressure range from p_{min} to p_{t}

Results for wrong input values

Result HPTXCO2 = -1000, H = -1000 or h_ptx_CO2 = -1000 for input values:

Single phase region:

```
Solid, liquid, overheated steam (x = -1):
```

- at $p < p_{min}$ or $p > p_{max}$ or $p > p_{max_lce}$ when calculating solid
- at $t < t_{min}$ or $t > t_{max}$ or $t > t_{max lce}$ when calculating solid

Two phase regions:

```
Wet steam region (0 \le x \le 1):
```

- at p = -1000 and $t < t_t$ or $t > t_c$
- at t = -1000 and $p < p_t$ or $p > p_c$
- at $p < p_t$ or $p > p_c$
- at $t < t_t$ or $t > t_c$

Melting region ($10 \le x \le 11$):

- at p = -1000 and $t < t_t$ or $t > t_{max}$ or $t > t_{max_lce}$ at x = 10
- at t = -1000 and $p < p_t$ or $p > p_{max}$ or $p > p_{max lce}$ at x = 10
- at $p < p_t$ or $p > p_{\text{max}}$ or $p > p_{\text{max_lce}}$ at x = 10
- at $t < t_t$ or $t > t_{max}$ or $t > t_{max_lce}$ at x = 10

Sublimation region (100 $\leq x \leq$ 101):

- at p = -1000 and $t < t_{min}$ or $t > t_{t}$
- at t = -1000 and $p < p_{min}$ or $p > p_{t}$
- at $p < p_{min}$ or $p > p_t$
- at $t < t_{\min}$ or $t > t_{t}$

References: [2]

Isentropic Exponent K = f(p,t,x)

Function Name: kappa_ptx_CO2

Subprogram with value of the function: REAL*8 FUNCTION KAPTXCO2(P,T,X)

for call from Fortran REAL*8 P,T,X

Subprogram with parameter: INTEGER*4 FUNCTION C KAPTXCO2(KAP,P,T,X)

for call from the DLL REAL*8 KAP,P,T,X

Input Values

 \mathbf{P} – Pressure p in bar

T - Temperature t in °C

X - *x* in kg / kg (Phase fraction, see the following explanations)

Result

KAP_PTX_CO2, **KAP** or **kappa_ptx_CO2** – Isentropic exponent
$$\kappa = \frac{w^2}{p^* v}$$

Range of Validity (cp. p,t-diagram in chapter 3.1)

Temperature range: from t_t to t_{max}

Pressure range: from p_{min} to p_{max} for liquid and steam

Details on the phase fraction x

If the state point to be calculated is located in the single phase region (liquid or superheated steam), x=-1 must be entered as a pro-forma value. Calculating solid is not possible.

The two phase regions wet steam region, melting region and sublimation region are calculated automatically by the subprograms. For this purpose the following facts have to be considered (cp. $\lg p,h$ -diagram chapter 3.1):

1. Wet Vapor Region $(0 \le x \le 1)$:

The phase fraction x equates to the vapor fraction x in the wet steam region in (kg dry saturated steam)/(kg wet steam).

The calculation for *x* values between 0 and 1 is not possible.

If boiling liquid (boiling curve) is to be calculated, the value 0 has to be entered for x. In case of dry saturated steam (dew curve) x = 1 has to be entered.

Concerning pressure and temperature either the given value for t and p = -1000 or the given value for p and t = -1000 and in both cases the value 0 or 1 for t must be entered when calculating boiling liquid or dry saturated steam. If t and t are entered, the program will consider t and t to represent the vapor pressure curve.

Boiling and dew curve: Temperature range from $t_{\rm t}$ to $t_{\rm c}$

Pressure range from p_t to p_c

2. Melting Region $(10 \le x \le 11)$:

The phase fraction x equates to the liquid fraction x in the melting region in (kg solidifying liquid)/(kg melt), whereas melt is a mixture of melting solid and solidifying liquid.

The calculation for x values of x = 10 (melting curve) and between 10 and 11 is not possible. If solidifying liquid (solidification curve) is to be calculated, the value 11 has to be entered for x. Concerning pressure and temperature either the given value for t and t = -1000 or the given value for t and t = -1000 and in both cases the value 11 for t must be entered when calculating solidifying liquid. If t and t are entered as given values, the program tests whether t and t fulfil the melting pressure curve.

Melting curve: Temperature range from t_t to t_{max_lce} Pressure range from p_t to p_{max_lce}

Solidification curve: Temperature range from t_t to t_{max}

Pressure range from p_t to p_{max}

3. Sublimation Region $(100 \le x \le 101)$:

The phase fraction x equates to the vapor fraction x in the sublimation region in (kg desublimating steam)/(kg sublimation powder), whereas sublimation powder is a mixture of sublimating solid and desublimating steam.

The calculation for x values of x = 100 (sublimation curve) and between 100 and 101 is not possible. If desublimating steam (desublimation curve) is to be calculated, the value 101 has to be entered for x. Concerning pressure and temperature either the given value for t = -1000 or the given value for t = -1000 and in both cases the value 101 for t = -1000 and in both cases the value 101 for t = -1000 and t = -1

Sublimation and

desublimation curve Temperatur range from t_{min} to t_{t} Pressure range from p_{min} to p_{t}

Results for wrong input values

```
Result KAP_PTX_CO2, KAP = -1000 or kappa_ptx_CO2 = -1000 for input values:
```

Single phase region:

```
Liquid and overheated steam (x = -1):

- at p < p_{min} or p > p_{max}

- at t < t_t or t > t_{max}
```

Two phase regions:

```
Wet steam region (0 \le x \le 1):
```

- at 0 < x < 1, i.e. calculation in the wet steam region not possible!
- at p = -1000 and $t < t_t$ or $t > t_c$
- at t = -1000 and $p < p_t$ or $p > p_c$
- at $p < p_t$ or $p > p_c$
- at $t < t_t$ or $t > t_c$

Melting region ($10 \le x \le 11$):

- at 10 < x < 11, i.e. calculation on the melting curve and in the melting region not possible!
- at p = -1000 and $t < t_t$ or $t > t_{max}$ or $t > t_{max lce}$ at x = 10
- at t = -1000 and $p < p_t$ or $p > p_{max}$ or $p > p_{max_lce}$ at x = 10
- at $p < p_t$ or $p > p_{\text{max}}$ or $p > p_{\text{max_lce}}$ at x = 10
- at $t < t_t$ or $t > t_{max}$ or $t > t_{max lce}$ at x = 10

Sublimation region (100 $\leq x \leq$ 101):

- at $100 \le x < 101$, i.e. calculation on the sublimation curve and in the sublimation region not possible!
- at p = -1000 and $t < t_{min}$ or $t > t_{t}$
- at t = -1000 and $p < p_{min}$ or $p > p_{t}$
- at $p < p_{min}$ or $p > p_{t}$
- at $t < t_{\min}$ or $t > t_{t}$

References: [2]

Thermal Conductivity $\lambda = f(p,t,x)$

Function Name: lambda_ptx_CO2

Subprogram with value of the function: REAL*8 FUNCTION LAMPTCO2(P,T,X)

for call from Fortran REAL*8 P,T,X

Subprogram with parameter: INTEGER*4 FUNCTION C_LAMPTXCO2(LAM,P,T,X)

for call from the DLL REAL*8 LAM,P,T,X

Input Values

P – Pressure *p* in bar

T - Temperature t in °C

X - x in kg / kg (Phase fraction, see the following explanations)

Result

LAMPTXCO2, **LAM** or **lambda_ptx_CO2** – Thermal conductivity λ in W/m K

Range of Validity (cp. *p*,*t*-diagram in chapter 3.1)

Temperature range: from t_{min} to t_{max}

Pressure range: from p_{min} to p_{max} for liquid and steam

from p_{min} to p_{max_lce} for solid

Details on the phase fraction x

If the state point to be calculated is located in the single phase region (solid, liquid or superheated steam), x=-1 must be entered as a pro-forma value.

The two phase regions wet steam region, melting region and sublimation region are calculated automatically by the subprograms. For this purpose the following facts have to be considered (cp. $\lg p,h$ -diagram chapter 3.1):

1. Wet Vapor Region $(0 \le x \le 1)$:

The phase fraction x equates to the vapor fraction x in the wet steam region in (kg dry saturated steam)/(kg wet steam).

The calculation for *x* values between 0 and 1 is not possible.

If boiling liquid (boiling curve) is to be calculated, the value 0 has to be entered for x. In case of dry saturated steam (dew curve) x = 1 has to be entered.

Concerning pressure and temperature either the given value for t and p = -1000 or the given value for p and t = -1000 and in both cases the value 0 or 1 for t must be entered when calculating boiling liquid or dry saturated steam. If t and t are entered, the program will consider t and t to represent the vapor pressure curve.

Boiling and dew curve: Temperature range from t_1 to t_2 Pressure range from p_1 to p_2

2. Melting Region $(10 \le x \le 11)$:

The phase fraction x equates to the liquid fraction x in the melting region in (kg solidifying liquid)/(kg melt), whereas melt is a mixture of melting solid and solidifying liquid.

The calculation for x values between 10 and 11 is not possible.

If melting solid (melting curve) is to be calculated, the value 10 has to be entered for x. In case of solidifying liquid (solidification curve) x = 11 has to be entered.

When calculating a melting solid or solidifying liquid it is adequate, Concerning pressure and temperature, to put in either the value given for t and p = -1000 or the value given for p and t = -1000 and the value for p and p and p and p are entered as given values, the program tests whether p and p and p and p and p and p are entered as given values, the program tests whether p and p a

Melting curve: Temperature range from t_t to t_{max_lce} Pressure range from p_t to p_{max_lce} Solidification curve: Temperature range from t_t to t_{max} Pressure range from p_t to p_{max}

Only the solidification curve (x = 11) is calculated for pressures p for which applies $p_{\text{max_lce}} .$

3. Sublimation Region $(100 \le x \le 101)$:

The phase fraction x equates to the vapor fraction x in the sublimation region in (kg desublimating steam)/(kg sublimation powder), whereas sublimation powder is a mixture of sublimating solid and desublimating steam.

The calculation for x values between 100 and 101 is not possible.

If sublimating solid is to be calculated, the value 100 has to be entered for x. In case of desublimating steam x = 101 has to be entered.

When calculating a sublimating solid or desublimating steam it is adequate, Concerning pressure and temperature, to put in either the value given for t and p = -1000 or the value given for p and t = -1000 and the value for p and p and p and p are entered as given values the program tests whether p and p

Sublimation and

desublimation curve Temperatur range from t_{min} to t_{t} Pressure range from p_{min} to p_{t}

Results for wrong input values

Result LAMPTXCO2 = - 1000, LAM = -1000 or lambda_ptx_CO2 = - 1000 for input values:

Single phase region:

```
Solid, liquid, overheated steam (x = -1):
```

- at $p < p_{min}$ or $p > p_{max}$ or $p > p_{max_lce}$ when calculating solid
- at $t < t_{min}$ or $t > t_{max}$ or $t > t_{max_lce}$ when calculating solid

Two phase regions:

Wet steam region $(0 \le x \le 1)$:

- at 0 < x < 1, i.e. calculation in the wet steam region not possible!
- at p = -1000 and $t < t_t$ or $t > t_c$
- at t = -1000 and $p < p_t$ or $p > p_c$
- at $p < p_t$ or $p > p_c$
- at $t < t_t$ or $t > t_c$

Melting region (10 $\leq x \leq$ 11):

- at 10 < x < 11, i.e. calculation in the melting region not possible!
- at p = -1000 and $t < t_t$ or $t > t_{max}$ or $t > t_{max lce}$ at x = 10
- at t = -1000 and $p < p_t$ or $p > p_{max}$ or $p > p_{max_lce}$ at x = 10
- at $p < p_t$ or $p > p_{max}$ or $p > p_{max lce}$ at x = 10
- at $t < t_t$ or $t > t_{max}$ or $t > t_{max_lce}$ at x = 10

Sublimation region (100 \leq x \leq 101):

- at 100 < x < 101, i.e. calculation in the sublimation region not possible!
- at p = -1000 and $t < t_{min}$ or $t > t_{t}$
- at t = -1000 and $p < p_{min}$ or $p > p_{t}$
- at $p < p_{min}$ or $p > p_t$
- at $t < t_{\min}$ or $t > t_{t}$

References: [2], [3]

Kinematic Viscosity v = f(p,t,x)

Function Name: ny_ptx_CO2

Subprogram with value of the function: REAL*8 FUNCTION NYPTXCO2(P,T,X)

for call from Fortran REAL*8 P,T,X

Subprogram with parameter: INTEGER*4 FUNCTION C_NYPTXCO2(NY,P,T,X)

for call from the DLL REAL*8 NY,P,T,X

Input Values

 \mathbf{P} – Pressure p in bar

T - Temperature t in °C

X - *x* in kg / kg (Phase fraction, see the following explanations)

Result

NYPTXCO2, **NY** or **ny_ptx_CO2** – Kinematic viscosity $v = \eta * v$ in m²/s

Range of Validity (cp. p,t-diagram in chapter 3.1)

Temperature range: from t_t to t_{max}

Pressure range: from p_{min} to p_{max} for liquid and steam

Details on the phase fraction x

If the state point to be calculated is located in the single phase region (liquid or superheated steam), x=-1 must be entered as a pro-forma value. Calculating solid is not possible.

The two phase regions wet steam region, melting region and sublimation region are calculated automatically by the subprograms. For this purpose the following facts have to be considered (cp. $\lg p,h$ -diagram chapter 3.1):

1. Wet Vapor Region $(0 \le x \le 1)$:

The phase fraction x equates to the vapor fraction x in the wet steam region in (kg dry saturated steam)/(kg wet steam).

The calculation for *x* values between 0 and 1 is not possible.

If boiling liquid (boiling curve) is to be calculated, the value 0 has to be entered for x. In case of dry saturated steam (dew curve) x = 1 has to be entered.

Concerning pressure and temperature either the given value for t and p = -1000 or the given value for p and t = -1000 and in both cases the value 0 or 1 for x must be entered when calculating boiling liquid or dry saturated steam. If p and t and t are entered, the program will consider p and t to represent the vapor pressure curve.

Boiling and dew curve: Temperature range from t_t to t_c Pressure range from p_t to p_c

2. Melting Region $(10 \le x \le 11)$:

The phase fraction x equates to the liquid fraction x in the melting region in (kg solidifying liquid)/(kg melt), whereas melt is a mixture of melting solid and solidifying liquid.

The calculation for x values of x = 10 (melting curve) and between 10 and 11 is not possible. If solidifying liquid (solidification curve) is to be calculated, the value 11 has to be entered for x. Concerning pressure and temperature either the given value for t and p = -1000 or the given value for p and t = -1000 and in both cases the value 11 for t must be entered when calculating solidifying liquid. If t and t are entered as given values, the program tests whether t and t fulfil the melting pressure curve.

Melting curve: Temperature range from t_t to t_{max_lce} Pressure range from p_t to p_{max_lce}

Solidification curve: Temperature range from t_t to t_{max} Pressure range from p_t to p_{max}

3. Sublimation Region $(100 \le x \le 101)$:

The phase fraction x equates to the vapor fraction x in the sublimation region in (kg desublimating steam)/(kg sublimation powder), whereas sublimation powder is a mixture of sublimating solid and desublimating steam.

The calculation for x values of x = 100 (sublimation curve) and between 100 and 101 is not possible. If desublimating steam (desublimation curve) is to be calculated, the value 101 has to be entered for x. Concerning pressure and temperature either the given value for t = -1000 or the given value for t = -1000 and in both cases the value 101 for t = -1000 and in both cases the value 101 for t = -1000 and t = -1

Sublimation and

desublimation curve Temperatur range from t_{min} to t_{t} Pressure range from p_{min} to p_{t}

Results for wrong input values

```
Result NYPTXCO2 = -1000, NY = -1000 or ny_ptx_CO2 = -1000 for input values:
```

Single phase region:

```
Liquid and overheated steam (x = -1):

- at p < p_{min} or p > p_{max}

- at t < t_t or t > t_{max}
```

Two phase regions:

```
Wet steam region (0 \le x \le 1):
```

- at 0 < x < 1, i.e. calculation in the wet steam region not possible!
- at p = -1000 and $t < t_t$ or $t > t_c$
- at t = -1000 and $p < p_t$ or $p > p_c$
- at $p < p_t$ or $p > p_c$
- at $t < t_t$ or $t > t_c$

Melting region ($10 \le x \le 11$):

- at 10 < x < 11, i.e. calculation on the melting curve and in the melting region not possible!
- at p = -1000 and $t < t_t$ or $t > t_{max}$ or $t > t_{max lce}$ at x = 10
- at t = -1000 and $p < p_t$ or $p > p_{max}$ or $p > p_{max_lce}$ at x = 10
- at $p < p_t$ or $p > p_{\text{max}}$ or $p > p_{\text{max_lce}}$ at x = 10
- at $t < t_t$ or $t > t_{max}$ or $t > t_{max lce}$ at x = 10

Sublimation region (100 $\leq x \leq$ 101):

- at $100 \le x < 101$, i.e. calculation on the sublimation curve and in the sublimation region not possible!
- at p = -1000 and $t < t_{min}$ or $t > t_{t}$
- at t = -1000 and $p < p_{min}$ or $p > p_{t}$
- at $p < p_{min}$ or $p > p_t$
- at $t < t_{\min}$ or $t > t_{t}$

References: [2], [3]

Melting Pressure $p_{mel} = f(t)$

Function Name: pmel_t_CO2

Subprogram with value of the function: REAL*8 FUNCTION PMELCO2(T)

for call from Fortran REAL*8 T

Subprogram with parameter: INTEGER*4 FUNCTION C_PMELCO2(PMEL,T)

for call from the DLL REAL*8 PMEL,P,T,X

Input Values

T - Temperature t in °C

Result

PMELCO2, **PMEL** or **pmel_t_CO2** – Melting pressure p_{mel} in bar

Range of Validity (cp. *p,t*-diagram in chapter 3.1)

Temperature range: from t_t to $t_{mel}(p_{max})$

Results for wrong input values

Result PMELCO2 = -1000, PMEL = -1000 or pmel_t_CO2 = -1000 for input values:

- at $t < t_t \text{ or } t > t_{mel}(p_{max})$

References: [2]

Sublimation Pressure $p_{sub} = f(t)$

Function Name: psub_t_CO2

Subprogram with value of the function: REAL*8 FUNCTION PSUBCO2(T)

for call from Fortran REAL*8 T

Subprogram with parameter: INTEGER*4 FUNCTION C_PSUBCO2(PSUB,T)

for call from the DLL REAL*8 PSUB,P,T,X

Input Values

T - Temperature t in °C

Result

 ${\bf PSUBCO2}, {\bf PSUB} \ {\rm or} \ {\bf psub_t_CO2} - {\rm Sublimation} \ {\rm pressure} \ p_{\rm sub} \ {\rm in} \ {\rm bar}$

Range of Validity (cp. p,t-diagram in chapter 3.1)

Temperature range: from t_{min} to t_{t}

Results for wrong input values

Result PSUBCO2 = -1000, PSUB = -1000 or psub_t_CO2 = -1000 for input values:

- at $t < t_{\min}$ or $t > t_{c}$

References: [2]

Prandtl-Number Pr = f(p,t,x)

Function Name: Pr_ptx_CO2

Subprogram with value of the function: REAL*8 FUNCTION PRPTXCO2(P,T,X)

for call from Fortran REAL*8 P,T,X

Subprogram with parameter: INTEGER*4 FUNCTION C PRPTXCO2(PR,P,T,X)

for call from the DLL REAL*8 PR,P,T,X

Input Values

P - Pressure p in bar

T - Temperature t in °C

X - *x* in kg / kg (Phase fraction, see the following explanations)

Result

PRPTXCO2, **PR** or **Pr_ptx_CO2** – Prandtl-Number
$$Pr = \frac{\eta * c_p}{\lambda}$$

Range of Validity (cp. p,t-diagram in chapter 3.1)

Temperature range: from t_t to t_{max}

Pressure range: from p_{min} to p_{max} for liquid and steam

Details on the phase fraction x

If the state point to be calculated is located in the single phase region (liquid or superheated steam), x=-1 must be entered as a pro-forma value. Calculating solid is not possible.

The two phase regions wet steam region, melting region and sublimation region are calculated automatically by the subprograms. For this purpose the following facts have to be considered (cp. $\lg p,h$ -diagram chapter 3.1):

1. Wet Vapor Region $(0 \le x \le 1)$:

The phase fraction x equates to the vapor fraction x in the wet steam region in (kg dry saturated steam)/(kg wet steam).

The calculation for *x* values between 0 and 1 is not possible.

If boiling liquid (boiling curve) is to be calculated, the value 0 has to be entered for x. In case of dry saturated steam (dew curve) x = 1 has to be entered.

Concerning pressure and temperature either the given value for t and p = -1000 or the given value for p and t = -1000 and in both cases the value 0 or 1 for x must be entered when calculating boiling liquid or dry saturated steam. If p and t are entered, the program will consider p and t to represent the vapor pressure curve.

Boiling and dew curve: Temperature range from $t_{
m t}$ to $t_{
m c}$

Pressure range from p_t to p_c

2. Melting Region $(10 \le x \le 11)$:

The phase fraction x equates to the liquid fraction x in the melting region in (kg solidifying liquid)/(kg melt), whereas melt is a mixture of melting solid and solidifying liquid.

The calculation for x values of x = 10 (melting curve) and between 10 and 11 is not possible. If solidifying liquid (solidification curve) is to be calculated, the value 11 has to be entered for x. Concerning pressure and temperature either the given value for t and t = -1000 or the given value for t and t = -1000 and in both cases the value 11 for t must be entered when calculating solidifying liquid. If t and t are entered as given values, the program tests whether t and t fulfil the melting pressure curve.

Melting curve: Temperature range from t_t to t_{max_lce} Pressure range from p_t to p_{max_lce}

Solidification curve: Temperature range from t_t to t_{max}

Pressure range from p_t to p_{max}

3. Sublimation Region $(100 \le x \le 101)$:

The phase fraction x equates to the vapor fraction x in the sublimation region in (kg desublimating steam)/(kg sublimation powder), whereas sublimation powder is a mixture of sublimating solid and desublimating steam.

The calculation for x values of x = 100 (sublimation curve) and between 100 and 101 is not possible. If desublimating steam (desublimation curve) is to be calculated, the value 101 has to be entered for x. Concerning pressure and temperature either the given value for t = -1000 or the given value for t = -1000 and in both cases the value 101 for t = -1000 and in both cases the value 101 for t = -1000 and t = -1

Sublimation and

desublimation curve Temperatur range from t_{min} to t_{t} Pressure range from p_{min} to p_{t}

Results for wrong input values

Result PRPTXCO2 = -1000, PR = -1000 or Pr_ptx_CO2 = -1000 for input values:

Single phase region:

```
Liquid and overheated steam (x = -1):

- at p < p_{min} or p > p_{max}

- at t < t_t or t > t_{max}
```

Two phase regions:

```
Wet steam region (0 \le x \le 1):
```

- at 0 < x < 1, i.e. calculation in the wet steam region not possible!
- at p = -1000 and $t < t_t$ or $t > t_c$
- at t = -1000 and $p < p_t$ or $p > p_c$
- at $p < p_t$ or $p > p_c$
- at $t < t_t$ or $t > t_c$

Melting region ($10 \le x \le 11$):

- at 10 < x < 11, i.e. calculation on the melting curve and in the melting region not possible!
- at p = -1000 and $t < t_t$ or $t > t_{max}$ or $t > t_{max_lce}$ at x = 10
- at t = -1000 and $p < p_t$ or $p > p_{\text{max}}$ or $p > p_{\text{max_lce}}$ at x = 10
- at $p < p_t$ or $p > p_{max}$ or $p > p_{max lce}$ at x = 10
- at $t < t_t$ or $t > t_{\text{max}}$ or $t > t_{\text{max_lce}}$ at x = 10

Sublimation region (100 $\leq x \leq$ 101):

- at $100 \le x < 101$, i.e. calculation on the sublimation curve and in the sublimation region not possible!
- at p = -1000 and $t < t_{min}$ or $t > t_{t}$
- at t = -1000 and $p < p_{min}$ or $p > p_{t}$
- at $p < p_{min}$ or $p > p_t$
- at $t < t_{\min}$ or $t > t_{t}$

References: [2], [3]

Vapor Pressure $p_s = f(t)$

Function Name: ps_t_CO2

Subprogram with value of the function: **REAL*8 FUNCTION PSTCO2(T)**

for call from Fortran REAL*8 T

Subprogram with parameter: INTEGER*4 FUNCTION C_PSTCO2(PS,T)

for call from the DLL REAL*8 PS,T

Input Values

T - Temperature t in °C

Result

 ${\bf PSTCO2},\,{\bf PS}\;{\rm or}\;{\bf ps_t_CO2}-{\rm Vapor}\;{\rm pressure}\;\rho_{\rm S}\;{\rm in}\;{\rm bar}$

Range of Validity (cp. p,t-diagram in chapter 3.1)

Temperature range: from t_t to t_c

Results for wrong input values

Result **PSTCO2 = -1000**, **PS = -1000** or **ps_t_CO2 = -1000** for input values:

- at $t < t_t \text{ or } t > t_c$

Density $\rho = f(p,t,x)$

Function Name: rho_ptx_CO2

Subprogram with value of the function: REAL*8 FUNCTION ROPTXCO2(P,T,X)

for call from Fortran REAL*8 P,T,X

Subprogram with parameter: INTEGER*4 FUNCTION C ROPTXCO2(RHO,P,T,X)

for call from the DLL REAL*8 RHO,P,T,X

Input Values

 \mathbf{P} – Pressure p in bar

T - Temperature t in °C

X - *x* in kg / kg (Phase fraction, see the following explanations)

Result

RHO_PTX_CO2, **RHO** or **rho_ptx_CO2** - Density ρ in kg/m³

Range of Validity (cp. p,t-diagram in chapter 3.1)

Temperature range: from t_{min} to t_{max}

Pressure range: from p_{min} to p_{max} for liquid and steam

from p_{min} to p_{max_lce} for solid

Details on the phase fraction x

If the state point to be calculated is located in the single phase region (solid, liquid or superheated steam), x=-1 must be entered as a pro-forma value.

The two phase regions wet steam region, melting region and sublimation region are calculated automatically by the subprograms. For this purpose the following facts have to be considered (cp. $\lg p,h$ -diagram chapter 3.1):

1. Wet Vapor Region $(0 \le x \le 1)$:

The phase fraction x equates to the vapor fraction x in the wet steam region in (kg dry saturated steam)/(kg wet steam).

If the state point to be calculated is located in the wet steam region, a value between 0 and 1 must be entered for x.

If boiling liquid (boiling curve) is to be calculated, the value 0 has to be entered for x. In case of dry saturated steam (dew curve) x = 1 has to be entered.

Concerning pressure and temperature either the given value for t and p = -1000 or the given value for p and t = -1000 and in both cases the value 0 or 1 for t must be entered when calculating boiling liquid or dry saturated steam. If t and t are entered, the program will consider t and t to represent the vapor pressure curve.

Boiling and dew curve: Temperature range from \emph{t}_{t} to \emph{t}_{c}

Pressure range from p_t to p_c

2. Melting Region $(10 \le x \le 11)$:

The phase fraction x equates to the liquid fraction x in the melting region in (kg solidifying liquid)/(kg melt), whereas melt is a mixture of melting solid and solidifying liquid.

If the state point to be calculated is located in the melting region, a value between 10 and 11 must be entered for x.

If melting solid (melting curve) is to be calculated, the value 10 has to be entered for x. In case of solidifying liquid (solidification curve) x = 11 has to be entered.

When calculating a melting solid or solidifying liquid it is adequate, Concerning pressure and temperature, to put in either the value given for t and p = -1000 or the value given for p and t = -1000 and the value for p and p and p are entered as given values, the program tests whether p and p and p and p are entered as given values, the program tests

Melting curve: Temperature range from t_t to t_{max_lce}

Pressure range from p_t to $p_{\text{max_lce}}$

Solidification curve: Temperature range from t_t to t_{max} Pressure range from p_t to p_{max}

Only the solidification curve (x = 11) is calculated for pressures p for which applies $p_{\text{max_lce}} .$

3. Sublimation Region $(100 \le x \le 101)$:

The phase fraction x equates to the vapor fraction x in the sublimation region in (kg desublimating steam)/(kg sublimation powder), whereas sublimation powder is a mixture of sublimating solid and desublimating steam.

If the state point to be calculated is located in the melting region, a value between 100 and 101 must be entered for x.

If sublimating solid is to be calculated, the value 100 has to be entered for x. In case of desublimating steam x = 101 has to be entered.

When calculating a sublimating solid or desublimating steam it is adequate, Concerning pressure and temperature, to put in either the value given for t and p = -1000 or the value given for p and t = -1000 and the value for p and p and p and p are entered as given values the program tests whether p and p

Sublimation and

desublimation curve Temperatur range from t_{min} to t_{t} Pressure range from p_{min} to p_{t}

Results for wrong input values

Result RHOPTXCO2 = - 1000, RHO = -1000 or rho_ptx_CO2 = - 1000 for input values:

Single phase region:

```
Solid, liquid, overheated steam (x = -1):
- at p < p_{min} or p > p_{max} or p > p_{max\_lce} when calculating solid
- at t < t_{min} or t > t_{max} or t > t_{max\_lce} when calculating solid
```

Two phase regions:

```
Wet steam region (0 \le x \le 1):

- at p = -1000 and t < t_t or t > t_c

- at t = -1000 and p < p_t or p > p_c

- at p < p_t or p > p_c

- at p < p_t or p > p_c

- at p < p_t or p > p_c

- at p < p_t or p > p_c

- at p < p_t or p > p_t
```

Specific Entropy s = f(p,t,x)

Function Name: s_ptx_CO2

Subprogram with value of the function: REAL*8 FUNCTION SPTXCO2(P,T,X)

for call from Fortran REAL*8 P,T,X

Subprogram with parameter: INTEGER*4 FUNCTION C_SPTXCO2(S,P,T,X)

for call from the DLL REAL*8 S,P,T,X

Input Values

 \mathbf{P} – Pressure p in bar

T - Temperature t in °C

X - *x* in kg / kg (Phase fraction, see the following explanations)

Result

SPTXCO2, S or s_ptx_CO2 - Specific entropy s in kJ/kg K

Range of Validity (cp. p,t-diagram in chapter 3.1)

Temperature range: from t_{min} to t_{max}

Pressure range: from p_{min} to p_{max} for liquid and steam

from p_{min} to p_{max_lce} for solid

Details on the phase fraction x

If the state point to be calculated is located in the single phase region (solid, liquid or superheated steam), x=-1 must be entered as a pro-forma value.

The two phase regions wet steam region, melting region and sublimation region are calculated automatically by the subprograms. For this purpose the following facts have to be considered (cp. $\lg p,h$ -diagram chapter 3.1):

1. Wet Vapor Region $(0 \le x \le 1)$:

The phase fraction x equates to the vapor fraction x in the wet steam region in (kg dry saturated steam)/(kg wet steam).

If the state point to be calculated is located in the wet steam region, a value between 0 and 1 must be entered for x.

If boiling liquid (boiling curve) is to be calculated, the value 0 has to be entered for x. In case of dry saturated steam (dew curve) x = 1 has to be entered.

Concerning pressure and temperature either the given value for t and p = -1000 or the given value for p and t = -1000 and in both cases the value 0 or 1 for x must be entered when calculating boiling liquid or dry saturated steam. If p and t are entered, the program will consider p and t to represent the vapor pressure curve.

Boiling and dew curve: Temperature range from t_t to t_c Pressure range from p_t to p_c

2. Melting Region $(10 \le x \le 11)$:

The phase fraction x equates to the liquid fraction x in the melting region in (kg solidifying liquid)/(kg melt), whereas melt is a mixture of melting solid and solidifying liquid.

If the state point to be calculated is located in the melting region, a value between 10 and 11 must be entered for x.

If melting solid (melting curve) is to be calculated, the value 10 has to be entered for x. In case of solidifying liquid (solidification curve) x = 11 has to be entered.

When calculating a melting solid or solidifying liquid it is adequate, concerning pressure and temperature, to put in either the value given for t and p = -1000 or the value given for p and t = -1000 and the value for p and p and p are entered as given values the program tests whether p and p and p and p and p are entered as given values the program tests whether p and p and p and p are entered as given values the program tests

Melting curve: Temperature range from t_t to t_{max_lce} Pressure range from p_t to p_{max_lce} Solidification curve: Temperature range from t_t to t_{max} Pressure range from p_t to p_{max}

Only the solidification curve (x = 11) is calculated for pressures p for which applies p_{max} les .

Sublimation Region $(100 \le x \le 101)$: 3.

The phase fraction x equates to the vapor fraction x in the sublimation region in (kg desublimating steam)/(kg sublimation powder), whereas sublimation powder is a mixture of sublimating solid and desublimating steam.

If the state point to be calculated is located in the melting region, a value between 100 and 101 must be entered for x.

If sublimating solid is to be calculated, the value 100 has to be entered for x. In case of desublimating steam x = 101 has to be entered.

When calculating a sublimating solid or desublimating steam it is adequate, Concerning pressure and temperature, to put in either the value given for t and p = -1000 or the value given for p and t = -1000 and the value for x (x = 100 or x = 101). If p and t and x are entered as given values the program tests whether *p* and *t* fulfil the sublimation-pressure-curve.

Sublimation and

desublimation curve Temperatur range from t_{min} to t_{t} Pressure range from p_{min} to p_t

Results for wrong input values

```
Result SPTXCO2 = -1000, S = -1000 or s ptx CO2 = -1000 for input values:
Single phase region:
```

Solid, liquid, overheated steam (x = -1):

- at $p < p_{min}$ or $p > p_{max}$ or $p > p_{max_lce}$ when calculating solid
- at $t < t_{min}$ or $t > t_{max}$ or $t > t_{max_lce}$ when calculating solid

Two phase regions:

```
Wet steam region (0 \le x \le 1):
  - at p = -1000 and t < t_t or t > t_c
  - at t = -1000 and p < p_t or p > p_c
  - at p < p_t or p > p_c
  - at t < t_t or t > t_c
Melting region (10 \leq x \leq 11):
  - at p = -1000 and t < t_t or t > t_{max} or t > t_{max lce} at x = 10
  - at t = -1000 and p < p_t or p > p_{max} or p > p_{max\_lce} at x = 10
  - at p < p_t or p > p_{max} or p > p_{max lce} at x = 10
  - at t < t_t or t > t_{max} or t > t_{max\_lce} at x = 10
Sublimation region (100 \leq x \leq 101):
  - at p = -1000 and t < t_{min} or t > t_{t}
  - at t = -1000 and p < p_{min} or p > p_{t}
  - at p < p_{min} or p > p_t
  - at t < t_{\min} or t > t_{t}
```

Backward Function: Temperature t = f(p,h)

Function Name: t_ph_CO2

Subprogram with value of the function: REAL*8 FUNCTION TPHCO2(P,H)

for call from Fortran REAL*8 P,H

Subprogram with parameter: INTEGER*4 FUNCTION C_TPHCO2(T,P,H)

for call from the DLL REAL*8 T,P,H

Input Values

P – Pressure *p* in bar

H - Specific enthalpy h in kJ/kg

Result

TPHCO2, **T** or **t_ph_CO2** – Temperature *t* in °C

Range of Validity (cp. p,t-diagram in chapter 3.1)

Pressure range: from p_{min} to p_{max} for liquid and steam

from p_{min} to p_{max_lce} for solid

Enthalpy range: from $h < h_{\text{max}} = h(p_{\text{min}}, t_{\text{max}})$ to $h > h_{\text{min}} = h(p_{\text{min}}, t_{\text{min}})$

Temperature range: from t_{min} to t_{max} (resulting from internal calculation of the subprograms)

Details on calculating the two phase regions

Using the given values for p and h, the program determines whether the point of state to be calculated is located in the single phase region (solid, liquid or steam) or in the two phase region. The two phase regions wet steam region, melting region and sublimation region (cp. lg p,h-diagram chapter 3.1) are calculated automatically by the subprograms. After that, the calculation is realized for the certain region.

Results for wrong input values

Result T_PH_CO2 , T = -1000 or $t_ph_CO2 = -1000$ for input values:

Single phase region:

Solid, liquid, overheated steam:

- at $p < p_{min}$ or $p > p_{max}$ or $p > p_{max_lce}$ when calculating solid
- at calculation result $t < t_{min}$ or $t > t_{max}$ or $t > t_{max_lce}$ when calculating solid

Two phase regions:

Wet steam region:

- at $p < p_t$ or $p > p_c$
- at calculation result $t < t_t$ or $t > t_c$

Melting region:

- at $p < p_t$ or $p > p_{max}$ or $p > p_{max_lce}$ when calculating solid
- at calculation result $t < t_t$ or $t > t_{max}$ or $t > t_{max_lce}$ when calculating solid

Sublimation region:

- at $p < p_{min}$ or $p > p_t$
- at calculation result $t < t_{min}$ or $t > t_{t}$

Backward Function: Temperature t = f(p,s)

Function Name: t_ps_CO2

Subprogram with value of the function: REAL*8 FUNCTION TPSCO2(P,S)

for call from Fortran REAL*8 P,S

Subprogram with parameter: INTEGER*4 FUNCTION C_TPSCO2(T,P,S)

for call from the DLL REAL*8 T,P,S

Input Values

P - Pressure p in bar

S - Specific entropy s in kJ/(kg K)

Result

TPSCO2, **T** or **t_ps_CO2** – Temperature *t* in °C

Range of Validity (cp. p,t-diagram in chapter 3.1)

Pressure range: from p_{min} to p_{max} for liquid and steam

from p_{min} to p_{max_lce} for solid

Entropy range: from $s < s_{max} = s(p_{min}, t_{max})$ to $s > s_{min} = s(p_{min}, t_{min})$

Temperature range: from t_{min} to t_{max} (resulting from internal calculation of the subprograms)

Details on calculating the two phase regions

Using the given values for p and h, the program determines whether the point of state to be calculated is located in the single phase region (solid, liquid or steam) or in the two phase region. The two phase regions wet steam region, melting region and sublimation region (cp. lg p,h-diagram chapter 3.1) are calculated automatically by the subprograms. After that, the calculation is realized for the certain region.

Results for wrong input values

Result T_PS_CO2 , T = -1000 or $t_ps_CO2 = -1000$ for input values:

Single phase region:

Solid, liquid, overheated steam:

- at $p < p_{min}$ or $p > p_{max}$ or $p > p_{max_lce}$ when calculating solid
- at calculation result $t < t_{min}$ or $t > t_{max}$ or $t > t_{max}$ when calculating solid

Two phase regions:

Wet steam region:

- at $p < p_t$ or $p > p_c$
- at calculation result $t < t_t$ or $t > t_c$

Melting region:

- at $p < p_t$ or $p > p_{max}$ or $p > p_{max_lce}$ when calculating solid
- at calculation result $t < t_t$ or $t > t_{max}$ or $t > t_{max | lce}$ when calculating solid

Sublimation region:

- at $p < p_{min}$ or $p > p_t$
- at calculation result $t < t_{min}$ or $t > t_{t}$

Saturation Temperature $t_s = f(p)$

Function Name: ts_p_CO2

Subprogram with value of the function: REAL*8 FUNCTION TSPCO2(P)

for call from Fortran REAL*8 P

Subprogram with parameter: INTEGER*4 FUNCTION C_TSPCO2(TS,P)

for call from the DLL REAL*8 TS,P

Input Values

 \mathbf{P} – Pressure p in bar

Result

TSPCO2, **TS** or **ts_p_CO2** – Saturation temperature t_s in °C

Range of Validity (cp. p,t-diagram in chapter 3.1)

Pressure range: from p_t to p_c

Results for wrong input values

Result TSPCO2= -1000, TS = -1000 or ts_p_CO2 = -1000 for input values:

- at $p < p_t$ or $p > p_c$

Melting Temperature $t_{mel} = f(p)$

Function Name: tmel_p_CO2

Subprogram with value of the function: **REAL*8 FUNCTION TMELCO2(P)**

for call from Fortran REAL*8 P

Subprogram with parameter: INTEGER*4 FUNCTION C_TMELCO2(TMEL,P)

for call from the DLL REAL*8 TMEL,P

Input Values

P – Pressure *p* in bar

Result

TMELCO2, **TMEL** or **tmel_p_CO2** – Melting temperature t_{mel} in °C

Range of Validity (cp. *p,t*-diagram in chapter 3.1)

Pressure range: from p_t to p_{max}

Results for wrong input values

Result TMELCO2 = -1000, TMEL = -1000 or $tmel_p_CO2 = -1000$ for input values:

- at $p < p_t$ or $p > p_{max}$

Sublimation Temperature $t_{sub} = f(p)$

Function Name: tsub_p_CO2

Subprogram with value of the function: REAL*8 FUNCTION TSUBCO2(P)

for call from Fortran REAL*8 P

Subprogram with parameter: INTEGER*4 FUNCTION C_TSUBCO2(TSUB,P)

for call from the DLL REAL*8 TSUB,P

Input Values

P – Pressure *p* in bar

Result

TSUBCO2, **TSUB** or **tsub_p_CO2** – Sublimation temperature t_{sub} in °C

Range of Validity (cp. *p,t*-diagram in chapter 3.1)

Pressure range: from p_{min} to p_t

Results for wrong input values

Result TSUBCO2, = -1000, TSUB = -1000 or $tsub_pCO2 = -1000$ for input values:

- at $p < p_{min}$ or $p > p_{t}$

Specific Volume v = f(p,t,x)

Function Name: v_ptx_CO2

Subprogram with value of the function: REAL*8 FUNCTION VPTXCO2(P,T,X)

for call from Fortran REAL*8 P,T,X

Subprogram with parameter: INTEGER*4 FUNCTION C_VPTXCO2(V,P,T,X)

for call from the DLL REAL*8 V,P,T,X

Input Values

 \mathbf{P} – Pressure p in bar

T - Temperature t in °C

X - *x* in kg / kg (Phase fraction, see the following explanations)

Result

VPTXCO2, **V** or **v_ptx_CO2** – Specific volume *v* in m³/kg

Range of Validity (cp. *p*,*t*-diagram in chapter 3.1)

Temperature range: from t_{min} to t_{max}

Pressure range: from p_{min} to p_{max} for liquid and steam

from p_{min} to $p_{max lce}$ for solid

Details on the phase fraction x

If the state point to be calculated is located in the single phase region (solid, liquid or superheated steam), x=-1 must be entered as a pro-forma value.

The two phase regions wet steam region, melting region and sublimation region are calculated automatically by the subprograms. For this purpose the following facts have to be considered (cp. $\lg p,h$ -diagram chapter 3.1):

1. Wet Vapor Region $(0 \le x \le 1)$:

The phase fraction x equates to the vapor fraction x in the wet steam region in (kg dry saturated steam)/(kg wet steam).

If boiling liquid (boiling curve) is to be calculated, the value 0 has to be entered for x. In case of dry saturated steam (dew curve) x = 1 has to be entered.

If the state point to be calculated is located in the wet steam region, a value between 0 and 1 must be entered for x.

Concerning pressure and temperature either the given value for t and p = -1000 or the given value for p and t = -1000 and in both cases the value 0 or 1 for t must be entered when calculating boiling liquid or dry saturated steam. If t and t are entered, the program will consider t and t to represent the vapor pressure curve.

Boiling and dew curve: Temperature range from t_t to t_c Pressure range from p_t to p_c

2. Melting Region $(10 \le x \le 11)$:

The phase fraction x equates to the liquid fraction x in the melting region in (kg solidifying liquid)/(kg melt), whereas melt is a mixture of melting solid and solidifying liquid.

If melting solid (melting curve) is to be calculated, the value 10 has to be entered for x. In case of solidifying liquid (solidification curve) x = 11 has to be entered.

If the state point to be calculated is located in the melting region, a value between 10 and 11 must be entered for x.

When calculating a melting solid or solidifying liquid it is adequate, concerning pressure and temperature, to put in either the value given for t and p = -1000 or the value given for p and t = -1000 and the value for p and p and p and p are entered as given values the program tests whether p and p and

Melting curve: Temperature range from t_t to t_{max_lce} Pressure range from p_t to p_{max_lce} Solidification curve: Temperature range from t_t to t_{max} Pressure range from p_t to p_{max}

Only the solidification curve (x = 11) is calculated for pressures p for which applies $p_{\text{max_lce}} .$

Sublimation Region $(100 \le x \le 101)$: 3.

The phase fraction x equates to the vapor fraction x in the sublimation region in (kg desublimating steam)/(kg sublimation powder), whereas sublimation powder is a mixture of sublimating solid and desublimating steam.

If sublimating solid is to be calculated, the value 100 has to be entered for x. In case of desublimating steam x = 101 has to be entered.

If the state point to be calculated is located in the melting region, a value between 100 and 101 must be entered for x.

When calculating a sublimating solid or desublimating steam it is adequate, Concerning pressure and temperature, to put in either the value given for t and p = -1000 or the value given for p and t = -1000 and the value for x (x = 100 or x = 101). If p and t and x are entered as given values the program tests whether *p* and *t* fulfil the sublimation-pressure-curve.

Sublimation and

desublimation curve Temperatur range from t_{min} to t_{t} Pressure range from p_{min} to p_t

Results for wrong input values

Result VPTXCO2 = -1000, H = -1000 or v ptx CO2 = -1000 for input values:

Single phase region:

```
Solid, liquid, overheated steam (x = -1):
```

- at $p < p_{min}$ or $p > p_{max}$ or $p > p_{max lce}$ when calculating solid
- at $t < t_{min}$ or $t > t_{max}$ or $t > t_{max}$ lee when calculating solid

Two phase regions:

```
Wet steam region (0 \le x \le 1):
 - at p = -1000 and t < t_t or t > t_c
```

- at t = -1000 and $p < p_t$ or $p > p_c$
- at $p < p_t$ or $p > p_c$
- at $t < t_t$ or $t > t_c$

Melting region (10 $\leq x \leq$ 11):

- at p = -1000 and $t < t_t$ or $t > t_{max}$ or $t > t_{max_lce}$ at x = 10
- at t = -1000 and $p < p_t$ or $p > p_{max}$ or $p > p_{max_lce}$ at x = 10
- at $p < p_t$ or $p > p_{\text{max}}$ or $p > p_{\text{max_lce}}$ at x = 10
- at $t < t_t$ or $t > t_{max}$ or $t > t_{max_lce}$ at x = 10

Sublimation region (100 $\leq x \leq$ 101):

- at p = -1000 and $t < t_{min}$ or $t > t_{t}$
- at t = -1000 and $p < p_{min}$ or $p > p_{t}$
- at $p < p_{min}$ or $p > p_t$
- at $t < t_{\min}$ or $t > t_{t}$

Isentropic Speed of Sound w = f(p,t,x)

Function Name: w_ptx_CO2

Subprogram with value of the function: REAL*8 FUNCTION WPTXCO2(P,T,X)

for call from Fortran REAL*8 P,T,X

Subprogram with parameter: INTEGER*4 FUNCTION C_WPTXCO2(W,P,T,X)

for call from the DLL REAL*8 W,P,T,X

Input Values

 \mathbf{P} – Pressure p in bar

T - Temperature t in °C

X - *x* in kg / kg (Phase fraction, see the following explanations)

Result

WPTXCO2, W or w_ptx_CO2 - Speed of sound w in m/s

Range of Validity (cp. *p,t*-diagram in chapter 3.1)

Temperature range: from t_t to t_{max}

Pressure range: from p_{min} to p_{max} for liquid and steam

Details on the phase fraction x

If the state point to be calculated is located in the single phase region (liquid or superheated steam), x=-1 must be entered as a pro-forma value. Calculating solid is not possible.

The two phase regions wet steam region, melting region and sublimation region are calculated automatically by the subprograms. For this purpose the following facts have to be considered (cp. $\lg p,h$ -diagram chapter 3.1):

1. Wet Vapor Region $(0 \le x \le 1)$:

The phase fraction x equates to the vapor fraction x in the wet steam region in (kg dry saturated steam)/(kg wet steam).

The calculation for x values between 0 and 1 is not possible.

If boiling liquid (boiling curve) is to be calculated, the value 0 has to be entered for x. In case of dry saturated steam (dew curve) x = 1 has to be entered.

Concerning pressure and temperature either the given value for t and p = -1000 or the given value for p and t = -1000 and in both cases the value 0 or 1 for t must be entered when calculating boiling liquid or dry saturated steam. If t and t are entered, the program will consider t and t to represent the vapor pressure curve.

Boiling and dew curve: Temperature range from t_t to t_c Pressure range from p_t to p_c

2. Melting Region $(10 \le x \le 11)$:

The phase fraction x equates to the liquid fraction x in the melting region in (kg solidifying liquid)/(kg melt), whereas melt is a mixture of melting solid and solidifying liquid.

The calculation for x values of x = 10 (melting curve) and between 10 and 11 is not possible. If solidifying liquid (solidification curve) is to be calculated, the value 11 has to be entered for x.

Concerning pressure and temperature either the given value for t and p = -1000 or the given value for p and t = -1000 and in both cases the value 11 for x must be entered when calculating solidifying liquid.

If p and t and x are entered as given values, the program tests whether p and t fulfil the melting pressure curve.

Melting curve: Temperature range from t_t to t_{max_lce} Pressure range from p_t to p_{max_lce}

Solidification curve: Temperature range from t_t to t_{max}

Pressure range from p_t to p_{max}

3. Sublimation Region $(100 \le x \le 101)$:

The phase fraction x equates to the vapor fraction x in the sublimation region in (kg desublimating steam)/(kg sublimation powder), whereas sublimation powder is a mixture of sublimating solid and desublimating steam.

The calculation for x values of x = 100 (sublimation curve) and between 100 and 101 is not possible. If desublimating steam (desublimation curve) is to be calculated, the value 101 has to be entered for x. Concerning pressure and temperature either the given value for t = -1000 or the given value for t = -1000 and in both cases the value 101 for t = -1000 and in both cases the value 101 for t = -1000 and t = -1

Sublimation and

desublimation curve Temperatur range from t_{min} to t_{t} Pressure range from p_{min} to p_{t}

Results for wrong input values

Result WPTXCO2 = -1000 or w_ptx_CO2 = -1000 for input values:

Single phase region:

```
Liquid and overheated steam (x = -1):

- at p < p_{min} or p > p_{max}

- at t < t_t or t > t_{max}
```

Two phase regions:

Wet steam region $(0 \le x \le 1)$:

```
- at 0 < x < 1, i.e. calculation in the wet steam region not possible!
```

```
- at p = -1000 and t < t_t or t > t_c
```

- at t = -1000 and $p < p_t$ or $p > p_c$

- at $p < p_t$ or $p > p_c$

- at $t < t_t$ or $t > t_c$

Melting region ($10 \le x \le 11$):

```
- at 10 < x < 11, i.e. calculation on the melting curve and in the melting region not possible!
```

```
- at p = -1000 and t < t_t or t > t_{max} or t > t_{max lce} at x = 10
```

- at t = -1000 and $p < p_t$ or $p > p_{\text{max}}$ or $p > p_{\text{max_lce}}$ at x = 10

- at $p < p_t$ or $p > p_{max}$ or $p > p_{max lce}$ at x = 10

- at $t < t_t$ or $t > t_{max}$ or $t > t_{max lce}$ at x = 10

Sublimation region (100 $\leq x \leq$ 101):

- at $100 \le x < 101$, i.e. calculation on the sublimation curve and in the sublimation region not possible!

```
- at p = -1000 and t < t_{min} or t > t_{t}
```

- at t = -1000 and $p < p_{min}$ or $p > p_{t}$
- at $p < p_{min}$ or $p > p_t$
- at $t < t_{\min}$ or $t > t_{t}$

Backward Function: Vapor Fraction x = f(p,h)

Function Name: x_ph_CO2

Subprogram with value of the function: **REAL*8 FUNCTION XPHCO2(P,H)**

for call from Fortran REAL*8 P,H

Subprogram with parameter: INTEGER*4 FUNCTION C_XPHCO2(T,P,H)

for call from the DLL REAL*8 X,P,H

Input Values

P - Pressure p in bar

H - Specific enthalpy h in kJ/kg

Result

XPHCO2, **X** or **x_ph_CO2** – Vapor fraction *x* in (kg saturated steam/kg wet steam)

Range of Validity (cp. *p,t*-diagram in chapter 3.1)

Pressure range: from p_{min} to p_{max} for liquid and steam

from p_{min} to p_{max_lce} for solid

Enthalpy range: from $h < h_{\text{max}} = h(p_{\text{min}}, t_{\text{max}})$ to $h > h_{\text{min}} = h(p_{\text{min}}, t_{\text{min}})$

Temperature range: from t_{min} to t_{max} (resulting from internal calculation of the subprograms)

Details on calculating the two phase regions

The two phase regions are calculated automatically by the subprograms. Using the given values for p and h, the program determines whether the point of state to be calculated is located in the single phase region (solid, liquid or steam) or in one of the two phase regions wet steam region, melting region and sublimation region (cp. lg p,h-diagram in chapter 3.1). When calculating a two phase mixture, x will be calculated. If the state point to be calculated is located in the single-phase region the result is set to x = -1.

Results for wrong input values

Result $X_{PH}CO2$, X = -1 or $x_{ph}CO2 = -1$ for input values:

If the state point to be calculated is located in the single phase region (cp. $\lg p,h$ -diagram in chapter 3.1).

Two phase regions:

Wet steam region $(0 \le x \le 1)$:

- at $p < p_t$ or $p > p_c$
- at calculation result $t < t_t$ or $t > t_c$

Melting region (10 $\leq x \leq$ 11):

- at $p < p_t$ or $p > p_{max}$ or $p > p_{max lce}$ when calculating solid
- at calculation result $t < t_t$ or $t > t_{max}$ or $t > t_{max}$ when calculating solid

Sublimation region (100 $\leq x \leq$ 101):

- at $p < p_{min}$ or $p > p_t$
- at calculation result $t < t_{min}$ or $t > t_{t}$

Backward Function: Vapor Fraction x = f(p,s)

Function Name: x_ps_CO2

Subprogram with value of the function: REAL*8 FUNCTION XPSCO2(P,S)

for call from Fortran REAL*8 P,S

Subprogram with parameter: INTEGER*4 FUNCTION C_XPSCO2(X,P,S)

for call from the DLL REAL*8 X,P,S

Input Values

P - Pressure p in bar

S - Specific entropy s in kJ/(kg K)

Result

XPSCO2, **X** or **x_ps_CO2** – Vapor fraction *x* in (kg saturated steam/kg wet steam)

Range of Validity (cp. p,t-diagram in chapter 3.1)

Pressure range: from p_{min} to p_{max} for liquid and steam

from p_{min} to p_{max_lce} for solid

Entropy range: from $s < s_{max} = s(p_{min}, t_{max})$ to $s > s_{min} = s(p_{min}, t_{min})$

Temperature range: from t_{min} to t_{max} (resulting from internal calculation of the subprograms)

Details on calculating the two phase regions

The two phase regions are calculated automatically by the subprograms. Using the given values for p and s, the program determines whether the point of state to be calculated is located in the single phase region (solid, liquid or steam) or in one of the two phase regions wet steam region, melting region and sublimation region (cp. lg p,h-diagram in chapter 3.1). When calculating a two phase mixture, x will be calculated. If the state point to be calculated is located in the single-phase region the result is set to x = -1.

Results for wrong input values

Result X_PS_CO2 , X = -1 or $x_pS_CO2 = -1$ for input values:

If the state point to be calculated is located in the single phase region (cp. $\lg p,h$ -diagram in chapter 3.1).

Two phase regions:

Wet steam region $(0 \le x \le 1)$:

- at $p < p_t$ or $p > p_c$
- at calculation result $t < t_t$ or $t > t_c$

Melting region (10 $\leq x \leq$ 11):

- at $p < p_t$ or $p > p_{max}$ or $p > p_{max lce}$ when calculating solid
- at calculation result $t < t_t$ or $t > t_{max}$ or $t > t_{max}$ when calculating solid

Sublimation region (100 $\leq x \leq$ 101):

- at $p < p_{min}$ or $p > p_t$
- at calculation result $t < t_{min}$ or $t > t_{t}$

3.3 Property Functions for Solid Carbon Dioxide (Dry Ice)

#\$K+Thermal Diffusivity a = f(p,t)

Function Name: aICE_pt_CO2

Subprogram with value of the function: REAL*8 FUNCTION APICEPTCO2(P,T)

for call from Fortran REAL*8 P,T

Subprogram with parameter: INTEGER*4 FUNCTION C_AICEPTCO2(A,P,T)

for call from the DLL REAL*8 A,P,T

Input Values

P - Pressure *p* in bar

 ${\bf T}$ - Temperature t in °C

Result

AICEPTCO2, a or aICE_pt_CO2 – Thermal diffusivity $a = \frac{\lambda * v}{c_p}$ in m²/s

Range of Validity (cp. p,t-diagram in chapter 3.1)

Pressure range: from p_{min} to p_{max_lce} Temperature range: from t_{min} to t_{max_lce}

Results for wrong input values

Result AICEPTCO2 = -1000, A = -1000 or aICE_pt_CO2 = -1000 for input values:

- at $t < t_{min}$ or $t > t_{max_lce}$
- at $p < p_{min} \text{ or } p > p_{max_lce}$

References: [4], [5]

K a = f(t)

[#] FUNC_300

a = f(t)

⁺ SUCH:300

#\$K+Specific Isobaric Heat Capacity $c_p = f(p,t)$

Function Name: cplCE_pt_CO2

Subprogram with value of the function: REAL*8 FUNCTION CPICEPTCO2(P,T)

for call from Fortran REAL*8 P,T

Subprogram with parameter: INTEGER*4 FUNCTION C_CPICEPTCO2(CP,P,T)

for call from the DLL REAL*8 CP,P,T

Input Values

 ${\bf P}$ - Pressure p in bar

T - Temperature t in °C

Result

CPICETCO2, **CP** or **cpICE_t_CO2** – specific isobaric heat capacity c_p in kJ/(kg K)

Range of Validity (cp. *p,t*-diagram in chapter 3.1)

Pressure range: from p_{min} to p_{max_lce} Temperature range: from t_{min} to t_{max_lce}

Results for wrong input values

Result CPICEPTCO2 = -1000, CP = -1000 or cpICE_pt_CO2 = -1000 for input values:

- at $t < t_{\min}$ or $t > t_{\max_lce}$ - at $p < p_{\min}$ or $p > p_{\max_lce}$

References: [4]

proof proo

[#] FUNC_310

 $^{^{}K}$ cpICE = f(t)

⁺ SUCH:310

#\$K+ Specific Enthalpy h = f(p,t)

Function Name: hICE_pt_CO2

Subprogram with value of the function: REAL*8 FUNCTION HICEPTCO2(P,T)

for call from Fortran REAL*8 P,T

Subprogram with parameter: INTEGER*4 FUNCTION C_HICEPTCO2(H,P,T)

for call from the DLL REAL*8 H,P,T

Input Values

P - Pressure p in bar

T - Temperature *t* in °C

Result

HICETCO2, H or hICE_t_CO2 – specific enthalpy h in kJ / kg

Range of Validity (cp. p,t-diagram in chapter 3.1)

Pressure range: from p_{min} to p_{max_lce} Temperature range: from t_{min} to t_{max_lce}

Results for wrong input values

Result HICEPTCO2 = -1000, H = -1000 or hICE_pt_CO2 = -1000 for input values:

- at $t < t_{\text{min}}$ or $t > t_{\text{max_lce}}$ - at $p < p_{\text{min}}$ or $p > p_{\text{max_lce}}$

References: [4]

. -

[#] FUNC_320

^{\$}hICE = f(t)

 $^{^{}K}$ hICE = f(t)

⁺ SUCH:320

#\$K+ Thermal Conductivity $\lambda = f(t)$

Function Name: lambdalCE_t_CO2

Subprogram with value of the function: REAL*8 FUNCTION LAMICETCO2(T)

for call from Fortran REAL*8 T

Subprogram with parameter: INTEGER*4 FUNCTION C_LAMICETCO2(LAM,T)

for call from the DLL REAL*8 LAM,T

Input Values

T - Temperature t in °C

Result

LAMICETCO2, **LAM** or **lambdalCE_t_CO2** – Thermal conducivity λ in W/m K

Range of Validity (cp. p,t-diagram in chapter 3.1)

Temperature range: from t_{min} to $t_{max lce}$

Results for wrong input values

Result LAMICETCO2 = -1000, LAM = -1000 or lambdalCE_t_CO2 = -1000 for input values:

- at $t < t_{\min}$ or $t > t_{\max}$ lce

[#] FUNC_330

^{\$} lambdalCE = f(t)

K lambdalCE = f(t)

⁺ SUCH:330

$\overline{}^{\#\$\mathsf{K}+}$ Density ρ = f(p,t)

Function Name: rholCE_pt_CO2

Subprogram with value of the function: REAL*8 FUNCTION RHOICEPTCO2(P,T)

for call from Fortran REAL*8 P,T

Subprogram with parameter: INTEGER*4 FUNCTION C_RHOICEPTCO2(RHO,P,T)

for call from the DLL REAL*8 RHO,P,T

Input Values

P - Pressure p in bar

T - Temperature t in °C

Result

RHOICEPTCO2, **RHO** or **rhoICE_pt_CO2** - Density ρ in kg/m³

Range of Validity (cp. *p,t*-diagram in chapter 3.1)

from p_{\min} to p_{\max_lce} Pressure range: Temperature range: from t_{min} to $t_{max\ lce}$

Results for wrong input values

Result RHOICEPTCO2 = -1000, RHO = -1000 or rhoICE_pt_CO2 = -1000 for input values:

- at $t < t_{min}$ or $t > t_{max_lce}$
- at $p < p_{min} \text{ or } p > p_{max_lce}$

[#] FUNC_340

^{\$} rhoICE = f(t)

 $^{^{}K}$ rholCE = f(t)

⁺ SUCH:340

#\$K+Specific Entropy s = f(p,t)

Function Name: sICE_pt_CO2

Subprogram with value of the function: REAL*8 FUNCTION SICEPTCO2(P,T)

for call from Fortran REAL*8 P,T

Subprogram with parameter: INTEGER*4 FUNCTION C_SICEPTCO2(S,P,T)

for call from the DLL REAL*8 S,P,T

Input Values

P - Pressure p in bar

T - Temperature t in °C

Result

SICEPTCO2, S or sICE_pt_CO2 - Specific Entropy s in kJ/(kg K)

Range of Validity (cp. *p*,*t*-diagram in chapter 3.1)

Pressure range: from p_{\min} to p_{\max_lce} Temperature range: from t_{\min} to t_{\max_lce}

Results for wrong input values

Result SICEPTCO2 = -1000, S = -1000 or sICE_pt_CO2 = -1000 for input values:

- at $t < t_{\min}$ or $t > t_{\max_lce}$
- at $p < p_{min} \text{ or } p > p_{max_lce}$

References: [4]

-

[#] FUNC_350

sICE = f(t)

 $^{^{}K}$ sICE = f(t)

⁺ SUCH:350

#\$K+ Specific Volume v = f(p,t)

Function Name: vICE_pt_CO2

Subprogram with value of the function: REAL*8 FUNCTION VICEPTCO2(P,T)

for call from Fortran REAL*8 P,T

Subprogram with parameter: INTEGER*4 FUNCTION C_VICETCO2(V,P,T)

for call from the DLL REAL*8 V,P,T

Input Values

P - Pressure p in bar

T - Temperature t in °C

Result

VICEPTCO2, V or vICE_pt_CO2 - specific volume v in m³/kg

Range of Validity (cp. *p*,*t*-diagram in chapter 3.1)

Pressure range: from p_{\min} to p_{\max_lce} Temperature range: from t_{\min} to t_{\max_lce}

Results for wrong input values

Result VICEPTCO2 = -1000, V = -1000 or vICE_pt_CO2 = -1000 for input values:

- at $t < t_{\min}$ or $t > t_{\max_lce}$
- at $p < p_{min} \text{ or } p > p_{max_lce}$

References: [4]

FUNC_360

vICE = f(t)

 K vICE = f(t)

+ SUCH:360

#\$K+ Backward function: Temperature t = f(p,h)

Function Name: tICE_ph_CO2

Subprogram with value of the function: REAL*8 FUNCTION TICEPHCO2(P,H)

for call from Fortran REAL*8 P,H

Subprogram with parameter: INTEGER*4 FUNCTION C_TICEPHCO2(T,P,H)

for call from the DLL REAL*8 T,P,H

Input Values

P - Pressure p in bar

H – Specific enthalpy *h* in kJ/kg

Result

TICEPHCO2, T or tICE_ph_CO2 - Temperature in °C

Range of Validity (cp. p,t-diagram in chapter 3.1)

Enthalpy range: from $h > h_{min} = h(t_{min})$ to $h < h_{max_lce} = h(t_{max_lce})$

Pressure range: from p_{min} to p_{max_lce}

Temperature range: for results from t_{\min} to t_{\max_lce}

Results for wrong input values

Result TICEPHCO2 = -1000, T = -1000 or tICE_ph_CO2 = -1000 for input values:

- at $h < h_{min} = h(t_{min})$ or $h > h_{max_lce} = h(t_{max_lce})$ or
- at $p < p_{min} \text{ or } p > p_{max_lce}$

References: [4]

_

[#] FUNC_370

^{\$} tICE = f(h)

K tICE = f(h)

⁺ SUCH:370

#\$K+ Backward function: Temperature t = f(p,s)

Function Name: tICE_ps_CO2

Subprogram with value of the function: REAL*8 FUNCTION TICEPSCO2(P,S)

for call from Fortran REAL*8 P,S

Subprogram with parameter: INTEGER*4 FUNCTION C_TICEPSCO2(T,P,S)

for call from the DLL REAL*8 T,P,S

Input Value

P - Pressure p in bar

S – Specific Entropy in kJ/(kg K)

Result

TICEPSCO2, T or tICE_ps_CO2 - Temperature in °C

Range of Validity (cp. *p*,*t*-diagram in chapter 3.1)

Entropy range: from $s > s_{min} = s(t_{min})$ to $s < s_{max_lce} = s(t_{max_lce})$

Pressure range: from p_{\min} to p_{\max_lce}

Temperature range: for results from t_{min} to t_{max_lce}

Results for wrong input values

Result TICEPSCO2 = -1000, T = -1000 or tICE_ps_CO2 = -1000 for input values:

- at $s < s_{min} = s(t_{min})$ or $s > s_{max_lce} = s(t_{max_lce})$
- at $p < p_{min} \text{ or } p > p_{max_lce}$

References: [4]

FUNC_380

^{\$} tICE = f(s)

K tICE = f(s)

⁺ SUCH:380

KCE-ThermoFluidProperties www.thermofluidprop.com

Property Libraries for Calculating Heat Cycles, Boilers, Turbines and Refrigerators

Water and Steam

Library LibIF97

- Industrial Formulation IAPWS-IF97 (Revision 2007)
- Supplementary Standards IAPWS-IF97-S01, -S03rev, -S04, and -S05
- IAPWS Revised Advisory Note No. 3 on Thermodynamic Derivatives (2008)

Library LibIF97 META

 Industrial Formulation IAPWS-IF97 (Revision 2007) for metastable steam

Humid Combustion Gas Mixtures

Library LibHuGas

Model: Ideal mixture of the real fluids:

CO₂ - Span, Wagner H₂O - IAPWS-95 O_2 - Schmidt, Wagner N_2 - Span et al.

Ar - Tegeler et al.

and of the ideal gases:

SO₂, CO, Ne

(Scientific Formulation of Bücker et al.)

Consideration of:

- Dissociation from VDI 4670
- Poynting effect

Humid Air

Library LibHuAir

Model: Ideal mixture of the real fluids:

- Dry air from Lemmon et al.
- Steam, water and ice from IAPWS-IF97 and IAPWS-06

Consideration of:

- Condensation and freezing of steam
- Dissociation from VDI 4670
- Poynting effect from ASHRAE RP-1485

Extremely Fast Property Calculations

Spline-Based Table Look-up Method (SBTL)

Library LibSBTL_IF97 Library LibSBTL_95 Library LibSBTL_HuAir

For steam, water, humid air. carbon dioxide and other fluids and mixtures according IAPWS Guideline 2015 for Computational Fluid Dynamics (CFD), real-time and non-stationary simulations

Carbon Dioxide Including Dry Ice

Library LibCO2

Formulation of Span and Wagner (1996)

Seawater

Library LibSeaWa

IAPWS Industrial Formulation 2013

Ice

Library LibICE

Ice from IAPWS-06, Melting and sublimation pressures from IAPWS-08. Water from IAPWS-IF97, Steam from IAPWS-95 and -IF97

Ideal Gas Mixtures

Library LibIdGasMix

Model: Ideal mixture of the ideal gases:

Ar	NO	не	Propylene
Ne	H ₂ O	F_2	Propane
N_2	SO ₂	NH ₃	Iso-Butane
O ₂	H ₂	Methane	n-Butane
CO	H ₂ S	Ethane	Benzene
CO ₂	OH	Ethylene	Methanol
Air			

Consideration of:

Dissociation from the VDI Guideline 4670

Library LibIDGAS

Model: Ideal gas mixture from VDI Guideline 4670

Consideration of:

Dissociation from the VDI Guideline 4670

Humid Air

Library ASHRAE LibHuAirProp

Model: Virial equation from ASHRAE Report RP-1485 for real mixture of the real fluids:

- Dry air
- Steam

Consideration of:

 Enhancement of the partial saturation pressure of water vapor at elevated total pressures

www.ashrae.org/bookstore

Dry Air **Including Liquid Air**

Library LibRealAir

Formulation of Lemmon et al. (2000)

Refrigerants

Ammonia

Library LibNH3

Formulation of Tillner-Roth et al. (1993)

R134a

Library LibR134a

Formulation of Tillner-Roth and Baehr (1994)

Iso-Butane

Library LibButane Iso

Formulation of Bücker and Wagner (2006)

n-Butane

Library LibButane n

Formulation of Bücker and Wagner (2006)

Mixtures for Absorption Processes

Ammonia/Water Mixtures

Library LibAmWa

IAPWS Guideline 2001 of Tillner-Roth and Friend (1998)

Helmholtz energy equation for the mixing term (also useable for calculating the Kalina Cycle)

Water/Lithium Bromide Mixtures

Library LibWaLi

Formulation of Kim and Infante Ferreira (2004) Gibbs energy equation for the mixing term

Liquid Coolants

Liquid Secondary Refrigerants

Library LibSecRef

Liquid solutions of water with

C₂H₆O₂ Ethylene glycol C₃H₈O₂ Propylene glycol C₂H₅OH Ethanol

CH₃OH Methanol C₃H₈O₃ Glycerol

K₂CO₃ Potassium carbonate CaCla Calcium chloride MqCl₂ Magnesium chloride NaCl Sodium chloride C₂H₃KO₂ Potassium acetate CHKO₂ Potassium formate

LiCI Lithium chloride

NH₃

Ammonia Formulation of the International Institute of Refrigeration (IIR 2010)

Ethanol

Library LibC2H5OH

Formulation of Schroeder et al. (2014)

Methanol

Library LibCH3OH

Formulation of de Reuck and Craven (1993)

Propane

Library LibPropane

Formulation of Lemmon et al. (2009)

Siloxanes as ORC Working Fluids

Octamethylcyclotetrasiloxane C₈H₂₄O₄Si₄ Library LibD4

Decamethylcyclopentasiloxane C₁₀H₃₀O₅Si₅ Library LibD5

Tetradecamethylhexasiloxane C₁₄H₄₂O₅Si₆ Library LibMD4M

Hexamethyldisiloxane C₆H₁₈OSi₂ Library LibMM

Formulation of Colonna et al. (2006)

Dodecamethylcyclohexasiloxane C₁₂H₃₆O₆Si₆ Library LibD6

Decamethyltetrasiloxane C₁₀H₃₀O₃Si₄ Library LibMD2M

Dodecamethylpentasiloxane C₁₂H₃₆O₄Si₅ Library LibMD3M

Octamethyltrisiloxane C₈H₂₄O₂Si₃ Library LibMDM

Formulation of Colonna et al. (2008)

Nitrogen and Oxygen

Libraries LibN2 and LibO2

Formulations of Span et al. (2000) and Schmidt and Wagner (1985)

Hydrogen

Library LibH2

Formulation of Leachman et al. (2009)

Helium

Library LibHe

Formulation of Arp et al. (1998)

Hydrocarbons

Decane C₁₀H₂₂ Library LibC10H22

Isopentane C₅H₁₂ Library LibC5H12_Iso

Neopentane C₅H₁₂ Library LibC5H12_Neo

Isohexane C₆H₁₄ Library LibC6H14

Toluene C₇H₈ Library LibC7H8

Formulation of Lemmon and Span (2006)

Further Fluids

Carbon monoxide CO Library LibCO

Carbonyl sulfide COS Library LibCOS

Hydrogen sulfide H₂S Library LibH2S

Nitrous oxide N₂O Library LibN2O

Sulfur dioxide SO₂ Library LibSO2

Acetone C₃H₆O Library LibC3H6O

Formulation of Lemmon and Span (2006)

For more information please contact:

KCE-ThermoFluidProperties UG & Co. KG Prof. Dr. Hans-Joachim Kretzschmar

Wallotstr. 3

01307 Dresden, Germany

Internet: www.thermofluidprop.com

Email: info@thermofluidprop.com

Phone: +49-351-27597860

Mobile: +49-172-7914607

Fax: +49-3222-1095810

The following thermodynamic and transport properties can be calculated^a:

Thermodynamic Properties

- Vapor pressure p_s
- Saturation temperature T_s
- Density ρ
- Specific volume v
- Enthalpy h
- Internal energy u
- Entropy s
- Exergy e
- Isobaric heat capacity c_p
- Isochoric heat capacity c_v
- Isentropic exponent κ
- Speed of sound w
- Surface tension σ

Transport Properties

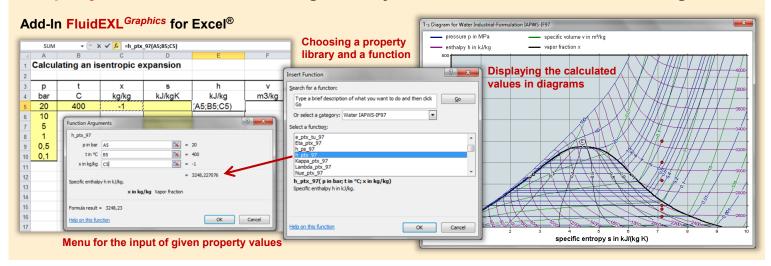
- Dynamic viscosity $\boldsymbol{\eta}$
- Kinematic viscosity v
- Thermal conductivity λ
- Prandtl number Pr
- Thermal diffusivity a

Backward Functions

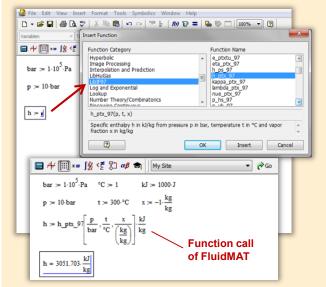
- T, v, s(p,h)
- T, v, h (p,s)
- p, T, v (h,s)p, T (v,h)
- p, T (v,u)

Thermodynamic Derivatives

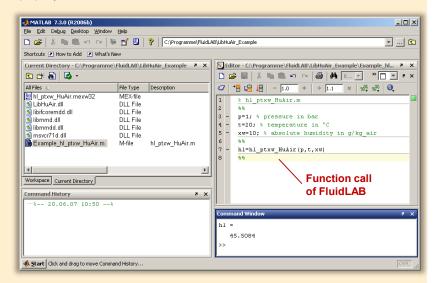
 Partial derivatives used in process modeling can be calculated.


^a Not all of these property functions are available in all property libraries.

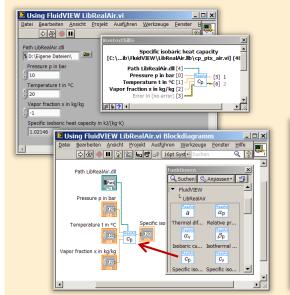
KCE-ThermoFluidProperties www.thermofluidprop.com



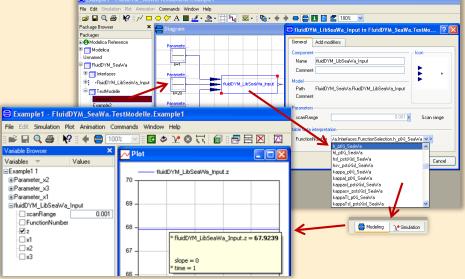
Property Software for Calculating Heat Cycles, Boilers, Turbines and Refrigerators


Add-On FluidMAT for Mathcad[®] Add-On FluidPRIME for Mathcad Prime[®]

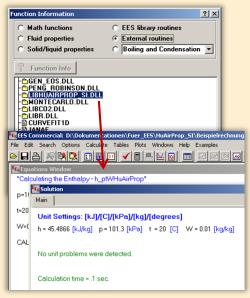
The property libraries can be used in Mathcad® and Mathcad Prime®.


Add-On FluidLAB for MATLAB® and SIMULINK®

Using the Add-In FluidLAB the property functions can be called in MATLAB® and SIMULINK®.


Add-On FluidVIEW for LabVIEW™

The property functions can be calculated in LabVIEW™.



Add-On FluidDYM for DYMOLA® (Modelica) and SimulationX®

The property functions can be called in DYMOLA® and SimulationX®.

Add-On FluidEES for Engineering Equation Solver®

App International Steam Tables for iPhone, iPad, iPod touch, Android Smartphones and Tablets

Online Property Calculator at www.thermofluidprop.com

Property Software for Pocket Calculators

For more information please contact:

KCE-ThermoFluidProperties UG & Co. KG Prof. Dr. Hans-Joachim Kretzschmar Wallotstr. 3

01307 Dresden, Germany

Internet: www.thermofluidprop.com Email: info@thermofluidprop.com

Phone: +49-351-27597860 Mobile: +49-172-7914607 Fax: +49-3222-1095810

The following thermodynamic and transport properties^a can be calculated in Excel[®], MATLAB[®], Mathcad[®], Engineering Equation Solver[®] (EES), DYMOLA[®] (Modelica), SimulationX[®] and LabVIEW™:

Thermodynamic Properties

- Vapor pressure p_s
- Saturation temperature T_s
- Density ρ
- Specific volume v
- Enthalpy h
- · Internal energy u
- Entropy s
- Exergy e
- Isobaric heat capacity c_{p}
- Isochoric heat capacity c_{ν}
- Isentropic exponent κ
- Speed of sound w
- Surface tension σ

Transport Properties

- Dynamic viscosity η
- Kinematic viscosity v
- Thermal conductivity λ
- Prandtl number *Pr*
- · Thermal diffusivity a

Backward Functions

- T, v, s (p,h)
- T, v, h (p,s)
- p, T, v (h,s)
- p, T (v,h)
- p, T (v,u)

Thermodynamic Derivatives

 Partial derivatives used in process modeling can be calculated.

^a Not all of these property functions are available in all property libraries.

5. References

[1] Kretzschmar, H.-J.:

Zur Aufbereitung und Darbietung thermophysikalischer Stoffdaten für die Energietechnik.

Habilitation, TU Dresden, Fakultät Maschinenwesen (1990)

[2] Span, R.; Wagner W.:

A New Equation of State for Carbon Dioxide Covering the Fluid Region from the Triple-Point Temperature to 1100 K at Pressures up to 800 MPa.

J. Phys. Chem. Ref. Data, 25, (1996) Nr. 6, S. 1506-1596

[3] Vesovic, V.; Wakeham, W. A.; Olchowy, G. A.; Sengers, J. V.; Watson, J. T. R.; Millat, J.:

The Transport Properties of Carbon Dioxide.

J. Phys. Chem. Ref. Data, 19, (1990) Nr. 3, S. 763-808

[4] Jäger, A.; Span, R.:

Equation of State for Solid Carbon Dioxide Based on the Gibbs Free Energy.

J. Chem. Eng. Data 57 (2012), 590-597

[5] Kuprianoff, J.:

Die feste Kohlensäure (Trockeneis) – Herstellung und Verwendung Ferdinand Enke Verlag Stuttgart, 1953

6. Satisfied Customers

Date: 07/2019

The following companies and institutions use the property libraries:

- FluidEXL^{Graphics} for Excel[®]
- FluidLAB for MATLAB® and Simulink
- FluidMAT for Mathcad®
- FluidPRIME for Mathcad Prime®
- FluidEES for Engineering Equation Solver® EES
- FluidDYM for Dymola $^{\circledR}$ (Modelica) and Simulation X^{\circledR}
- FluidVIEW for LabVIEW[™]
- DLLs for Windows[™]
- Shared Objects for Linux®.

2019

WARNICA, Waterloo, Canada	07/2019
MIBRAG, Zeitz	06/2019
Pöyry, Zürich, Switzerland	06/2019
RWTH Aachen, Inst. Strahlantriebe und Turbomaschinen	06/2019
Midiplan, Bietigheim-Bissingen	06/2019
GKS Schweinfurt	06/2019
HS Zittau/Görlitz, Wirtschaftswissenschaften und Wirtschaftsingenieurwesen	06/2019
ILK Dresden	06/2019
HZDR Helmholtz Zentrum Dresden-Rossendorf	06/2019
TH Köln, TGA	05/2019
IB Knittel, Braunschweig	05/2019
Norsk Energi, Oslo, Norway	05/2019
STEAG Essen	05/2019
Stora Enso, Eilenburg	05/2019
IB Lücke, Paderborn	05/2019
Haarslev, Sonderso, Denmark	05/2019
MAN Augsburg	05/2019
Wieland Werke, Ulm	04/2019
Fels-Werke, Elbingerode	04/2019
Univ. Luxembourg Luxembourg	04/2019
BTU Cottbus, Power Engineering	03/2009
Eins-Energie Sachsen, Schwarzenberg	03/2019
TU Dresden, Kälte- und Kryotechnik	03/2019
ITER, St. Paul Lez Durance Cedex, France	03/2019
Fraunhofer UMSICHT, Oberhausen	03/2019
Comparex Leipzig for Spedition Thiele HEMMERSBACH	03/2019
Rückert NaturGas, Lauf/Pegnitz	03/2019
BASF, Basel, Switzerland	02/2019
Stadtwerke Leipzig	02/2019

Maerz Ofenbau Zürich, Switzerland Hanon Systems Germany, Kerpen Thermofin, Heinsdorfergrund	02/2019 02/2019 01/2019
BSH Berlin	01/2019
2018	
Jaguar Energy, Guatemala WEBASTO, Gilching Smurfit Kappa, Oosterhout, Netherlands Univ. BW München RAIV, Liberec for VALEO, Prague, Czech Republic VPC Group Vetschau SEITZ, Wetzikon, Switzerland MVV, Mannheim IB Troche KANIS Turbinen, Nürnberg TH Ingolstadt, Institut für neue Energiesysteme IB Kristl & Seibt, Graz, Austria INEOS, Köln IB Lücke, Paderborn Südzucker, Ochsenfurt K&K Turbinenservice, Bielefeld OTH Regensburg, Elektrotechnik Comparex Leipzig for LEAG, Berlin Münstermann, Telgte TH Nürnberg, Verfahrenstechnik Universität Madrid, Madrid, Spanien HS Zittau/Görlitz, Wirtschaftswissenschaften und Wirtschaftsingenieurwesen HS Niederrhein, Krefeld Wilhelm-Büchner HS, Pfungstadt GRS, Köln WIB, Dennheritz RONAL AG, Härklingen, Schweiz Ingenieurbüro Leipert, Riegelsberg AIXPROCESS, Aachen	12/2018 12/2018 12/2018 12/2018 12/2018 11/2018 11/2018 11/2018 10/2018 10/2018 10/2018 09/2018 09/2018 09/2018 07/2018 07/2018 07/2018 05/2018
KRONES, Neutraubling	02/2018
Doosan Lentjes, Ratingen	01/2018
2017	
Compact Kältetechnik, Dresden Endress + Hauser Messtechnik GmbH +Co. KG, Hannover TH Mittelhessen, Gießen Haarslev Industries, Søndersø, Denmark Hochschule Zittau/Görlitz, Fachgebiet Energiesystemtechnik ATESTEO, Alsdorf Wijbenga, PC Geldermalsen, Netherlands Fels-Werke GmbH, Elbingerode	12/2017 12/2017 11/2017 11/2017 11/2017 10/2017 10/2017

KIT Karlsruhe, Institute für Neutronenphysik und Reaktortechnik	09/2017
Air-Consult, Jena	09/2017
Papierfabrik Koehler, Oberkirch	09/2017
ZWILAG, Würenlingen, Switzerland	09/2017
TLK-Thermo Universität Braunschweig, Braunschweig	08/2017
Fichtner IT Consulting AG, Stuttgart	07/2017
Hochschule Ansbach, Ansbach	06/2017
RONAL, Härkingen, Switzerland	06/2017
BORSIG Service, Berlin	06/2017
BOGE Kompressoren, Bielefeld	06/2017
STEAG Energy Services, Zwingenberg	06/2017
CES clean energy solutions, Wien, Austria	04/2017
Princeton University, Princeton, USA	04/2017
B2P Bio-to-Power, Wadersloh	04/2017
TU Dresden, Institute for Energy Engineering, Dresden	04/2017
SAINT-GOBAIN, Vaujours, France	03/2017
TU Bergakademie Freiberg, Chair of Thermodynamics, Freiberg	03/2017
SCHMIDT + PARTNER, Therwil, Switzerland	03/2017
KAESER Kompressoren, Gera	03/2017
F&R, Praha, Czech Republic	03/2017
ULT Umwelt-Lufttechnik, Löbau	02/2017
JS Energie & Beratung, Erding	02/2017
Kelvion Brazed PHE, Nobitz-Wilchwitz	02/2017
MTU Aero Engines, München	02/2017
Hochschule Zittau/Görlitz, IPM	01/2017
CombTec ProCE, Zittau	01/2017
SHELL Deutschland Oil, Wesseling	01/2017
MARTEC Education Center, Frederikshaven, Denmark	01/2017
SynErgy Thermal Management, Krefeld	01/2017
SynErgy Therman Management, Nicroid	01/2017
2016	
BOGE Druckluftsysteme, Bielefeld	12/2016
BFT Planung, Aachen	11/2016
Midiplan, Bietigheim-Bissingen	11/2016
BBE Barnich IB	11/2016
Wenisch IB,	11/2016
INL, Idaho Falls	11/2016
TU Kältetechnik, Dresden	11/2016
Kopf SynGas, Sulz	11/2016
INTVEN, Bellevne (USA)	11/2016
DREWAG Dresden, Dresden	10/2016
AGO AG Energie+Anlagen, Kulmbach	10/2016
Universität Stuttgart, ITW, Stuttgart	09/2016
Pöyry Deutschland GmbH, Dresden	09/2016
Siemens AG, Erlangen	09/2016
BASF über Fichtner IT Consulting AG	09/2016
B+B Engineering GmbH, Magdeburg	09/2016
Wilhelm Büchner Hochschule, Pfungstadt	08/2016
vviineini buonnei riochschule, Flungslaul	00/2010

Wobacto	mornio a comicit oz, ciloning	00/2010
TU Dresd	len, Dresden	08/2016
Endress+	Hauser Messtechnik GmbH+Co. KG, Hannover	08/2016
D + B Käl	tetechnik, Althausen	07/2016
Fichtner I	T Consulting AG, Stuttgart	07/2016
AB Electr	olux, Krakow, Poland	07/2016
ENEXIO	Germany GmbH, Herne	07/2016
VPC Gmb	pH, Vetschau/Spreewald	07/2016
INWAT, L	odz, Poland	07/2016
E.ON SE	, Düsseldorf	07/2016
Planungs	büro Waidhas GmbH, Chemnitz	07/2016
EEB Ene	rko, Aldershoven	07/2016
IHEBA Na	aturenergie GmbH & Co. KG, Pfaffenhofen	07/2016
SSP Kälte	eplaner AG, Wolfertschwenden	07/2016
EEB ENE	RKO Energiewirtschaftliche Beratung GmbH, Berlin	07/2016
BOGE Ko	ompressoren Otto BOGE GmbH & Co KG, Bielefeld	06/2016
Universid	ad Carlos III de Madrid, Madrid, Spain	04/2016
INWAT, L	Lodzi, Poland	04/2016
Planungs	büro WAIDHAS GmbH, Chemnitz	04/2016
STEAG E	nergy Services GmbH, Laszlo Küppers, Zwingenberg	03/2016
WULFF 8	UMAG Energy Solutions GmbH, Husum	03/2016
FH Bielef	eld, Bielefeld	03/2016
EWT Eck	ert Wassertechnik GmbH, Celle	03/2016
ILK Institu	ut für Luft- und Kältetechnik GmbH, Dresden	02/2016, 06/2016
IEV KEM	A - DNV GV – Energie, Dresden	02/2016
Allborg U	niversity, Department of Energie, Aalborg, Denmark	02/2016
G.A.M. H	eat GmbH, Gräfenhainichen	02/2016
Institut für	r Luft- und Kältetechnik, Dresden	02/2016, 05/2016, 06/2016
Bosch, St	tuttgart	02/2016
INL Idaho	National Laboratory, Idaho, USA	11/2016, 01/2016
Friedl ID,	Wien, Austria	01/2016
Technical	University of Dresden, Dresden	01/2016
2015		
EES Ene	erko, Aachen	12/2015
Ruldolf IB	s, Strau, Austria	12/2015
Allborg U	niversity, Department of Energie, Aalborg, Denmark	12/2015
University	of Lyubljana, Slovenia	12/2015
Steinbrec	ht IB, Berlin	11/2015
Universid	ad Carlos III de Madrid, Madrid, Spain	11/2015
STEAK, E	Essen	11/2015
Bosch, Lo	ohmar	10/2015
Team Tu	rbo Machines, Rouen, France	09/2015
BTC – Bu	siness Technology Consulting AG, Oldenburg	07/2015
	ruhe Institute of Technology, Eggenstein-Leopoldshafen	07/2015
ILK, Dres		07/2015
Schniewir	ndt GmbH & Co. KG, Neuenwalde	08/2015

08/2016

Webasto Thermo & Comfort SE, Gliching

2014	
PROJEKTPLAN, Dohna	04/2014
Technical University of Vienna, Austria	04/2014
MTU Aero Engines AG, Munich	04/2014
GKS, Schweinfurt	03/2014
Technical University of Nuremberg	03/2014
EP-E, Niederstetten	03/2014
Rückert NatUrgas GmbH, Lauf	03/2014
YESS-World, South Korea	03/2014
ZAB, Dessau	02/2014
KIT-TVT, Karlsruhe	02/2014
Stadtwerke Neuburg	02/2014
COMPAREX, Leipzig for RWE Essen	02/2014
Technical University of Prague, Czech Republic	02/2014
HS Augsburg	02/2014
Envi-con, Nuremberg	01/2014
DLR, Stuttgart	01/2014
Doosan Lentjes, Ratingen	01/2014
Technical University of Berlin	01/2014
Technical University of Munich	01/2014
Technical University of Braunschweig	01/2014
M&M Turbinentechnik, Bielefeld	01/2014
2013	
TRANTER-GmbH, Artern	12/2013
SATAKE, Shanghai, China	12/2013
VOITH, Kunshan, China	12/2013
ULT, Löbau	12/2013
MAN, Copenhagen, Dänemark	11/2013
DREWAG, Dresden	11/2013
Haarslev Industries, Herlev, Dänemark	11/2013
STEAG, Herne	11/2013, 12/2013
Ingersoll-Rand, Oberhausen	11/2013
Wilhelm-Büchner HS, Darmstadt	10/2013
IAV, Chemnitz	10/2013
Technical University of Regensburg	10/2013
PD-Energy, Bitterfeld	09/2013
Thermofin, Heinsdorfergrund	09/2013
SHI, New Jersey, USA	09/2013
M&M Turbinentechnik, Bielefeld	08/2013
BEG-BHV, Bremerhaven	08/2013
TIG-Group, Husum	08/2013
COMPAREX, Leipzig for RWE Essen	08/2013, 11/2013 12/2013
University of Budapest, Hungary	08/2013
Siemens, Frankenthal	08/2013, 10/2013

	11/2013			
VGB, Essen	07/2013, 11/2013			
Brunner Energieberatung, Zurich, Switzerland	07/2013			
Technical University of Deggendorf	07/2013			
University of Maryland, USA	07/2013, 08/2013			
University of Princeton, USA	07/2013			
NIST, Boulder, USA	06/2013			
IGUS GmbH, Dresden	06/2013			
BHR Bilfinger, Essen	06/2013			
SÜDSALZ, Bad Friedrichshall	06/2013, 12/2013			
Technician School of Berlin	05/2013			
KIER, Gajeong-ro, Südkorea	05/2013			
Schwing/Stetter GmbH, Memmingen	05/2013			
Vattenfall, Berlin	05/2013			
AUTARK, Kleinmachnow	05/2013			
STEAG, Zwingenberg	05/2013			
Hochtief, Düsseldorf	05/2013			
University of Stuttgart	04/2013			
Technical University -Bundeswehr, Munich	04/2013			
Rerum Cognitio Forschungszentrum, Frankfurt	04/2013			
Kältetechnik Dresen + Bremen, Alfhausen	04/2013			
University Auckland, New Zealand	04/2013			
MASDAR Institut, Abu Dhabi, United Arab Emirates	03/2013			
Simpelkamp, Dresden	02/2013			
VEO, Eisenhüttenstadt	02/2013			
ENTEC, Auerbach	02/2013			
Caterpillar, Kiel	02/2013			
Technical University of Wismar	02/2013			
Technical University of Dusseldorf	02/2013			
ILK, Dresden	01/2013, 08/2013			
Fichtner IT, Stuttgart	01/2013, 11/2013			
Schnepf Ingeniuerbüro, Nagold	01/2013			
Schütz Engineering, Wadgassen	01/2013			
Endress & Hauser, Reinach, Switzerland	01/2013			
Oschatz GmbH, Essen	01/2013			
frischli Milchwerke, Rehburg-Loccum	01/2013			
2012				
Voith, Bayreuth	12/2012			
Technical University of Munich	12/2012			
Dillinger Huette	12/2012			
University of Stuttgart	11/2012			
Siemens, Muehlheim	11/2012			
Sennheiser, Hannover	11/2012			
Oschatz GmbH, Essen	10/2012			
Fichtner IT, Stuttgart	10/2012, 11/2012			
Helbling Technik AG, Zurich, Switzerland	10/2012, 11/2012			
University of Duisburg	10/2012			
Silly of Dulaburg	10/2012			

Rerum Cognitio Forschungszentrum, Frankfurt	09/2012
Pöyry Deutschland GmbH, Dresden	08/2012
Extracciones, Guatemala	08/2012
RWE, Essen	08/2012
Weghaus Consulting Engineers, Wuerzburg	08/2012
GKS, Schweinfurt	07/2012
COMPAREX, Leipzig	07/2012
for RWE Essen	
GEA, Nobitz	07/2012
Meyer Werft, Papenburg	07/2012
STEAG, Herne	07/2012
GRS, Cologne	06/2012
Fichtner IT Consult, Chennai, India	06/2012
Siemens, Freiburg	06/2012
Nikon Research of America, Belmont, USA	06/2012
Niederrhein University of Applied Sciences, Krefeld	06/2012
STEAG, Zwingenberg	06/2012
Mainova, Frankfurt on Main	05/2012
via Fichtner IT Consult	
Endress & Hauser	05/2012
PEU, Espenheim	05/2012
Luzern University of Applied Sciences, Switzerland	05/2012
BASF, Ludwigshafen (general license) via Fichtner IT Consult	05/2012
	05/2012, 07/2012
SPX Balcke-Dürr, Ratingen Gruber-Schmidt, Wien, Austria	03/2012, 07/2012
Vattenfall, Berlin	04/2012
ALSTOM, Baden	04/2012
SKW, Piesteritz	04/2012
TERA Ingegneria, Trento, Italy	04/2012
Siemens, Erlangen	04/2012, 05/2012
LAWI Power, Dresden	04/2012
Stadtwerke Leipzig	04/2012
SEITZ, Wetzikon, Switzerland	03/2012, 07/2012
M & M, Bielefeld	03/2012
Sennheiser, Wedemark	03/2012
SPG, Montreuil Cedex, France	02/2012
German Destilation, Sprendlingen	02/2012
Lopez, Munguia, Spain	02/2012
Endress & Hauser, Hannover	02/2012
Palo Alto Research Center, USA	02/2012
WIPAK, Walsrode	02/2012
Freudenberg, Weinheim	01/2012
Fichtner, Stuttgart	01/2012
airinotec, Bayreuth	01/2012, 07/2012
University Auckland, New Zealand	01/2012
VPC, Vetschau	01/2012
Franken Guss, Kitzingen	01/2012

XRG-Simulation, Hamburg	12/2011
Smurfit Kappa PPT, AX Roermond, Netherlands	12/2011
AWTEC, Zurich, Switzerland	12/2011
eins-energie, Bad Elster	12/2011
BeNow, Rodenbach	11/2011
Luzern University of Applied Sciences, Switzerland	11/2011
GMVA, Oberhausen	11/2011
CCI, Karlsruhe	10/2011
WBüchner University of Applied Sciences, Pfungstadt	10/2011
PLANAIR, La Sagne, Switzerland	10/2011
LAWI, Dresden	10/2011
Lopez, Munguia, Spain	10/2011
University of KwaZulu-Natal, Westville, South Africa	10/2011
Voith, Heidenheim	09/2011
SpgBe Montreal, Canada	09/2011
SPG TECH, Montreuil Cedex, France	09/2011
Voith, Heidenheim-Mergelstetten	09/2011
MTU Aero Engines, Munich	08/2011
MIBRAG, Zeitz	08/2011
RWE, Essen	07/2011
Fels, Elingerode	07/2011
Weihenstephan University of Applied Sciences	07/2011, 09/2011
то по	10/2011
Forschungszentrum Juelich	07/2011
RWTH Aachen University	07/2011, 08/2011
INNEO Solutions, Ellwangen	06/2011
Caliqua, Basel, Switzerland	06/2011
Technical University of Freiberg	06/2011
Fichtner IT Consulting, Stuttgart	05/2011, 06/2011,
Tronular Tr Containing, Claringuit	08/2011
Salzgitter Flachstahl, Salzgitter	05/2011
Helbling Beratung & Bauplanung, Zurich, Switzerland	05/2011
INEOS, Cologne	04/2011
Enseleit Consulting Engineers, Siebigerode	04/2011
Witt Consulting Engineers, Stade	03/2011
Helbling, Zurich, Switzerland	03/2011
MAN Diesel, Copenhagen, Denmark	03/2011
AGO, Kulmbach	03/2011
	03/2011, 06/2011
University of Duisburg	
CCP, Marburg	03/2011
BASF, Ludwigshafen	02/2011
ALSTOM Power, Baden, Switzerland	02/2011
Universität der Bundeswehr, Munich	02/2011
Calorifer, Elgg, Switzerland	01/2011
STRABAG, Vienna, Austria	01/2011
TUEV Sued, Munich	01/2011

ILK Dresden	01/2011
Technical University of Dresden	01/2011, 05/2011
	06/2011, 08/2011
2042	
2010	
Umweltinstitut Neumarkt	12/2010
YIT Austria, Vienna, Austria	12/2010
MCI Innsbruck, Austria	12/2010
University of Stuttgart	12/2010
HS Cooler, Wittenburg	12/2010
Visteon, Novi Jicin, Czech Republic	12/2010
CompuWave, Brunntal	12/2010
Stadtwerke Leipzig	12/2010
MCI Innsbruck, Austria	12/2010
EVONIK Energy Services, Zwingenberg	12/2010
Caliqua, Basel, Switzerland	11/2010
Shanghai New Energy Resources Science & Technology, Chin	a 11/2010
Energieversorgung Halle	11/2010
Hochschule für Technik Stuttgart, University of Applied Science	es 11/2010
Steinmueller, Berlin	11/2010
Amberg-Weiden University of Applied Sciences	11/2010
AREVA NP, Erlangen	10/2010
MAN Diesel, Augsburg	10/2010
KRONES, Neutraubling	10/2010
Vaillant, Remscheid	10/2010
PC Ware, Leipzig	10/2010
Schubert Consulting Engineers, Weißenberg	10/2010
Fraunhofer Institut UMSICHT, Oberhausen	10/2010
Behringer Consulting Engineers, Tagmersheim	09/2010
Saacke, Bremen	09/2010
WEBASTO, Neubrandenburg	09/2010
Concordia University, Montreal, Canada	09/2010
Compañía Eléctrica de Sochagota, Bogota, Colombia	08/2010
Hannover University of Applied Sciences	08/2010
ERGION, Mannheim	07/2010
Fichtner IT Consulting, Stuttgart	07/2010
TF Design, Matieland, South Africa	07/2010
MCE, Berlin	07/2010, 12/2010
IPM, Zittau/Goerlitz University of Applied Sciences	06/2010
TUEV Sued, Dresden	06/2010
RWE IT, Essen	06/2010
Glen Dimplex, Kulmbach	05/2010, 07/2010
	10/2010
Hot Rock, Karlsruhe	05/2010
Darmstadt University of Applied Sciences	05/2010
Voith, Heidenheim	04/2010
CombTec, Zittau	04/2010
University of Glasgow, Great Britain	04/2010

	Universitaet der Bundeswehr, Munich		04/2010
	Technical University of Hamburg-Harburg		04/2010
	Vattenfall Europe, Berlin		04/2010
	HUBER Consulting Engineers, Berching		04/2010
	VER, Dresden		04/2010
	CCP, Marburg		03/2010
	Offenburg University of Applied Sciences		03/2010
	Technical University of Berlin		03/2010
	NIST Boulder CO, USA		03/2010
	Technical University of Dresden		02/2010
	Siemens Energy, Nuremberg		02/2010
	Augsburg University of Applied Sciences		02/2010
	ALSTOM Power, Baden, Switzerland	02/2010,	05/2010
	MIT Massachusetts Institute of Technology Cambridge MA, USA		02/2010
	Wieland Werke, Ulm		01/2010
	Siemens Energy, Goerlitz	01/2010,	12/2010
	Technical University of Freiberg		01/2010
	ILK, Dresden	01/2010,	12/2010
	Fischer-Uhrig Consulting Engineers, Berlin		01/2010
20	09		
	ALSTOM Power, Baden, Schweiz	01/2009,	03/2009
			05/2009
	Nordostschweizerische Kraftwerke AG, Doettingen, Switzerland		02/2009
	RWE, Neurath		02/2009
	Brandenburg University of Technology, Cottbus		02/2009
	Hamburg University of Applied Sciences		02/2009
	Kehrein, Moers		03/2009
	EPP Software, Marburg		03/2009
	Bernd Münstermann, Telgte		03/2009
	Suedzucker, Zeitz		03/2009
	CPP, Marburg		03/2009
	Gelsenkirchen University of Applied Sciences		04/2009
	Regensburg University of Applied Sciences		05/2009
	Gatley & Associates, Atlanta, USA		05/2009
	BOSCH, Stuttgart	06/2009,	07/2009
	Dr. Nickolay, Consulting Engineers, Gommersheim		06/2009
	Ferrostal Power, Saarlouis		06/2009
	BHR Bilfinger, Essen		06/2009
	Intraserv, Wiesbaden		06/2009
	Lausitz University of Applied Sciences, Senftenberg		06/2009
	Nuernberg University of Applied Sciences		06/2009
	Technical University of Berlin		06/2009
	Fraunhofer Institut UMSICHT, Oberhausen		07/2009
	Bischoff, Aurich		07/2009
	Fichtner IT Consulting, Stuttgart		07/2009
	Techsoft, Linz, Austria		08/2009
	DLR, Stuttgart		08/2009

AND A A A CO	00/0000
Wienstrom, Vienna, Austria	08/2009
RWTH Aachen University	09/2009
Vattenfall, Hamburg	10/2009
AIC, Chemnitz	10/2009
Midiplan, Bietigheim-Bissingen	11/2009
Institute of Air Handling and Refrigeration ILK, Dresden	11/2009
FZD, Rossendorf	11/2009
Techgroup, Ratingen	11/2009
Robert Sack, Heidelberg	11/2009
EC, Heidelberg	11/2009
MCI, Innsbruck, Austria	12/2009
Saacke, Bremen	12/2009
ENERKO, Aldenhoven	12/2009
2008	
Pink, Langenwang	01/2008
Fischer-Uhrig, Berlin	01/2008
University of Karlsruhe	01/2008
MAAG, Kuesnacht, Switzerland	02/2008
M&M Turbine Technology, Bielefeld	02/2008
Lentjes, Ratingen	03/2008
Siemens Power Generation, Goerlitz	04/2008
Evonik, Zwingenberg (general EBSILON program license)	04/2008
WEBASTO, Neubrandenburg	04/2008
CFC Solutions, Munich	04/2008
RWE IT, Essen	04/2008
Rerum Cognitio, Zwickau	04/2008, 05/2008
ARUP, Berlin	05/2008
Research Center, Karlsruhe	07/2008
AWECO, Neukirch	07/2008
Technical University of Dresden,	07/2008
Professorship of Building Services	31.233
Technical University of Cottbus,	07/2008, 10/2008
Chair in Power Plant Engineering	,
Ingersoll-Rand, Unicov, Czech Republic	08/2008
Technip Benelux BV, Zoetermeer, Netherlands	08/2008
Fennovoima Oy, Helsinki, Finland	08/2008
Fichtner Consulting & IT, Stuttgart	09/2008
PEU, Espenhain	09/2008
Poyry, Dresden	09/2008
WINGAS, Kassel	09/2008
TUEV Sued, Dresden	10/2008
Technical University of Dresden,	10/2008, 11/2008
Professorship of Thermic Energy Machines and Plants	10/2000, 11/2000
AWTEC, Zurich, Switzerland	11/2008
Siemens Power Generation, Erlangen	12/2008
S.G. S. S. T. OHOF CONGRESS, Entringen	12,2000

	Audi, Ingolstadt	02/	2007
	ANO Abfallbehandlung Nord, Bremen		2007
	TUEV NORD SysTec, Hamburg		2007
	VER, Dresden		2007
	Technical University of Dresden, Chair in Jet Propulsion Systems		2007
	Redacom, Nidau, Switzerland		2007
	Universität der Bundeswehr, Munich		2007
	Maxxtec, Sinsheim		2007
	University of Rostock, Chair in Technical Thermodynamics		2007
	AGO, Kulmbach	03/	2007
	University of Stuttgart, Chair in Aviation Propulsions		2007
	Siemens Power Generation, Duisburg		2007
	ENTHAL Haustechnik, Rees	05/	2007
	AWECO, Neukirch	05/	2007
	ALSTOM, Rugby, Great Britain	06/	2007
	SAAS, Possendorf	06/	2007
	Grenzebach BSH, Bad Hersfeld	06/	2007
	Reichel Engineering, Haan	06/	2007
	Technical University of Cottbus,	06/	2007
	Chair in Power Plant Engineering		
	Voith Paper Air Systems, Bayreuth	06/	2007
	Egger Holzwerkstoffe, Wismar	06/	2007
	Tissue Europe Technologie, Mannheim	06/	2007
	Dometic, Siegen	07/	2007
	RWTH Aachen University, Institute for Electrophysics	09/	2007
	National Energy Technology Laboratory, Pittsburg, USA	10/	2007
	Energieversorgung Halle	10/	2007
	AL-KO, Jettingen	10/	2007
	Grenzebach BSH, Bad Hersfeld	10/	2007
	Wiesbaden University of Applied Sciences,	10/	2007
	Department of Engineering Sciences		
	Endress+Hauser Messtechnik, Hannover		2007
	Munich University of Applied Sciences,	11/	2007
	Department of Mechanical Engineering	40/	0007
	Rerum Cognitio, Zwickau		2007
	Siemens Power Generation, Erlangen		2007
	University of Rostock, Chair in Technical Thermodynamics	11/2007, 12/	2007
2	006		
	STORA ENSO Sachsen, Eilenburg	01/	2006
	Technical University of Munich, Chair in Energy Systems		2006
	NUTEC Engineering, Bisikon, Switzerland	01/2006, 04/	2006
	Conwel eco, Bochov, Czech Republic		2006
	Offenburg University of Applied Sciences	01/	2006
	KOCH Transporttechnik, Wadgassen	01/	2006
	BEG Bremerhavener Entsorgungsgesellschaft		2006
	Deggendorf University of Applied Sciences,	02/	2006
	Department of Mechanical Engineering and Mechatronics		
	University of Stuttgart,	02/	2006

Department of Thermal Fluid Flow Engines	
Technical University of Munich,	02/2006
Chair in Apparatus and Plant Engineering	
Energietechnik Leipzig (company license),	02/2006
Siemens Power Generation, Erlangen	02/2006, 03/2006
RWE Power, Essen	03/2006
WAETAS, Pobershau	04/2006
Siemens Power Generation, Goerlitz	04/2006
Technical University of Braunschweig,	04/2006
Department of Thermodynamics	04/2000
EnviCon & Plant Engineering, Nuremberg	04/2006
Brassel Engineering, Dresden	05/2006
3	
University of Halle-Merseburg, Department of USET Merseburg incorporated society	05/2006
Technical University of Dresden,	05/2006
Professorship of Thermic Energy Machines and Plants	03/2000
Fichtner Consulting & IT Stuttgart	05/2006
(company licenses and distribution)	03/2000
,	06/2006
Suedzucker, Ochsenfurt	
M&M Turbine Technology, Bielefeld	06/2006
Feistel Engineering, Volkach	07/2006
ThyssenKrupp Marine Systems, Kiel	07/2006
Caliqua, Basel, Switzerland (company license)	09/2006
Atlas-Stord, Rodovre, Denmark	09/2006
Konstanz University of Applied Sciences,	10/2006
Course of Studies Construction and Development	40/0000
Siemens Power Generation, Duisburg	10/2006
Hannover University of Applied Sciences, Department of Mechanical Engineering	10/2006
Siemens Power Generation, Berlin	11/2006
Zikesch Armaturentechnik, Essen	11/2006
Wismar University of Applied Sciences, Seafaring Department	11/2006
BASF, Schwarzheide	12/2006
Enertech Energie und Technik, Radebeul	12/2006
•	
2005	
TUEV Nord, Hannover	01/2005
J.H.K Plant Engineering and Service, Bremerhaven	01/2005
Electrowatt-EKONO, Zurich, Switzerland	01/2005
FCIT, Stuttgart	01/2005
Energietechnik Leipzig (company license)	02/2005, 04/2005
	07/2005
eta Energieberatung, Pfaffenhofen	02/2005
FZR Forschungszentrum, Rossendorf/Dresden	04/2005
University of Saarbruecken	04/2005
Technical University of Dresden	04/2005
Professorship of Thermic Energy Machines and Plants	
Grenzebach BSH, Bad Hersfeld	04/2005
TUEV Nord, Hamburg	04/2005
-	

Technical University of Dresden, Waste Management	05/2005
Siemens Power Generation, Goerlitz	05/2005
Duesseldorf University of Applied Sciences,	05/2005
Department of Mechanical Engineering and Process Engineering	
Redacom, Nidau, Switzerland	06/2005
Dumas Verfahrenstechnik, Hofheim	06/2005
Alensys Engineering, Erkner	07/2005
Stadtwerke Leipzig	07/2005
SaarEnergie, Saarbruecken	07/2005
ALSTOM ITC, Rugby, Great Britain	08/2005
Technical University of Cottbus, Chair in Power Plant Engineering	08/2005
Vattenfall Europe, Berlin (group license)	08/2005
Technical University of Berlin	10/2005
Basel University of Applied Sciences,	10/2005
Department of Mechanical Engineering, Switzerland	
Midiplan, Bietigheim-Bissingen	11/2005
Technical University of Freiberg, Chair in Hydrogeology	11/2005
STORA ENSO Sachsen, Eilenburg	12/2005
Energieversorgung Halle (company license)	12/2005
KEMA IEV, Dresden	12/2005
2004	
Vattenfall Europe (group license)	01/2004
TUEV Nord, Hamburg	01/2004
University of Stuttgart, Institute of Thermodynamics and Heat Engineering	02/2004
MAN B&W Diesel A/S, Copenhagen, Denmark	02/2004
Siemens AG Power Generation, Erlangen	02/2004
Ulm University of Applied Sciences	03/2004
Visteon, Kerpen	03/2004, 10/2004
Technical University of Dresden,	
Professorship of Thermic Energy Machines and Plants	04/2004
Rerum Cognitio, Zwickau	04/2004
University of Saarbruecken	04/2004
Grenzebach BSH, Bad Hersfeld	04/2004
SOFBID Zwingenberg (general EBSILON program license)	04/2004
EnBW Energy Solutions, Stuttgart	05/2004
HEW-Kraftwerk, Tiefstack	06/2004
h s energieanlagen, Freising	07/2004
FCIT, Stuttgart	08/2004
Physikalisch Technische Bundesanstalt (PTB), Braunschweig	08/2004
Mainova Frankfurt	08/2004
Rietschle Energieplaner, Winterthur, Switzerland	08/2004
MAN Turbo Machines, Oberhausen	09/2004
TUEV Sued, Dresden	10/2004
STEAG Kraftwerk, Herne	10/2004, 12/2004
University of Weimar	10/2004
energeticals (e-concept), Munich	11/2004
SorTech, Halle	11/2004

20	Enertech EUT, Radebeul (company license) Munich University of Applied Sciences STORA ENSO Sachsen, Eilenburg Technical University of Cottbus, Chair in Power Plant Engineering Freudenberg Service, Weinheim	11/2004 12/2004 12/2004 12/2004 12/2004
20		04/0000
	Paper Factory, Utzenstorf, Switzerland	01/2003
	MAB Plant Engineering, Vienna, Austria Wulff Energy Systems, Husum	01/2003 01/2003
	Technip Benelux BV, Zoetermeer, Netherlands	01/2003
	ALSTOM Power, Baden, Switzerland	01/2003, 07/2003
	VER, Dresden	02/2003
	Rietschle Energieplaner, Winterthur, Switzerland	02/2003
	DLR, Leupholdhausen	04/2003
	Emden University of Applied Sciences, Department of Technology	05/2003
	Petterssson+Ahrends, Ober-Moerlen	05/2003
	SOFBID ,Zwingenberg (general EBSILON program license)	05/2003
	Ingenieurbuero Ostendorf, Gummersbach	05/2003
	TUEV Nord, Hamburg	06/2003
	Muenstermann GmbH, Telgte-Westbevern	06/2003
	University of Cali, Colombia	07/2003
	Atlas-Stord, Rodovre, Denmark	08/2003
	ENERKO, Aldenhoven	08/2003
	STEAG RKB, Leuna	08/2003
	eta Energieberatung, Pfaffenhofen	08/2003
	exergie, Dresden	09/2003
	AWTEC, Zurich, Switzerland	09/2003
	Energie, Timelkam, Austria	09/2003
	Electrowatt-EKONO, Zurich, Switzerland	09/2003
	LG, Annaberg-Buchholz	10/2003
	FZR Forschungszentrum, Rossendorf/Dresden EnviCon & Plant Engineering, Nuremberg	10/2003 11/2003
	Visteon, Kerpen	11/2003
	VEO Vulkan Energiewirtschaft Oderbruecke, Eisenhuettenstadt	11/2003
	Stadtwerke Hannover	11/2003
	SaarEnergie, Saarbruecken	11/2003
	Fraunhofer-Gesellschaft, Munich	12/2003
	Erfurt University of Applied Sciences,	12/2003
	Department of Supply Engineering	
	SorTech, Freiburg	12/2003
	Mainova, Frankfurt	12/2003
	Energieversorgung Halle	12/2003
20	02	
	Hamilton Medical AG, Rhaezuens, Switzerland	01/2002
	Bochum University of Applied Sciences,	01/2002
	Department of Thermo- and Fluid Dynamics	

SAAS, Possendorf/Dresden	02/2002
Siemens, Karlsruhe	02/2002
(general license for the WinIS information system)	
FZR Forschungszentrum, Rossendorf/Dresden	03/2002
CompAir, Simmern	03/2002
GKS Gemeinschaftskraftwerk, Schweinfurt	04/2002
ALSTOM Power Baden, Switzerland (group licenses)	05/2002
InfraServ, Gendorf	05/2002
SoftSolutions, Muehlhausen (company license)	05/2002
DREWAG, Dresden (company license)	05/2002
SOFBID, Zwingenberg	06/2002
(general EBSILON program license)	
Kleemann Engineering, Dresden	06/2002
Caliqua, Basel, Switzerland (company license)	07/2002
PCK Raffinerie, Schwedt (group license)	07/2002
Fischer-Uhrig Engineering, Berlin	08/2002
Fichtner Consulting & IT, Stuttgart	08/2002
(company licenses and distribution)	
Stadtwerke Duisburg	08/2002
Stadtwerke Hannover	09/2002
Siemens Power Generation, Goerlitz	10/2002
Energieversorgung Halle (company license)	10/2002
Bayer, Leverkusen	11/2002
Dillinger Huette, Dillingen	11/2002
G.U.N.T. Geraetebau, Barsbuettel	12/2002
(general license and training test benches)	
VEAG, Berlin (group license)	12/2002
2001	
	01/2001 06/2001
ALSTOM Power, Baden, Switzerland	01/2001, 06/2001 12/2001
KW2 B. V., Amersfoot, Netherlands	01/2001, 11/2001
Eco Design, Saitamaken, Japan	01/2001, 11/2001
M&M Turbine Technology, Bielefeld	01/2001, 09/2001
MVV Energie, Mannheim	02/2001
Technical University of Dresden, Department of	02/2001
Power Machinery and Plants	02/2001
PREUSSAG NOELL, Wuerzburg	03/2001
Fichtner Consulting & IT Stuttgart	04/2001
(company licenses and distribution)	04/2001
Muenstermann GmbH, Telgte-Westbevern	05/2001
SaarEnergie, Saarbruecken	05/2001
Siemens, Karlsruhe	08/2001
	00/2001
(general license for the WinIS information system) Neusiedler AG, Ulmerfeld, Austria	09/2001
h s energieanlagen, Freising	09/2001
Electrowatt-EKONO, Zurich, Switzerland	09/2001
IPM Zittau/Goerlitz University of Applied Sciences (general license)	10/2001
in wi Zillaur Oberniz Oniversity of Applied Sciences (general license)	10/2001

eta Energieberatung, Pfaffenhofen ALSTOM Power Baden, Switzerland VEAG, Berlin (group license) 2000	11/2001 12/2001 12/2001
	01/2000
SOFBID, Zwingenberg (general EBSILON program license)	01/2000
AG KKK - PGW Turbo, Leipzig	01/2000
PREUSSAG NOELL, Wuerzburg	01/2000
M&M Turbine Technology, Bielefeld	01/2000
IBR Engineering Reis, Nittendorf-Undorf	02/2000
GK, Hannover	03/2000
KRUPP-UHDE, Dortmund (company license)	03/2000
UMAG W. UDE, Husum	03/2000
VEAG, Berlin (group license)	03/2000
Thinius Engineering, Erkrath	04/2000
SaarEnergie, Saarbruecken	05/2000, 08/2000
DVO Data Processing Service, Oberhausen	05/2000
RWTH Aachen University	06/2000
VAUP Process Automation, Landau	08/2000
Knuerr-Lommatec, Lommatzsch	09/2000
AVACON, Helmstedt	10/2000
Compania Electrica, Bogota, Colombia	10/2000
G.U.N.T. Geraetebau, Barsbuettel	11/2000
(general license for training test benches)	
Steinhaus Informationssysteme, Datteln	12/2000
(general license for process data software)	
1999	
Bayernwerk, Munich	01/1999
DREWAG, Dresden (company license)	02/1999
KEMA IEV, Dresden	03/1999
Regensburg University of Applied Sciences	04/1999
Fichtner Consulting & IT, Stuttgart	07/1999
(company licenses and distribution)	
Technical University of Cottbus, Chair in Power Plant Engineering	07/1999
Technical University of Graz, Department of Thermal Engineering, Austria	11/1999
Ostendorf Engineering, Gummersbach	12/1999
1998	
Technical University of Cottbus, Chair in Power Plant Engineering	05/1998
Fichtner Consulting & IT (CADIS information systems) Stuttgart	05/1998
(general KPRO program license)	
M&M Turbine Technology Bielefeld	06/1998
B+H Software Engineering Stuttgart	08/1998
Alfa Engineering, Switzerland	09/1998
VEAG Berlin (group license)	09/1998
NUTEC Engineering, Bisikon, Switzerland	10/1998

SCA Hygiene Products, Munich	10/1998
RWE Energie, Neurath	10/1998
Wilhelmshaven University of Applied Sciences	10/1998
BASF, Ludwigshafen (group license)	11/1998
Energieversorgung, Offenbach	11/1998

Gerb, Dresden	06/1997
Siemens Power Generation, Goerlitz	07/1997