

Property Library for Octamethyltrisiloxane (MDM) C₈H₂₄Si₃O₂

FluidDYM
with LibMDM
for DYMOLA®

Prof. Hans-Joachim Kretzschmar

Dr. Sebastian Herrmann

Dr. Matthias Kunick

Property Software for Octamethyltrisiloxane C₈H₂₄Si₃O₂ (LibMDM)

FluidDYM for DYMOLA®

Contents

- 0. Package Contents
- 1. Property Functions
- 2. Application of FluidDYM in Dymola®
 - 2.1 Installing FluidDYM
 - 2.2 Example: Calculation of the Specific Enthalpy h = f(p,t,x) of Octamethyltrisiloxane
 - 2.3 Removing FluidDYM
- 3. Program Documentation
- 4. Property Libraries for Calculating Heat Cycles, Boilers, Turbines, and Refrigerators
- 5. References
- 6. Satisfied Customers

© KCE-ThermoFluidProperties UG (with limited liability) & Co. KG

Professor Hans-Joachim Kretzschmar Wallotstr. 3, 01307 Dresden, Germany

Phone: +49-351-27597860 Mobile: +49-172-7914607 Fax: +49-3222-4262250

Email: info@thermofluidprop.com Internet: www.thermofluidprop.com

0 Package Contents

0.1 Zip file for 32-bit DYMOLA®

"CD_FluidDYM_LibCO2.zip"

Including the following files:

FluidDYM_LibCO2_Setup.exe Installation Program for the FluidDYM

Add-In for use in DYMOLA®

LibCO2.dll Dynamic Link Library f

FluidDYM_LibCO2_Docu.pdf User's Guide

Folder "Users_Guide" Includes the complete User's Guide

0.2 Zip file for 64-bit MATLAB®

"CD FluidDYM LibCO2 64.zip"

Including the following files and folders:

Files:

Setup.exe - Self-extracting and self-installing program

for FluidLAB

FluidDYM_LibCO2_64.msi - Installation program for the FluidLAB Add-On

for use in MATLAB®

LibCO2.dll - Dynamic Link Library for carbon dioxide for

use in MATLAB®

FluidLAB_LibCO2_Docu.pdf - User's Guide

Folders:

vcredist_x64 - Folder containing the "Microsoft Visual C++

2010 x64 Redistributable Pack"

WindowsInstaller3_1 - Folder containing the "Microsoft Windows

Installer"

1. Property Functions

1.1 Calculation Programs

"MDM" means Octamethyltrisiloxane (C₈H₂₄Si₃O₂)

Functional	Function Name	Call from	Call in DLL LibMDM	Property or	Unit of the
Dependence		Fortran program	as parameter	Function	result
a = f(p, t, x)	a_ptx_MDM	APTXMDM(P,T,X)	C_APTXMDM(PR,P,T,X)	Thermal diffusivity	m²/s
$c_p = f(p, t, x)$	cp_ptx_MDM	CPPTXMDM(P,T,X)	C_CPPTXMDM(CP,P,T,X)	Specific isobaric heat capacity	kJ/(kg K)
$c_{V} = f(p, t, x)$	cv_ptx_MDM	CVPTXMDM(P,T,X)	C_CVPTXMDM(CV,P,T,X)	Specific isochoric heat capacity	kJ/(kg K)
$\left(\frac{\partial p}{\partial T}\right)_{v} = f(p, t, x)$	dpdtv_ptx_MDM	DPDTVPTXMDM(P,T,X)	C_DPDTVMDM(DPDT,P,T,X)	Derivative of pressure with respect to temperature (at constant specific volume)	kPa/K
$\left(\frac{\partial p}{\partial v}\right)_T = f(p, t, x)$	dpdvt_ptx_MDM	DPDVTPTXMDM(P,T,X)	C_DPDVTMDM(DPDV,P,T,X)	Derivative of pressure with respect to specific volume (at constant temperature)	kPa/(m³/kg)
$\eta = f(p, t, x)$	eta_ptx_MDM	ETAPTXMDM(P,T,X)	C_ETAPTXMDM(ETA,P,T,X)	Dynamic viscosity	Pa⋅s
h = f(p, t, x)	h_ptx_MDM	HPTXMDM(P,T,X)	C_HPTXMDM(H,P,T,X)	Specific enthalpy	kJ/kg
$\kappa = f(p, t, x)$	kappa_ptx_MDM	KAPPAPTXMDM(P,T,X)	C_KAPPAPTXMDM(KAPPA,P,T,X)	Isentropic exponent	-
$\lambda = f(p, t, x)$	lamda_ptx_MDM	LAMPTXMDM(P,T,X)	C_LAMPTXMDM(LAM,P,T,X)	Thermal conductivity	W/(m·K)
v = f(p, t, x)	nu_ptx_MDM	NUPTXMDM(P,T,X)	C_NUPTXMDM(NUE,P,T,X)	Kinematic viscosity	m²/s
Pr = f(p,t,x)	Pr_ptx_MDM	PRPTXMDM(P,T,X)	C_PRPTXMDM(PR,P,T,X)	Prandtl number	-
$p_{\rm S} = f(t)$	ps_t_MDM	PSTMDM(T)	C_PSTMDM(PS,T)	Vapor pressure from temperature	bar
$\rho = f(p, t, x)$	rho_ptx_MDM	RHOPTXMDM(P,T,X)	C_RHOPTXMDM(RHO,P,T,X)	Density	kg/m ³
s = f(p, t, x)	s_ptx_MDM	SPTXMDM(P,T,X)	C_SPTXMDM(S,P,T,X)	Specific entropy	kJ/(kg K)
t = f(p,h)	t_ph_MDM	TPHMDM(P,H)	C_TPHMDM(T,P,H)	Backward function: Temperature from pressure and enthalpy	°C
t = f(p,s)	t_ps_MDM	TPSMDM(P,S)	C_TPSMDM(T,P,S)	Backward function: Temperature from pressure and entropy	°C
$t_{\rm S} = f(p)$	ts_p_MDM	TSPMDM(P)	C_TSPMDM(TS,P)	Saturation temperature from pressure	°C
u = f(p, t, x)	u_ptx_MDM	UPTXMDM(P,T,X)	C_UPTXMDM(U,P,T,X)	Specific internal energy	kJ/kg

Functional Dependence	Function Name	Call from Fortran program	Call in DLL LibMDM as parameter	Property or Function	Unit of the result
V = f(p, t, x)	v_ptx_MDM	VPTXMDM(P,T,X)	$C_VPTXMDM(V,P,T,X)$	Specific volume	m³/kg
W = f(p, t, x)	w_ptx_MDM	WPTXMDM(P,T,X)	C_WPTXMDM(W,P,T,X)	Isentropic speed of sound	m/s
x = f(p,h)	x_ph_MDM	XPHMDM(P,H)	C_XPHMDM(X,P,H)	Backward function: Vapor fraction from pressure and enthalpy	kg/kg
x = f(p,s)	x_ps_MDM	XPSMDM(P,S)	C_XPSMDM(X,P,S)	Backward function: Vapor fraction from pressure and entropy	kg/kg
Z = f(p,t,x)	Z_ptx_MDM	ZPTXMDM(P,T,X)	C_ZPTXMDM(W,P,T,X)	Compression factor	-

Units: t in °C

p in bar

x in (kg of saturated steam)/(kg wet steam)

Range of validity

Temperature range: from t = 0°C to 400 °C

Pressure range: from p = 0.00078994 bar to 300 bar

Reference state

h = 0 kJ/kg and s = 0 kJ/(kg K) at $t_B = 152.53 \,^{\circ}\text{C}$ on the boiling curve (x = 0; $p_s = p_N = 1.01325 \,^{\circ}\text{bar}$)

Details on the vapor fraction x and on the calculation of wet steam

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction *x* are to be considered:

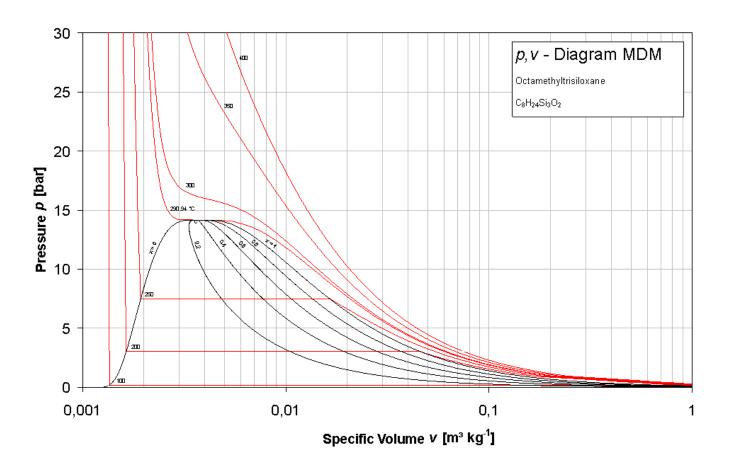
Single-phase region

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

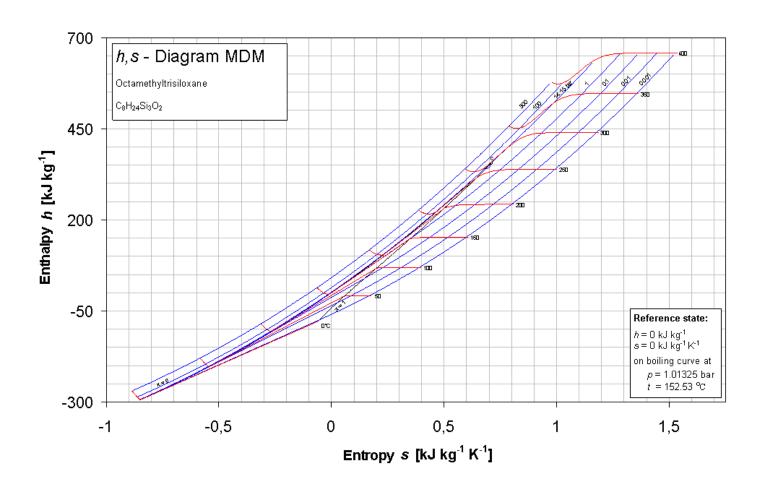
Wet-steam region

If the state point to be calculated is located in the wet steam region, a value for x between 0 and 1 (x = 0 for saturated liquid, x = 1 for saturated steam) must be entered. In this case, the backward functions result in the appropriate value between 0 and 1 for x. When calculating wet steam either the given value for t and t = -1000 or the given value for t and t = -1000 and

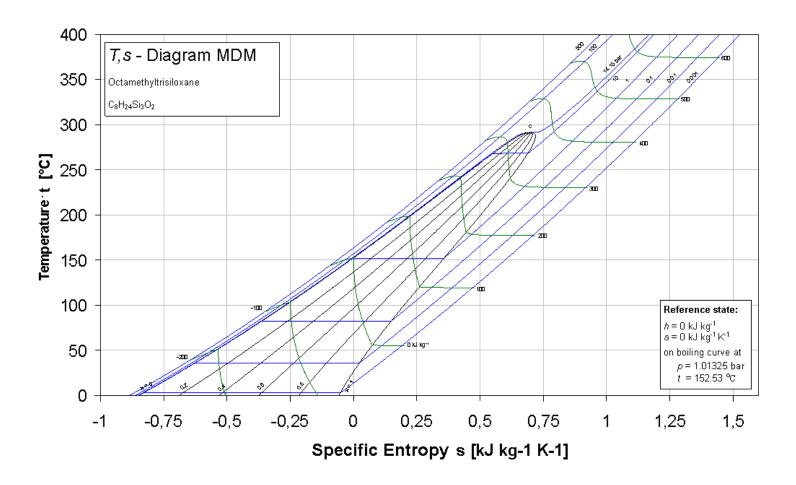
If p and t and x are entered as given values, the program considers p and t to be appropriate to represent the vapor pressure curve. If this is not the case the calculation for the property of the chosen function results in -1000.


Wet steam region: Temperature range from t = 0 °C to $t_c = 290.94$ °C

Pressure range from p_s (0 °C) = 0.00078994 bar to p_c = 14.1510555 bar


Note:

If the calculation results in –1000, the values entered represent a state point beyond the range of validity of MDM. For further information on each function and its range of validity see Chapter 3. The same information may also be accessed via the online help pages.


1.2 p,v-Diagram

1.3 h,s-Diagram

1.4 T,s-Diagram

2. Application of FluidDYM in Dymola®

The FluidDYM Add-In has been developed to calculate thermodynamic properties in Dymola[®] more conveniently. Within Dymola[®] it enables the direct call of functions relating to Octamethyltrisiloxane from the LibMDM property library. The 32-bit version of FluidDYM LibMDM runs on both the 32-bit and 64-bit version of DYMOLA[®].

2.1 Installing FluidDYM

In this section, the installation of FluidDYM and LibMDM is described.

Before you begin, it is best to close any Windows® applications, since Windows® may need to be rebooted during the installation process.

After you have downloaded and extracted the zip-file

```
"CD_FluidDYM_LibMDM.zip," (32-bit version)
```

"CD_FluidDYM_LibMDM_64.zip," (64-bit version)

you will see the folder

CD_FluidDYM_LibMDM (32-bit version)

CD_FluidDYM_LibMDM_64 (64-bit version)

in your Windows Explorer®, Norton Commander® etc.

Now, open this folder by double-clicking on it.

Within the folder for the **32-bit version** you will see the following files

FluidDYM_LibMDM_Users_Guide.pdf

FluidDYM_LibMDM_Setup.exe (32-bit version)

and the folder

"Users Guide."

Within the folder for the **64-bit version** you will see the following files

FluidDYM LibMDM Users Guide.pdf

FluidDYM_LibMDM_64_Setup.msi

Setup.exe

and the folder

"Users Guide."

In order to run the installation of **32-bit** FluidDYM including the LibMDM property library double-click the file

FluidDYM_LibMDM_Setup.exe.

Installation may start with a window noting that all Windows® programs should be closed. When this is the case, the installation can be continued. Click the "Continue" button.

In the following dialog box, "Choose Destination Location," the default path offered automatically for the installation of FluidDYM is

C:\Program Files\FluidDYM\LibMDM.

By clicking the "Browse..." button, you can change the installation directory before installation (see figure below).

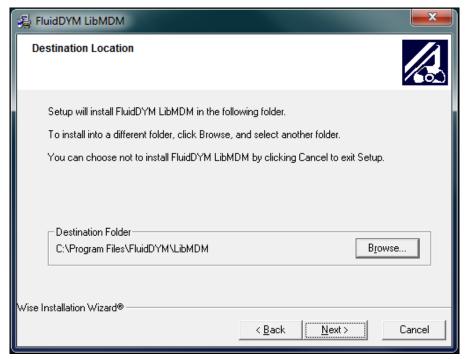


Figure 2.1: Dialog window "Destination Location"

Finally, click on "Next >" to continue installation; click "Next >" again in the "Start Installation" window which follows in order to start the installation of FluidDYM.

After FluidDYM has been installed, you will see the sentence "FluidDYM LibMDM has been successfully installed." Confirm this by clicking the "Finish" button.

The installation of FluidDYM 32-bit has been completed.

In order to run the installation of **64-bit** FluidDYM including the LibMDM property library double-click the file

Setup.exe.

Installation may start with a window noting that all Windows® programs should be closed. When this is the case, the installation can be continued. Click the "Continue" button.

In the following dialog box, "Choose Destination Location," the default path offered automatically for the installation of FluidDYM is

C:\Users\...\Documents\FluidDYM 64\LibMDM.

By clicking the "Browse..." button, you can change the installation directory before installation (see figure below).

Finally, click on "Next >" to continue installation; click "Next >" again in the "Start Installation" window which follows in order to start the installation of FluidDYM.

After FluidDYM has been installed, you will see the sentence "FluidDYM LibMDM has been successfully installed." Confirm this by clicking the "Finish" button.

The installation of FluidDYM 64-bit has been completed.

The installation program has copied the following files into the directory "C:\Program Files\FluidDYM\LibMDM":

- Dynamic link library "LibMDM.dll".
- Link up Dynamic link library "LibMDM_Dym.dll" and other necessary system DLL files.
- Library File "LibMDM_DYM.lib"
- Header File "LibMDM_DYM.h" and other necessary system DLL files.
- Modelica File "FluidDYM_LibMDM.mo", includes the following property functions:

cp_ptx_MDM t_ph_MDM cv_ptx_MDM t_ps_MDM dpdtv_ptx_MDM ts_p_MDM dpdvt_ptx_MDM u_ptx_MDM h_ptx_MDM v_ptx_MDM kappa_ptx_MDM w ptx MDM ps_t_MDM x_ph_MDM rho ptx MDM x ps MDM s_ptx_MDM Z_ptx_MDM

Now, you have to overwrite the file "LibMDM.dll" in your LibMDM directory with the file of the same name provided in your CD folder with FluidDYM.

To do this, open the CD folder "CD_FluidDYM_LibMDM_Eng" in "My Computer" and click on the file "LibMDM.dll" in order to highlight it.

Then click on the "Edit" menu in your Explorer and select "Copy".

Now, open your LibMDM directory (the standard being

C:\Program Files\FluidDYM\LibMDM)

and insert the file "LibMDM.dll" by clicking the "Edit" menu in your Explorer and then select "Paste".

Answer the question whether you want to replace the file by clicking the "Yes" button. Now, you have overwritten the file "LibMDM.dll" successfully.

In the next step, copy the folder "Users_Guide" into your Dymola LibMDM directory with the file of the same name provided in your CD folder of FluidDYM.

To do this, open the CD folder "CD_FluidDYM_LibMDM_Eng" in "My Computer" and click on the folder "Users_Guide" to highlight it. Then click on the "Edit" menu in your Explorer and select "Copy".

Now, open your Dymola LibMDM directory (the standard being:

C:\Program Files\FluidDYM\LibMDM)

and insert the folder "Users_Guide" by clicking the "Edit" menu in your Explorer and then selecting "Paste". Now, the folder "Users_Guide" has been successfully placed in your installation directory.

Licensing the LibMDM Property Library

The licensing procedure has to be carried out when Dymola[®] is running and a model simulation starts. In this case, you will see the "License Information" window (see figure below).

Figure 2.2: "License Information" window

Here you will have to type in the license key which you have obtained from the Zittau/Goerlitz University of Applied Sciences. You can find contact information on the "Content" page of this User's Guide or by clicking the yellow question mark in the "License Information" window. Then the following window will appear:

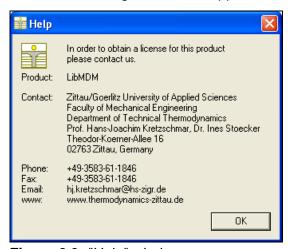


Figure 2.3: "Help" window

If you do not enter a valid license it is still possible to use Dymola[®] by clicking "Cancel". In this case, the LibMDM property library will display the result "–11111111" for every calculation.

The "License Information" window will appear every time you start Dymola unless you uninstall FluidDYM_LibMDM according to the description in section 2.3 of this User's Guide. Should you not wish to license the LibMDM property library, you have to delete the files

LibMDM.dll

LibMDM DYM.dll

LibMDM DYM.lib

LibMDM DYM.h

LibMDM DYM.mo

in the installation folder of Dymola[®] (the standard being

C:\Program Files\FluidDYM)

using an appropriate program such as Explorer® or Norton Commander.

2.2 Example: Calculation of the Specific Enthalpy h = f(p,t,x) of Octamethyltrisiloxane

Now we will calculate, step by step, the specific enthalpy h of Octamethyltrisiloxane as a function of pressure p, temperature t and vapor fraction x, using Dymola[®].

Please carry out the following instructions:

- Start Windows Explorer[®], Total Commander[®], My Computer or another file manager program.
 - The description here refers to Windows Explorer.
- Your Windows Explorer should be set to Details for a better view. Click the "View" (Ansicht) button and select "Details".
- Switch into the program directory of FluidDYM in which you will find the folder "\LibMDM";
 the standard location is: "C:\Program Files\FluidDYM\LibMDM"
- Create the folder "LibMDM_Example" by clicking on "File" in the Explorer menu, then "New" in the menu which appears, and then selecting "Folder". Name the new folder "LibMDM_Example".
- You will see the following window:

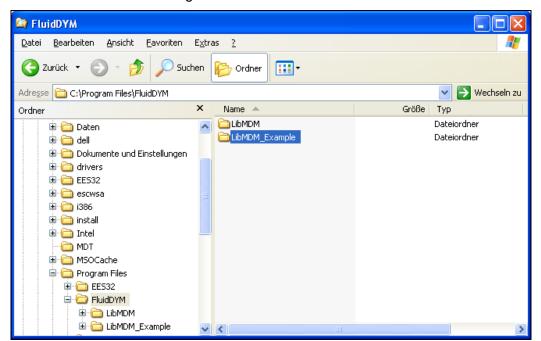


Figure 2.4: Highlighted LibMDM_Example directory in FluidDYM

- Switch into the directory "\LibMDM" within "\FluidDYM", the standard being: "C:\Program Files\FluidDYM\LibMDM".

- You will see the following window:

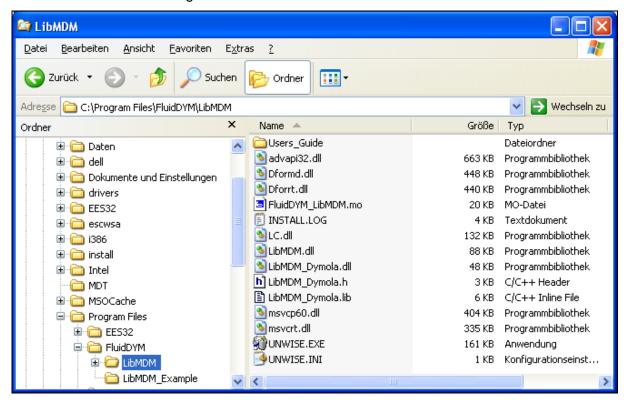


Figure 2.5: LibMDM directory including installed files

In order to calculate the function h = f(p,t,x), the following files are necessary. Copy them into the directory "C:\Program Files\FluidDYM\LibMDM_Example":

- "advapi32.dll"
- "Dformd.dll"
- "Dforrt.dll"
- "FluidDYM LibMDM.mo"
- "LC.dll"
- "LibMDM.dll"
- "LibMDM_Dymola.dll"
- "LibMDM_Dymola.h"
- "LibMDM_Dymola.lib"
- "msvcp60.dll"
- "Msvcrt.dll"
- the folder "Users_Guide"
- Mark up these files, then click "Edit" in the upper menu bar and select "Copy".
- Switch into the directory "C:\Program Files\FluidDYM\LibMDM_Example", click "Edit" and then "Paste".

- You will see the following window:

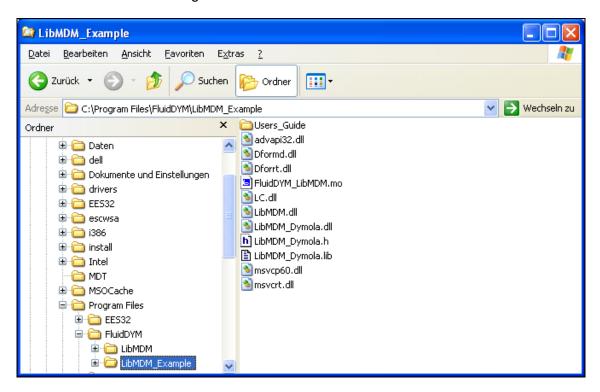


Figure 2.6: LibMDM_Example directory including the newly-copied files

- Start Dymola®.
- Now click on "File" in the Dymola® menu bar and select "Open" (see Figure 2.7).

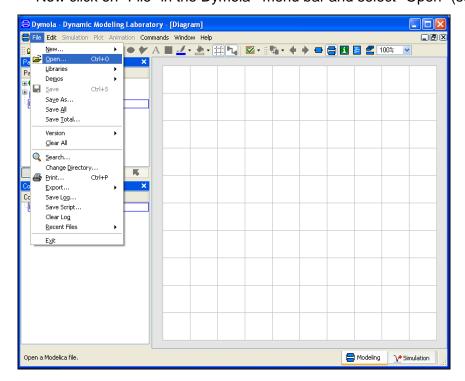
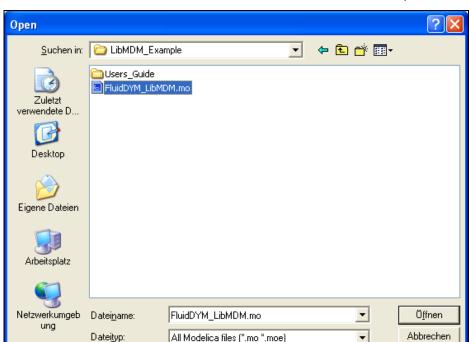



Figure 2.7: Selecting the menu entry "Open"

 Search and click on the directory "C:\Program Files\FluidDYM\LibMDM_Example" in the pop-up menu.

- Select the "FluidDYM_LibMDM.mo" file and click on the "Open" button (see Figure 2.8).

Figure 2.8: Selecting the FluidDYM_LibMDM.mo file

- The library will be loaded by Dymola which may take a few seconds.
- After Dymola has finished loading the LibMDM library, you will see the window shown in Figure 2.9.

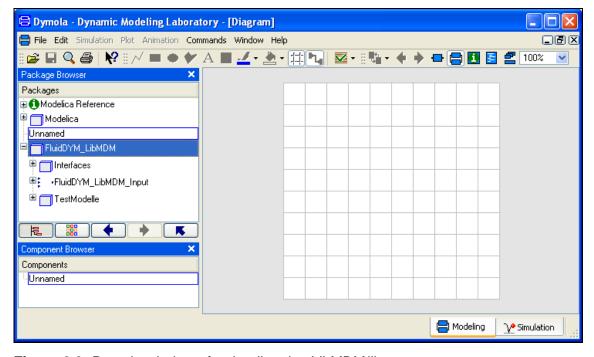


Figure 2.9: Dymola window after loading the LibMDM library

- Now, click on "File" in the Dymola menu bar and select "Change Directory..." in order to open the folder "LibMDM_Example" (see Figure 2.10).

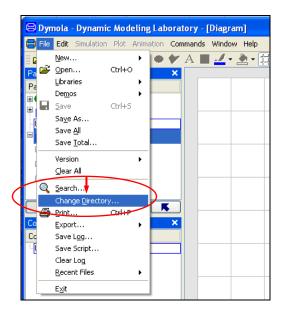


Figure 2.10: Selecting the menu entry "Change Directory..."

- Search and click on the directory "C:\Program Files\FluidDYM\LibMDM_Example" in the pop-up menu (see Figure 2.11).

Figure 2.11: Selecting the *LibMDM_Example* directory

- Confirm your selection by clicking the "OK" button.

As indicated in the table of property functions in Chapter 1, you have to call up the function "h_ptx_MDM" as follows for calculating h = f(p,t,x).

- Click on the Dymola-Block "Testmodelle," which can be found in the FluidDYM_LibMDM package in the "Package Browser" on the left hand side of the Dymola window. Here choose Example1 by double-clicking on it.
- Now click on the 📴 button in the Dymola menu bar in order to switch to the Diagram

Mode. You will see the following window:

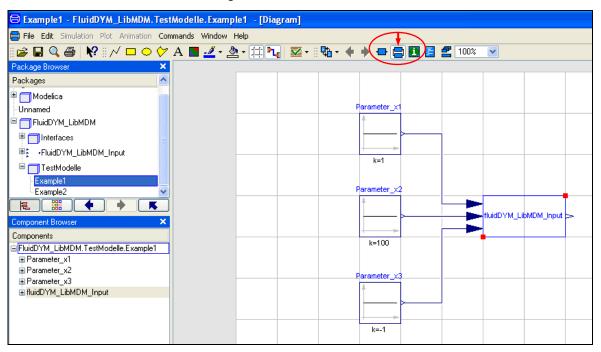
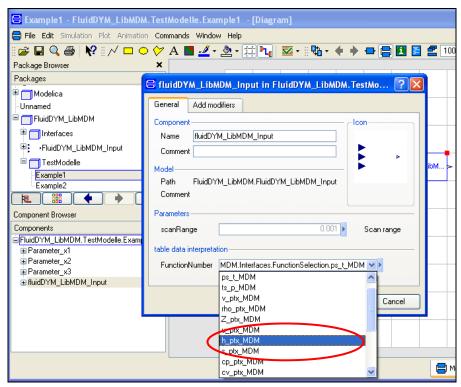



Figure 2.12: Dymola in Diagram Mode

- Now double-click on the "fluidDYM_LibMDM_Input" block on the right hand side of the Dymola window.
- Search and click the "h_ptx_MDM" function next to "Function Number" in the pop-up menu (see Figure 2.13).

Figure 2.13: Choosing the function *h_ptx_*MDM

- You can set the scan range (how many times the property will be calculated per second) next to "scanRange". The preset value 0.001 means that the property will be calculated

1000 times per second. E.g. if you enter the value 1, the property will be calculated once per second. Do not change the preset value of 0.001 for our example calculation.

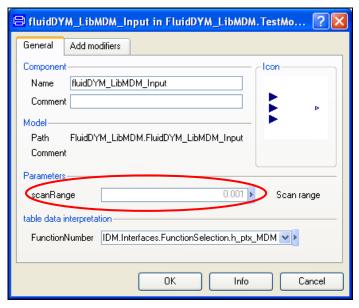
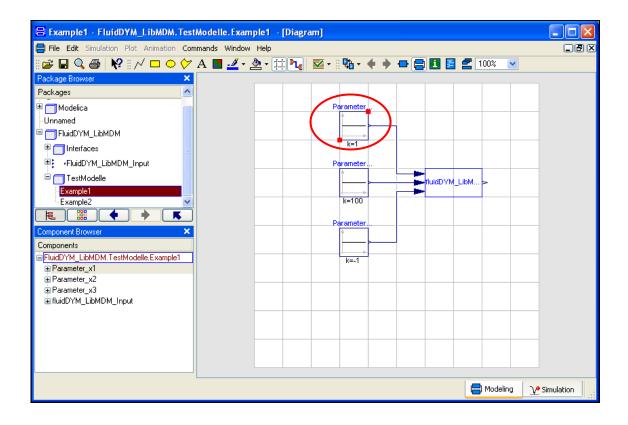
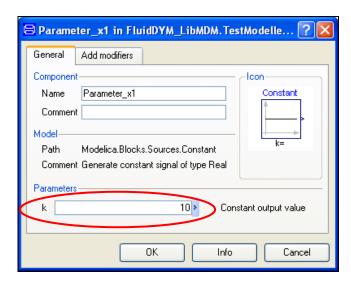
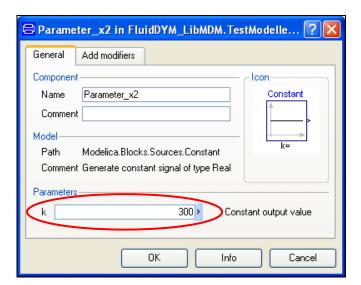


Figure 2.14: Setting the scan range

- Now we will configure the input parameters x1 to x3, where x1 represents the pressure *p*, x2 represents the temperature *t*, and x3 represents the vapour fraction *x*. When calculating a function with only two input parameters, the third input parameter x3 will not be defined.
- First, double click on the "Parameter_x1" block which represents the first input parameter, here the pressure *p* in bar.


Figure 2.15: "Parameter_x1" block in Dymola

- Enter the value 10 on the line next to "k" in the dialog window which appears and then click the "OK" button (see Figure 2.16).

Figure 2.16: Entering the value for the pressure *p*

- Now, double click on the "Parameter_x2" block which represents the second input parameter, here the temperature *t* in °C.
- Enter the value 300 on the line next to "k" in the dialog window which appears and then click the "OK" button (see Figure 2.17).

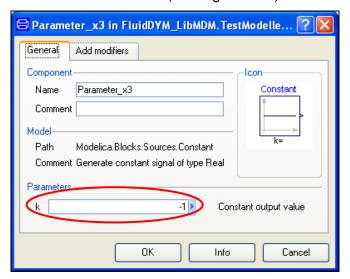
Figure 2.17: Entering the value for the temperature *t*

- Now, double click on the "Parameter_x3" block which represents the third input parameter, here the vapour fraction *x* in kg/kg.

Since the wet steam region is calculated automatically by the subprograms, the following fixed details on the vapor fraction *x* are to be considered:

If the state point to be calculated is located in the single-phase region (liquid or superheated steam), e. g., pressure p and temperature t are given, the value -1 must be entered into the x cell as a pro-forma value.

If the state point to be calculated is located in the wet steam region, values between 0 and 1 have to be entered for x (the value 0 for boiling liquid, the value 1 for saturated steam).


Here, it is adequate to enter either the value given for t and p = -1, or the given value for p and t = -1, plus the value for x between 0 and 1.

However, if p and t and x are given when calculating wet steam, the program initially checks whether p and t meet the saturation-pressure curve. If this is not the case the enthalpy calculated later will result in -1000.

(MDM Saturation pressure curve:

$$t = 0$$
 °C to $t_{\rm C} = 290.94$ °C $p_{\rm S}(0$ °C) = 0.00078994 bar to $p_{\rm C} = 14.15055$ bar)

- Enter the value -1 on the line next to "k" in the dialog window which appears and then click the "OK" button (see Figure 2.18).

Figure 2.18: Entering the value for the vapour fraction *x*

All parameters have now been defined.

- Click on the Simulation button in the lower right area of Dymola in order to switch into the "Simulation Mode".

In Figure 2.19 you can see how the Dymola "Simulation Mode" looks like.

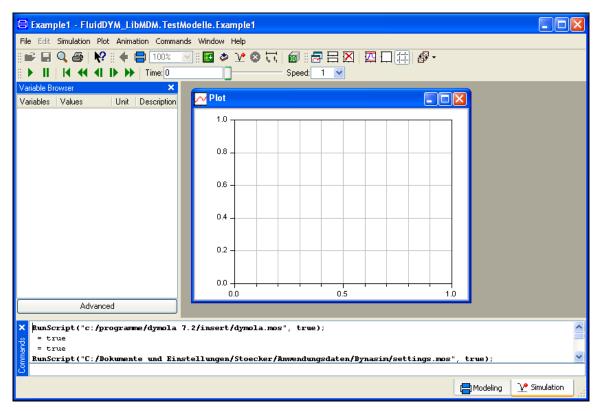


Figure 2.19: "Simulation Mode" window

IMPORTANT NOTICE:

Per default the 64-bit version of Dymola creates a 32-bit simulation process. If you want to create a 64-bit simulation process you must have installed the 64-bit version of FluidDYM and you now need to enter the following command into the command line of Dymola and confirm your entry by pressing the Enter key:

"Advanced.CompileWith64=2"

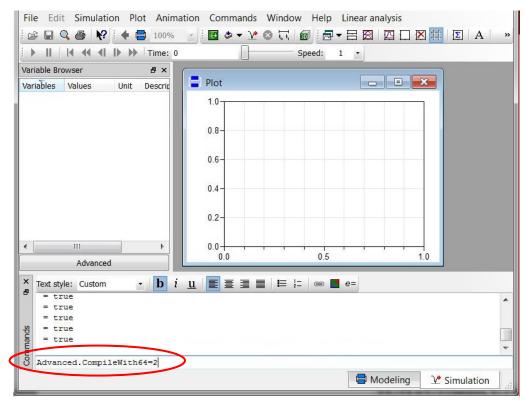


Figure 2.20: "Simulation Mode" window with 64-bit command

Now, your 64-bit Dymola creates 64-bit simulation processes with FluidDYM.

Please note that if you restart Dymola and want to create 64-bit simulation processes again, you will always have to enter this command anew.

For further information concerning this matter, please see the Dymola user's guide.

- Click on the "Simulate" Button in the Dymola menu bar to start the calculation. Now the model will be compiled and the simulation started.
- Afterwards you will see the following entries within the "Variable Browser" window in Dymola (see Figure 2.21):

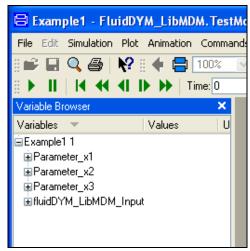


Figure 2.21: "Variable Browser" with new entries

- By clicking on the "New Plot Window" button , a new diagram window will be opened.

 Click on "fluidDYM_LibMDM_Input" within the "Variable Browser"; then you will see the input and output parameters "scanRange", "FunctionNumber", "z", "x1", "x2" and "x3" (see Figure 2.22).

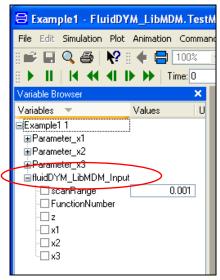


Figure 2.21: Parameters of fluidDYM_LibMDM_Input

- After clicking on the output parameter "z", the calculated property will be represented graphically in the "PlotWindow".
- Move the mouse over the curve to see the result of the simulation at a specific point in time (see Figure 2.23).

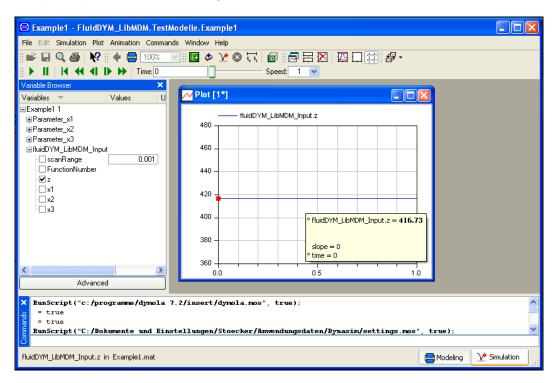


Figure 2.23: "DiagramWindow" showing the result

The result for h appears in the "DiagramWindow"

 \Rightarrow The result in our sample calculation here is: "h = 416.73". The corresponding unit is kJ/kg (see table of the property functions in Chapter 1).

- Now click on the Modeling button in the lower right area of Dymola in order to switch into the "Modeling Mode". Here you can arbitrarily change the values for p, t, or x in the appropriate blocks.

Help Systems in Dymola®

Dymola[®] provides detailed help functions. You can choose to read the program documentation or the help page of a specific property function, as desired.

Within the "Modeling-Mode" the help may be accessed via two different steps.

First we will show you how to access the program documentation of the property library.

- Make sure Dymola is set to the "Modeling-Mode".
- Now click the button in the Dymola menu bar to choose the "Documentation Mode".
- Double-click on the "FluidDYM_LibMDM" Block at the left and then click on "Users_Guide" (see Figure 2.24).

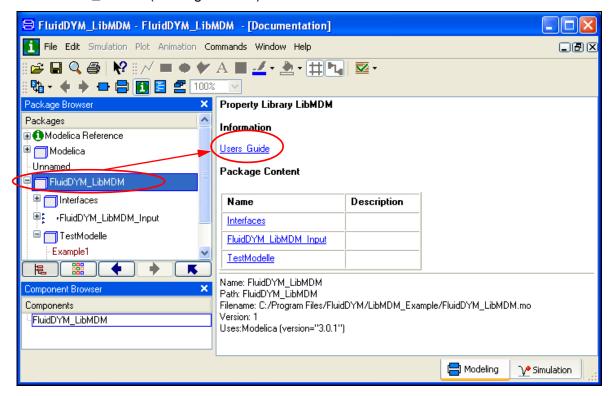


Figure 2.24: Selecting the "Users_Guide"

- The program documentation will be displayed within your default web browser.

Now, we will show you how to access the help page of a specific property function.

- Make sure Dymola is set to the "Modeling-Mode".
- Now click the 🗓 button in the Dymola menu bar to choose the "Documentation Mode".
- Double-click on the "FluidDYM LibMDM Input" block on the left (see Figure 2.25).

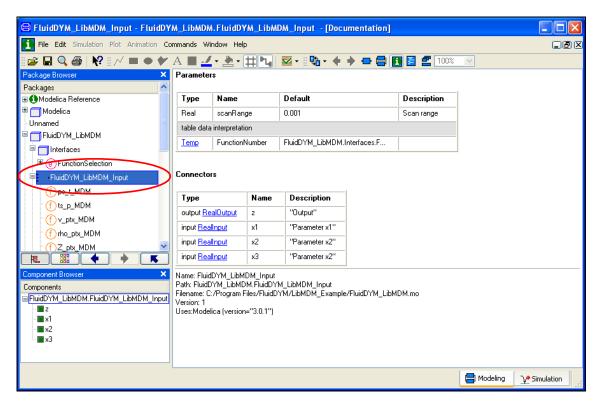


Figure 2.25: Selected "FluidDYM_LibMDM_Input" Block

- Below "FluidDYM_LibMDM_Input" you will see all functions of the LibMDM property function (see Figure 2.24).
- Now select a function, e.g. "h_ptx_MDM", and then click on "Users_Guide" (see Figure 2.26).

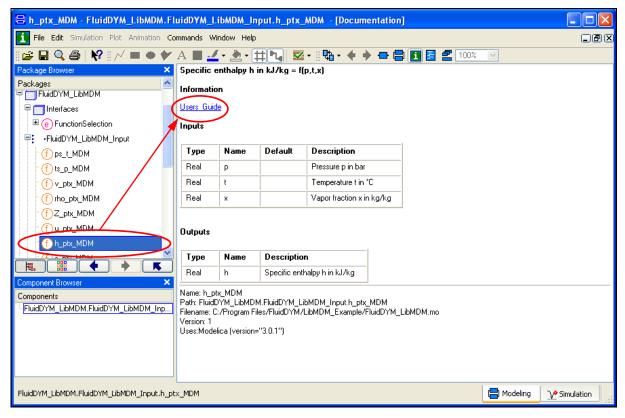


Figure 2.26: Marking the "h_ptx_MDM" function and selecting the "Users_Guide"

- You will now see the help page of the selected function, here "h_ptx_MDM", in your default web browser (see Figure 2.27).

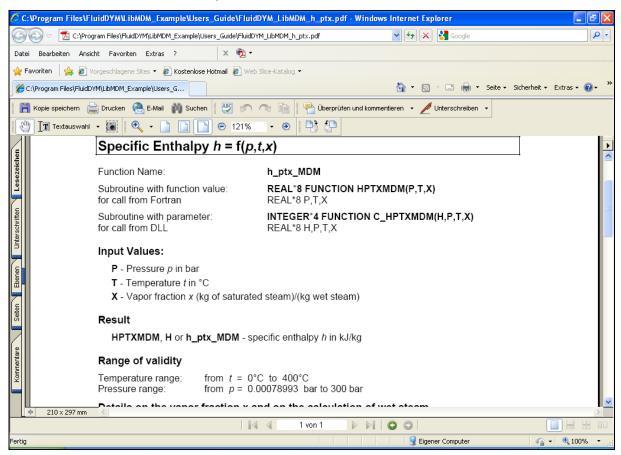


Figure 2.27: Help page of the function "h_ptx_MDM" in the web browser

2.3 Removing LibMDM in Dymola

In order to remove the property library LibMDM from your hard drive in Windows[®], click "Start" in the lower task bar, then "Settings" and "Control Panel".

Afterwards double-click on "Add or Remove Programs".

In the list box of the "Add or Remove Programs" menu which appears, select "FluidDYM LibMDM" by clicking on it and then clicking the "Change/Remove" button.

In the following dialogue box click "Automatic" and then "Next>".

Confirm the "Perform Uninstall" menu which appears by clicking the "Finish" button.

Finally, close the "Add or Remove Programs" and "Control Panel" windows.

"FluidDYM LibMDM" has now been removed.

If LibMDM is the only library installed, the directory "FluidDYM" will be removed as well.

3. Program Documentation

Thermal Diffusivity a = f(p, t, x)

Function Name: a_ptx_MDM

Subroutine with function value: REAL*8 FUNCTION APTXMDM(P,T,X)

for call from Fortran REAL*8 P,T,X

Subroutine with parameter: INTEGER*4 FUNCTION C_APTXMDM(A,P,T,X)

for call from DLL REAL*8 A,P,T,X

Input Values

P - Pressure *p* in bar

T - Temperature t in °C

X - Vapor fraction *x* (kg of saturated steam)/(kg wet steam)

Result

APTXMDM, **A** or **a_ptx_MDM** – Thermal diffusivity
$$a = \frac{\lambda}{\rho \cdot c_p} = \frac{\lambda \cdot v}{c_p}$$
 in Pa·s

Range of validity

Temperature range: from t = 26.85 °C to 399.85 °C Pressure range: from p = 0.00001 bar to 300 bar

Details on the vapor fraction x and on the calculation of wet steam

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction *x* are to be considered:

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

If the state point to be calculated is located in the two phase region (wet steam), either the value 0 or 1 has to be entered for x (x = 0 for saturated liquid, x = 1 for saturated steam). The calculation for x values between 0 and 1 is not possible.

If the state point to be calculated is located in the two phase region, it is adequate to enter either the given value for t and p = -1, or the given value for p and t = -1, plus the value for x between 0 and 1.

When calculating wet steam and p and t and x are entered as given values, the program will consider p and t to be appropriate to represent the saturation-pressure curve. If it is not the case the calculation for the quantity of the chosen function to be calculated results in -1.

Wet steam region: Temperature ranges from t = 26.85 °C to $t_c = 313.342$ °C

Pressure ranges from p_s (26.85°C) = 0.0014779 bar to p_c = 13.32 bar

Results for wrong input values

Result APTXMDM = -1000, A = -1000 or a_ptx_MDM = -1000 for Input Values

Single phase region: p > 300 bar or p < 0.00001 bar or (x = -1) t > 399.85 °C or t < 26.85 °C

Wet steam region: at p = -1000 and $t > t_c = 313.342$ °C or t < 26.85 °C

at t = -1000 and $p > p_c = 13.32$ bar or $p < p_c (26.85^{\circ}C) = 0.0014779$ bar or

at $p > p_c = 13.32$ bar or $p < p_s(26.85^{\circ}C) = 0.0014779$ bar and

 $t > t_{\rm c} = 313.342 \,{\rm ^{\circ}C}$ or $t < 26.85 \,{\rm ^{\circ}C}$

References: Internal calculation form ρ or ν and c_{ρ} [1], [2] and λ [3], [4], [5]

Specific Isobaric Heat Capacity $c_p = f(p, t, x)$

Function Name: cp_ptx_MDM

Subroutine with function value: REAL*8 FUNCTION CPPTXMDM(P,T,X)

for call from Fortran REAL*8 P,T,X

Subroutine with parameter: INTEGER*4 FUNCTION C_CPPTXMDM(CP,P,T,X)

for call from DLL REAL*8 CP,P,T,X

Input Values:

P - Pressure p in bar

T - Temperature t in °C

X - Vapor fraction x (kg of saturated steam)/(kg wet steam)

Result

CPPTXMDM, **CP** or **cp_ptx_MDM**–specificisobaricheatcapacity c_p inkJ/(kg K)

Range of validity

Temperature range: from t = 0°C to 400°C

Pressure range: from p = 0.00078993 bar to 300 bar

Details on the vapor fraction x and on the calculation of wet steam

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction *x* are to be considered:

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

If the state point to be calculated is located on the boiling curve, x = 0 must be entered. When calculating saturated steam (dew curve) x = 1 is entered as given value. The calculation for x values between 0 and 1 is not possible.

If the state point to be calculated is located in the two phase region, it is adequate to enter either the given value for t and p = -1000, or the given value for p and t = -1000, plus the value for x between 0 and 1. When calculating wet steam and p and t and x are entered as given values, the program will consider p and t to be appropriate to represent the saturation-pressure curve.

Wet steam region: Temperature ranges from t=0°C to $t_c=290.94$ °C

Pressure rangesfrom $p_s(0^{\circ}C)=0.00078993$ bar to $p_c=14.151055$ bar

Results for wrong input values

Result CPPTXMDM = -1000, CP = -1000 or cp_ptx_MDM = -1000 for input values:

Single phase region: p > 300 bar or p < 0,00078993 bar or

(x = -1) $t > 400 \,^{\circ}\text{C}$ or $t < 0 \,^{\circ}\text{C}$

Boiling or dew curve: at p = -1000 and $t > t_c = 290.94$ ° C to t < 0° C

at t = -1000 and $p > p_c = 14.151055$ bar

or $p < p_s(0^{\circ}C) = 0.00078993$ bar or

or $p > p_c = 14.151055$ bar or $p < p_s(0^{\circ}C) = 0.00078993$ bar and

 $t > t_{\rm c} = 290.94^{\circ}$ **C** or $t < 0^{\circ}$ C

References: [1], [2]

Specific Isochoric Heat Capacity $c_v = f(p, t, x)$

Function Name: cv_ptx_MDM

Subroutine with function value: REAL*8 FUNCTION CVPTXMDM(P,T,X)

for call from Fortran REAL*8 P,T,X

Subroutine with parameter: INTEGER*4 FUNCTION C_CVPTXMDM(CV,P,T,X)

for call from DLL REAL*8 CV,P,T,X

Input Values:

P - Pressure *p* in bar

T - Temperature t in °C

X - Vapor fraction *x* (kg of saturated steam)/(kg wet steam)

Result

CVPTXMDM, **CV** or **cv_ptx_MDM**-specificiso choric heatcapacity c_v inkJ/(kg K)

Range of validity

Temperature range: from t = 0°C to 400°C

Pressure range: from p = 0.00078993 bar to 300 bar

Details on the vapor fraction x and on the calculation of wet steam

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction *x* are to be considered:

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

If the state point to be calculated is located on the boiling curve, x = 0 must be entered. When calculating saturated steam (dew curve) x = 1 is entered as given value. The calculation for x values between 0 and 1 is not possible.

If the state point to be calculated is located in the two phase region, it is adequate to enter either the given value for t and p = -1000, or the given value for p and t = -1000, plus the value for x between 0 and 1. When calculating wet steam and p and t are entered as given values, the program will consider p and t to be appropriate to represent the saturation-pressure curve.

Wet steam region: Temperature ranges from t=0°C to $t_c=290.94$ °C

Pressure rangesfrom $p_s(0^{\circ}C)=0.00078993$ bar to $p_c=14.151055$ bar

Results for wrong input values

Result CVPTXMDM = -1000, CV = -1000 or cv ptx MDM = -1000 for input values:

Single phase region: p > 300 bar or p < 0,00078993 bar or

(x = -1) $t > 400 \,^{\circ}\text{C}$ or $t < 0 \,^{\circ}\text{C}$

Boiling or dew curve: at p = -1000 and $t > t_c = 290.94$ °C to t < 0°C

at t = -1000 and $p > p_c = 14.151055$ bar

or $p < p_s(0^{\circ}C) = 0.00078993$ bar or

or $p > p_c = 14.151055$ bar or $p < p_s(0^{\circ}C) = 0.00078993$ bar and

 $t > t_{\rm c} = 290.94$ °C or t < 0°C

References: [1]

Derivative of Pressure with Respect to Temperature (at

Constant Specific Volume)
$$\left(\frac{\partial p}{\partial T}\right)_{V} = f(p, t, x)$$

Function Name: dpdtv_ptx_MDM

Subroutine with function value: REAL*8 FUNCTION DPDTVPTXMDM(P,T,X)

for call from Fortran REAL*8 P,T,X

Subroutine with parameter: INTEGER*4 FUNCTION C_DPDTVPTXMDM(DPDTV,P,T,X)

for call from DLL REAL*8 DPDTV,P,T,X

Input Values:

P - Pressure p in barT - Temperature t in °C

X - Vapor fraction x (kg of saturated steam)/(kg wet steam)

Result

DPDTVPTXMDM, **DPDTV** or **dpdtv_ptx_MDM** - Derivative of pressure with respect to temperature

(at constant specific volume) dpdtv in kPa/K

Range of validity

Temperature range: from t = 0°C to 400°C

Pressure range: from p = 0.00078993 bar to 300 bar

Details on the vapor fraction x and on the calculation of wet steam

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction *x* are to be considered:

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

If the state point to be calculated is located on the boiling curve, x = 0 must be entered. When calculating saturated steam (dew curve) x = 1 is entered as given value. The calculation for x values between 0 and 1 is not possible.

If the state point to be calculated is located in the two phase region, it is adequate to enter either the given value for t and p = -1000, or the given value for p and t = -1000, plus the value for x between 0 and 1. When calculating wet steam and p and t and x are entered as given values, the program will consider p and t to be appropriate to represent the saturation-pressure curve.

Boiling and dew curve: Temperature ranges from t=0°C to $t_c=290.94$ °C

Pressure rangesfrom $p_s(0^{\circ}C)=0.00078993$ bar to $p_c=14.151055$ bar

Results for wrong input values

Result **DPDTVPTXMDM = -1000**, **DPDTV = -1000** or **dpdtvo_ptx_MDM = -1000** for input values:

Single phase region: p > 300 bar or p < 0,00078993 bar or

(x = -1) $t > 400 \,^{\circ}\text{C}$ or $t < 0 \,^{\circ}\text{C}$

Boiling or dew curve: at p = -1000 and $t > t_c = 290.94$ °C to t < 0°C

at t = -1000 and $p > p_c = 14.151055$ bar

or $p < p_s(0^{\circ}C) = 0.00078993$ bar or

or $p > p_c = 14.151055$ bar or $p < p_s(0^{\circ}C) = 0.00078993$ bar and

 $t > t_c = 290.94$ °C or t < 0°C

References: [1], [2]

Derivative of Pressure with Respect to Specific Volume (at

Constant Temperature) $\left(\frac{\partial \mathbf{p}}{\partial \mathbf{v}}\right)_T = f(\mathbf{p}, t, \mathbf{x})$

Function Name: dpdvt_ptx_MDM

Subroutine with function value: REAL*8 FUNCTION DPDVTPTXMDM(P,T,X)

for call from Fortran REAL*8 P,T,X

Subroutine with parameter: INTEGER*4 FUNCTION C_DPDVTPTXMDM(DPDVT,P,T,X)

for call from DLL REAL*8 DPDVT,P,T,X

Input Values:

P - Pressure *p* in bar

T - Temperature t in °C

X - Vapor fraction *x* (kg of saturated steam)/(kg wet steam)

Result

DPDVTPTXMDM, **DPDVT** or **dpdvt_ptx_MDM** - Derivative of pressure with respect to temperature

(at constant specific volume) dpdvt in kPa/K

Range of validity

Temperature range: from t = 0°C to 400°C

Pressure range: from p = 0.00078993 bar to 300 bar

Details on the vapor fraction x and on the calculation of wet steam

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction *x* are to be considered:

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

If the state point to be calculated is located on the boiling curve, x = 0 must be entered. When calculating saturated steam (dew curve) x = 1 is entered as given value. The calculation for x values between 0 and 1 is not possible.

If the state point to be calculated is located in the two phase region, it is adequate to enter either the given value for t and p = -1000, or the given value for p and t = -1000, plus the value for x between 0 and 1. When calculating wet steam and p and t and x are entered as given values, the program will consider p and t to be appropriate to represent the saturation-pressure curve.

Wet steam region: Temperature ranges from t=0°C to $t_c=290.94$ °C

Pressure ranges from $p_s(0^{\circ}C)=0.00078993$ bar to $p_c=14.151055$ bar

Results for wrong input values

Result DPDVTPTXMDM = -1000, DPDVT = -1000 or dpdvt_ptx_MDM = -1000 for input values:

Single phase region: p > 300 bar or p < 0,00078993 bar or

(x = -1) $t > 400 \,^{\circ}\text{C}$ or $t < 0 \,^{\circ}\text{C}$

Boiling or dew curve: at p = -1000 and $t > t_c = 290.94$ °C to t < 0°C

at t = -1000 and $p > p_c = 14.151055$ bar

or $p < p_s(0^{\circ}C) = 0.00078993$ bar or

or $p > p_c = 14.151055$ bar or $p < p_s(0^{\circ}C) = 0.00078993$ bar and

 $t > t_c = 290.94$ °C or t < 0°C

References: [1], [2]

Dynamic Viscosity $\eta = f(p, t, x)$

Function Name: eta_ptx_MDM

Subroutine with function value: REAL*8 FUNCTION ETAPTXMDM(P,T,X)

for call from Fortran REAL*8 P,T,X

Subroutine with parameter: INTEGER*4 FUNCTION C_ETAPTXMDM(ETA,P,T,X)

for call from DLL REAL*8 ETA,P,T,X

Input Values

P - Pressure p in bar

T - Temperature t in °C

X - Vapor fraction *x* (kg of saturated steam)/(kg wet steam)

Result

ETAPTXMDM, **ETA** or **eta_ptx_MDM** – Dynamic viscosity η in Pa·s

Range of validity

Temperature range: from t = 26.85 °C to 399.85 °C Pressure range: from p = 0.00001 bar to 300 bar

Details on the vapor fraction x and on the calculation of wet steam

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction *x* are to be considered:

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

If the state point to be calculated is located in the two phase region (wet steam), either the value 0 or 1 has to be entered for x (x = 0 for saturated liquid, x = 1 for saturated steam). The calculation for x values between 0 and 1 is not possible.

If the state point to be calculated is located in the two phase region, it is adequate to enter either the given value for t and p = -1, or the given value for p and t = -1, plus the value for x between 0 and 1.

When calculating wet steam and p and t and t are entered as given values, the program will consider p and t to be appropriate to represent the saturation-pressure curve. If it is not the case the calculation for the quantity of the chosen function to be calculated results in -1.

Wet steam region: Temperature ranges from t = 26.85 °C to $t_c = 313.342$ °C

Pressure ranges from $p_s(26.85^{\circ}C) = 0.0014779$ bar to $p_c = 13.32$ bar

Results for wrong input values

Result ETAPTXMDM = -1000, ETA = -1000 or eta_ptx_MDM = -1000 for Input Values

Single phase region: p > 300 bar or p < 0.00001 bar or t > 399.85 °C or t < 26.85 °C

Wet steam region: at p = -1000 and $t > t_c = 313.342$ °C or t < 26.85 °C

at t = -1000 and $p > p_c = 13.32$ bar or $p < p_s(26.85^{\circ}\text{C}) = 0.0014779$ bar or

at $p > p_c = 13.32$ bar or $p < p_s(26.85^{\circ}C) = 0.0014779$ bar and

 $t > t_c = 313.342 \,^{\circ}\text{C}$ or $t < 26.85 \,^{\circ}\text{C}$

References: [3],[4], internal calculation from ρ or v [1], [2]

Specific Enthalpy h = f(p,t,x)

Function Name: h_ptx_MDM

Subroutine with function value: REAL*8 FUNCTION HPTXMDM(P,T,X)

for call from Fortran REAL*8 P,T,X

Subroutine with parameter: INTEGER*4 FUNCTION C_HPTXMDM(H,P,T,X)

for call from DLL REAL*8 H,P,T,X

Input Values:

P - Pressure p in bar

T - Temperature t in °C

X - Vapor fraction x (kg of saturated steam)/(kg wet steam)

Result

HPTXMDM, **H** or **h_ptx_MDM** - specific enthalpy *h* in kJ/kg

Range of validity

Temperature range: from t = 0°C to 400°C

Pressure range: from p = 0.00078993 bar to 300 bar

Details on the vapor fraction x and on the calculation of wet steam

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction *x* are to be considered:

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

If the state point to be calculated is located in the two phase region (wet steam), either the value 0 or 1 has to be entered for x (x = 0 for boiling liquid, x = 1 for saturated steam). The calculation for x values between 0 and 1 is not possible.

If the state point to be calculated is located in the two phase region, it is adequate to enter either the given value for t = -1000, or the given value for p = -1000, plus the value for t = -1000, plus the value fo

When calculating wet steam and p and t and x are entered as given values, the program will consider p and t to be appropriate to represent the saturation-pressure curve. If it is not the case the calculation for the quantity of the chosen function to be calculated results in -1000.

Wet steam region: Temperature ranges from $t=0^{\circ}$ C to $t_c=290.94^{\circ}$ C

Pressure rangesfrom $p_s(0^{\circ}\text{C})=0.00078993$ bar to $p_c=14.151055$ bar

Results for wrong input values

Result HPTXMDM = -1000, H = -1000 or h_ptx_MDM = -1000 for input values:

Single phase region: p > 300 bar or p < 0,00078993 bar or

(x = -1) $t > 400 \,^{\circ}\text{C}$ or $t < 0 \,^{\circ}\text{C}$

Wet steam region: at p = -1000 and $t > t_c = 290.94$ °C to t < 0°C

at t = -1000 and $p > p_c = 14.151055$ bar

or $p < p_s(0^{\circ}C) = 0.00078993$ bar or

or $p > p_c = 14.151055$ bar or $p < p_s(0^{\circ}C) = 0.00078993$ bar and

 $t > t_{\rm c} = 290.94^{\circ}$ **C** or $t < 0^{\circ}$ C

Isentropic Exponent $\kappa = f(p,t,x)$

Function Name: kappa_ptx_MDM

Subroutine with function value: REAL*8 FUNCTION KAPPAPTXMDM(P,T,X)

for call from Fortran REAL*8 P,T,X

Subroutine with parameter: INTEGER*4 FUNCTION C_KAPPAPTXMDM(KAPPA, P,T,X)

for call from DLL REAL*8 KAPPA,P,T,X

Input Values:

P - Pressure p in bar

T - Temperature t in °C

X - Vapor fraction *x* (kg of saturated steam)/(kg wet steam)

Result

KAPPAPTXMDM, **KAPPA** or **kappa_ptx_MDM**-Isentropic exponent $\kappa = \frac{w^2}{p \cdot v}$

Range of validity

Temperature range: from t = 0°C to 400°C

Pressure range: from p = 0.00078993 bar to 300 bar

Details on the vapor fraction x and on the calculation of wet steam

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction *x* are to be considered:

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

If the state point to be calculated is located on the boiling curve, x = 0 must be entered. When calculating saturated steam (dew curve) x = 1 is entered as given value. The calculation for x values between 0 and 1 is not possible.

If the state point to be calculated is located in the two phase region, it is adequate to enter either the given value for t and p = -1000, or the given value for p and t = -1000, plus the value for x between 0 and 1. When calculating wet steam and p and t and t are entered as given values, the program will consider p and t to be appropriate to represent the saturation-pressure curve.

Boiling and dew curve: Temperature ranges from t=0°C to $t_c=290.94$ °C

Pressure rangesfrom $p_s(0^{\circ}C) = 0.00078993$ bar to $p_c = 14.151055$ bar

Results for wrong input values

Result KAPPAPTXMDM, KAPPA = -1000 or kappa_ptx_MDM = -1000 for input values:

Single phase region: p > 300 bar or p < 0,00078993 bar or

(x = -1) $t > 400 \,^{\circ}\text{C}$ or $t < 0\,^{\circ}\text{C}$

Boiling or dew curve: at p = -1000 and $t > t_c = 290.94$ ° C to t < 0° C

at t = -1000 and $p > p_c = 14.151055$ bar

or $p < p_s(0^{\circ}C) = 0.00078993$ bar or

or $p > p_c = 14.151055$ bar or $p < p_s(0^{\circ}C) = 0.00078993$ bar and

 $t > t_{\rm c} = 290.94^{\circ}$ **C** or $t < 0^{\circ}$ C

References: [1]

Thermal Conductivity $\lambda = f(p,t,x)$

Function Name: lambda_ptx_MDM

Subroutine with function value: REAL*8 FUNCTION LAMPTXMDM(P,T,X)

for call from Fortran REAL*8 P,T,X

Subroutine with parameter: INTEGER*4 FUNCTION C_LAMPTXMDM(LAM,P,T,X)

for call from DLL REAL*8 LAM,P,T,X

Input Values

P - Pressure p in bar

T - Temperature t in °C

X - Vapor fraction *x* (kg of saturated steam)/(kg wet steam)

Result

LAMPTXMDM, **LAM** or **lambda_ptx_MDM** – Thermal conductivity λ in W/(m·K)

Range of validity

Temperature range: from t = 26.85 °C to 399.85 °C Pressure range: from p = 0.00001 bar to 300 bar

Details on the vapor fraction x and on the calculation of wet steam

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction *x* are to be considered:

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

If the state point to be calculated is located in the two phase region (wet steam), either the value 0 or 1 has to be entered for x (x = 0 for saturated liquid, x = 1 for saturated steam). The calculation for x values between 0 and 1 is not possible.

If the state point to be calculated is located in the two phase region, it is adequate to enter either the given value for t and p = -1, or the given value for p and t = -1, plus the value for x between 0 and 1.

When calculating wet steam and p and t and x are entered as given values, the program will consider p and t to be appropriate to represent the saturation-pressure curve. If it is not the case the calculation for the quantity of the chosen function to be calculated results in -1.

Wet steam region: Temperature ranges from t = 26.85 °C to $t_c = 313.342$ °C

Pressure ranges from $p_s(26.85^{\circ}C) = 0.0014779$ bar to $p_c = 13.32$ bar

Results for wrong input values

Result LAMPTXMDM = -1000, LAM = -1000 or lambda_ptx_MDM = -1000 for Input Values

Single phase region: $p > 300 \text{ bar or } p < 0.00001 \text{ bar or } t > 399.85 ^{\circ}\text{C}$ or $t < 26.85 ^{\circ}\text{C}$

Wet steam region: at p = -1000 and $t > t_c = 313.342$ °C or t < 26.85 °C

at t = -1000 and $p > p_c = 13.32$ bar or $p < p_s(26.85^{\circ}\text{C}) = 0.0014779$ bar or

at $p > p_c = 13.32$ bar or $p < p_s(26.85^{\circ}C) = 0.0014779$ bar and

 $t > t_{\rm C} = 313.342 \,^{\circ}\text{C}$ or $t < 26.85 \,^{\circ}\text{C}$

References: [3], [4], [5], internal calculation from ρ or v [1], [2]

Kinematic Viscosity v = f(p,t,x)

Function Name: nu_ptx_MDM

Subroutine with function value: REAL*8 FUNCTION NUPTXMDM(P,T,X)

for call from Fortran REAL*8 P,T,X

Subroutine with parameter: INTEGER*4 FUNCTION C_NUPTXMDM(NU,P,T,X)

for call from DLL REAL*8 NU,P,T,X

Input Values

P - Pressure p in bar

T - Temperature t in °C

X - Vapor fraction *x* (kg of saturated steam)/(kg wet steam)

Result

NUPTXMDM, **NU** or **nu_ptx_MDM** – Kinematic viscosity
$$v = \frac{\eta}{\rho} = \eta \cdot v$$
 in m²/s

Range of validity

Temperature range: from t = 26.85 °C to 399.85 °C Pressure range: from p = 0.00001 bar to 300 bar

Details on the vapor fraction x and on the calculation of wet steam

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction *x* are to be considered:

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

If the state point to be calculated is located in the two phase region (wet steam), either the value 0 or 1 has to be entered for x (x = 0 for saturated liquid, x = 1 for saturated steam). The calculation for x values between 0 and 1 is not possible.

If the state point to be calculated is located in the two phase region, it is adequate to enter either the given value for t and p = -1, or the given value for p and t = -1, plus the value for x between 0 and 1.

When calculating wet steam and p and t and t are entered as given values, the program will consider p and t to be appropriate to represent the saturation-pressure curve. If it is not the case the calculation for the quantity of the chosen function to be calculated results in -1.

Wet steam region: Temperature ranges from t = 26.85 °C to $t_c = 313.342$ °C

Pressure ranges from $p_s(26.85^{\circ}C) = 0.0014779$ bar to $p_c = 13.32$ bar

Results for wrong input values

Result NUPTXMDM = -1000, NU = -1000 or nu_ptx_MDM = -1000 for Input Values

Single phase region: $p > 300 \text{ bar or } p < 0.00001 \text{ bar or } t > 399.85 ^{\circ}\text{C} \text{ or } t < 26.85 ^{\circ}\text{C}$

Wet steam region: at p = -1000 and $t > t_c = 313.342$ °C or t < 26.85 °C

at t = -1000 and $p > p_{\rm C} = 13.32$ bar or $p < p_{\rm S}(26.85^{\circ}{\rm C}) = 0.0014779$ bar or

at $p > p_c = 13.32$ bar or $p < p_s(26.85^{\circ}C) = 0.0014779$ bar and

 $t > t_{\rm C} = 313.342 \,^{\circ}\text{C}$ or $t < 26.85 \,^{\circ}\text{C}$

References: Internal calculation from ρ or v [1], [2] and η [3], [4]

Prandtl Number Pr = f(p,t,x)

Function Name: Pr_ptx_MDM

Subroutine with function value: REAL*8 FUNCTION PRPTXMDM(P,T,X)

for call from Fortran REAL*8 P,T,X

Subroutine with parameter: INTEGER*4 FUNCTION C_PRPTXMDM(PR,P,T,X)

for call from DLL REAL*8 PR,P,T,X

Input Values

P - Pressure p in bar

T - Temperature t in °C

X - Vapor fraction *x* (kg of saturated steam)/(kg wet steam)

Result

PRPTXMDM, **PR** or **Pr_ptx_MDM** – *Prandtl* number
$$Pr = \frac{v}{a} = \frac{\eta \cdot c_p}{\lambda}$$

Range of validity

Temperature range: from t = 26.85 °C to 399.85 °C Pressure range: from p = 0.00001 bar to 300 bar

Details on the vapor fraction x and on the calculation of wet steam

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction *x* are to be considered:

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

If the state point to be calculated is located in the two phase region (wet steam), either the value 0 or 1 has to be entered for x (x = 0 for saturated liquid, x = 1 for saturated steam). The calculation for x values between 0 and 1 is not possible.

If the state point to be calculated is located in the two phase region, it is adequate to enter either the given value for t and p = -1, or the given value for p and t = -1, plus the value for x between 0 and 1.

When calculating wet steam and p and t and x are entered as given values, the program will consider p and t to be appropriate to represent the saturation-pressure curve. If it is not the case the calculation for the quantity of the chosen function to be calculated results in -1.

Wet steam region: Temperature ranges from t = 26.85 °C to $t_c = 313.342$ °C

Pressure ranges from p_s (26.85°C) = 0.0014779 bar to p_c = 13.32 bar

Results for wrong input values

Result PRPTXMDM = -1000, PR = -1000 or Pr_ptx_MDM = -1000 for Input Values

Single phase region: $p > 300 \text{ bar or } p < 0.00001 \text{ bar or } t > 399.85 ^{\circ}\text{C}$ or $t < 26.85 ^{\circ}\text{C}$

Wet steam region: at p = -1000 and $t > t_c = 313.342$ °C or t < 26.85 °C

at t = -1000 and $p > p_{\rm C} = 13.32$ bar or $p < p_{\rm S}(26.85^{\circ}\text{C}) = 0.0014779$ bar or

at $p > p_c = 13.32$ bar or $p < p_s(26.85^{\circ}C) = 0.0014779$ bar and

 $t > t_{\rm c} = 313.342 \,^{\circ}{\rm C}$ or $t < 26.85 \,^{\circ}{\rm C}$

References: Internal calculation from ρ or v [1], [2] c_{ρ} [1], [2] and η [3], [4]

Vapor Pressure $p_s = f(t)$

Function Name: ps_t_MDM

Subroutine with function value: REAL*8 FUNCTION PSTMDM(T)

for call from Fortran REAL*8 T

Subroutine with parameter: INTEGER*4 FUNCTION C_PSTMDM(PS,T)

for call from DLL REAL*8 PS,T

Input Values:

T - Temperature t in °C

Result

 $\textbf{PSTMDM}, \, \textbf{PS} \, \, \text{or} \, \, \textbf{ps_t_MDM} - \text{Vapor} \, \, \text{pressure} \, \, \rho_{\!S} \, \, \, \text{in} \, \, \, \text{bar}$

Range of validity

Temperature ranges from t=0°C to $t_{\rm C}=290.94$ °C

Results for wrong input values

Result PSTMDM = -1000, PS = -1000 or ps_t_MDM = -1000 for input values:

t < 0°C or $t > t_{\rm C} = 290.94$ °C

Density $\rho = f(p, t, x)$

Function Name: rho_ptx_MDM

Subroutine with function value: REAL*8 FUNCTION RHOPTXMDM(P,T,X)

for call from Fortran REAL*8 P,T,X

Subroutine with parameter: INTEGER*4 FUNCTION C RHOPTXMDM(RHO,P,T,X)

for call from DLL REAL*8 RHO,P,T,X

Input Values:

P - Pressure *p* in bar

T - Temperature t in °C

X - Vapor fraction x (kg of saturated steam)/(kg wet steam)

Result

RHOPTXMDM, **RHO** or **rho_ptx_MDM** – Density ρ inkg/m³

Range of validity

Temperature range: from t = 0°C to 400°C

Pressure range: from p = 0.00078993 bar to 300 bar

Details on the vapor fraction x and on the calculation of wet steam

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction *x* are to be considered:

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

If the state point to be calculated is located on the boiling curve, x = 0 must be entered. When calculating saturated steam (dew curve) x = 1 is entered as given value. The calculation for x values between 0 and 1 is not possible.

If the state point to be calculated is located in the two phase region, it is adequate to enter either the given value for t and t = -1000, or the given value for t and t = -1000, plus the value for t between 0 and 1. When calculating wet steam and t and t are entered as given values, the program will consider t and t to be appropriate to represent the saturation-pressure curve.

Wet steam region: Temperature ranges from $t=0^{\circ}$ C to $t_{c}=290.94^{\circ}$ C

Pressure ranges from $p_s(0^{\circ}C)=0.00078993$ bar to $p_c=14.151055$ bar

Results for wrong input values

Result RHOPTXMDM = -1000, RHO = -1000 or rho_ptx_MDM = -1000 for input values:

Single phase region: p > 300 bar or p < 0,00078993 bar or

(x = -1) $t > 400 \,^{\circ}\text{C}$ or $t < 0 \,^{\circ}\text{C}$

Wet steam region: at p = -1000 and $t > t_c = 290.94$ °C to t < 0°C

at t = -1000 and $p > p_c = 14.151055$ bar

or $p < p_s(0^{\circ}C) = 0.00078993$ bar or

or $p > p_c = 14.151055$ bar or $p < p_s(0^{\circ}C) = 0.00078993$ bar and

 $t > t_{\rm c} = 290.94^{\circ}$ **C** or $t < 0^{\circ}$ C

Specific Entropy s = f(p,t,x)

Function Name: s_ptx_MDM

Subroutine with function value: REAL*8 FUNCTION SPTXMDM(P,T,X)

for call from Fortran REAL*8 P,T,X

Subroutine with parameter: INTEGER*4 FUNCTION C_SPTXMDM(S,P,T,X)

for call from DLL REAL*8 S,P,T,X

Input Values:

P - Pressure p in bar

T - Temperature t in °C

X - Vapor fraction *x* (kg of saturated steam)/(kg wet steam)

Result

SPTXMDM, S or s ptx MDM - Specific entropy s in kJ/kg K

Range of validity

Temperature range: from t = 0°C to 400°C

Pressure range: from p = 0.00078993 bar to 300 bar

Details on the vapor fraction x and on the calculation of wet steam

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction *x* are to be considered:

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

If the state point to be calculated is located in the two phase region (wet steam), either the value 0 or 1 has to be entered for x (x = 0 for boiling liquid, x = 1 for saturated steam). The calculation for x values between 0 and 1 is not possible.

If the state point to be calculated is located in the two phase region, it is adequate to enter either the given value for t and p = -1000, or the given value for p and t = -1000, plus the value for x between 0 and 1.

When calculating wet steam and p and t and t are entered as given values, the program will consider p and t to be appropriate to represent the saturation-pressure curve. If it is not the case the calculation for the quantity of the chosen function to be calculated results in -1000.

Wet steam region: Temperature ranges from t=0°C to $t_c=290.94$ °C

Pressure ranges from $p_s(0^{\circ}C) = 0.00078993$ bar to $p_c = 14.151055$ bar

Results for wrong input values

Result **SPTXMDM = -1000**, **S = -1000** or **s_ptx_MDM = -1000** for input values:

Single phase region: p > 300 bar or p < 0.00078993 bar or

(x = -1) $t > 400 \,^{\circ}\text{C}$ or $t < 0 \,^{\circ}\text{C}$

Wet steam region: at p = -1000 and $t > t_c = 290.94$ °C to t < 0°C

at t = -1000 and $p > p_c = 14.151055$ bar

or $p < p_s(0^{\circ}C) = 0.00078993$ bar or

or $p > p_c = 14.151055$ bar or $p < p_s(0^{\circ}C) = 0.00078993$ bar and

 $t > t_{\rm c} = 290.94$ °C or t < 0°C

Backward Function: Temperature t = f(p,h)

Function Name: t_ph_MDM

Subroutine with function value: REAL*8 FUNCTION TPHMDM(P,H)

for call from Fortran REAL*8 P,H

Subroutine with parameter: INTEGER*4 FUNCTION C_TPHMDM(T,P,H)

for call from DLL REAL*8 T,P,H

Input Values:

P - Pressure p in bar

H - Specific enthalpy h in kJ/kg

Result

TPHMDM, **T** or **t_ph_MDM** - Temperature *t* in °C

Range of validity

Temperature range: from t = 0°C to 400°C

Pressure range: from p = 0.00078993 bar to 300 bar

Details on the calculation of wet steam

The wet steam region is calculated automatically. That means the given values of p and h are taken as a basis and the subprogram will determine whether the state point to be calculated is located within the single-phase region (liquid or steam) or the wet steam region. Afterwards the calculation of the appropriate state region will be carried out.

Wet steam region: Pressure rangesfrom $p_s(0^{\circ}C)=0.00078993$ bar to $p_c=14.151055$ bar

Results for wrong input values

Result T_PH_MDM , T = -1000 or $t_ph_MDM = -1000$ for input values:

Single phase region: p > 300 bar or p < 0.00078993 bar or

(x = -1) at result t > 400 °C or t < 0°C

Boiling or dew curve: or $p > p_c = 14.151055$ bar or $p < p_s(0^{\circ}C) = 0.00078993$ bar and

at result $t > t_c = 290.94$ °C or t < 0°C

Backward Function: Temperature t = f(p,s)

Function Name: t_ps_MDM

Subroutine with function value: REAL*8 FUNCTION TPSMDM(P,S)

for call from Fortran REAL*8 P,S

Subroutine with parameter: INTEGER*4 FUNCTION C_TPSMDM(T,P,S)

for call from DLL REAL*8 T,P,S

Input Values:

P - Pressure p in bar

S - Specific entropy s in kJ/(kg K)

Result

TPSMDM, **T** or **t_ps_MDM** - Temperature *t* in °C

Range of validity

Temperature range: from t = 0°C to 400°C

Pressure range: from p = 0.00078993 bar to 300 bar

Details on the calculation of wet steam

The wet steam region is calculated automatically. That means the given values of p and s are taken as a basis and the subprogram will determine whether the state point to be calculated is located within the single-phase region (liquid or steam) or the wet steam region. Afterwards the calculation of the appropriate state region will be carried out.

Wet steam region: Pressure rangesfrom $p_s(0^{\circ}\text{C})=0.00078993$ bar to $p_c=14.151055$ bar

Results for wrong input values

Result T_PS_MDM , T = -1000 or $t_ps_MDM = -1000$ for input values:

Single phase region: p > 300 bar or p < 0.00078993 bar or

(x = -1) at result t > 400 °C or t < 0°C

Boiling or dew curve: or $p > p_c = 14.151055$ bar or $p < p_s(0^{\circ}C) = 0.00078993$ bar and

at result $t > t_c = 290.94$ °C or t < 0°C

Boiling Temperature $t_s = f(p)$

Function Name: ts_p_MDM

Subroutine with function value: REAL*8 FUNCTION TSPMDM(P)

for call from Fortran REAL*8 P

Subroutine with parameter: INTEGER*4 FUNCTION C_TSPMDM(TS,P)

for call from DLL REAL*8 TS,P

Input Values:

P - Pressure p in bar

Result

TSPMDM, TS or ts_p_MDM -Boilingemperature t_s in $^{\circ}C$

Range of validity

Pressure rangesfrom $p_s(0^{\circ}C)=0.00078993$ bar to $p_c=14.151055$ bar

Results for wrong input values

Result TSPMDM = -1000, TS = -1000 or $ts_p_MDM = -1000$ for input values:

 $p > p_c = 14.151055$ bar or $p < p_s(0^{\circ}C) = 0.00078993$ bar

Specific Internal Energy u = f(p,t,x)

Function Name: u_ptx_MDM

Subroutine with function value: REAL*8 FUNCTION UPTXMDM(P,T,X)

for call from Fortran REAL*8 P,T,X

Subroutine with parameter: INTEGER*4 FUNCTION C_UPTXMDM(U,P,T,X)

for call from DLL REAL*8 U,P,T,X

Input Values:

P - Pressure p in barT - Temperature t in °C

X - Vapor fraction *x* (kg of saturated steam)/(kg wet steam)

Result

UPTXMDM, **U** or **u_ptx_MDM** - Specific internal energy *u* in kJ/kg

Range of validity

Temperature range: from t = 0°C to 400°C

Pressure range: from p = 0.00078993 bar to 300 bar

Details on the vapor fraction x and on the calculation of wet steam

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction *x* are to be considered:

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

If the state point to be calculated is located in the two phase region (wet steam), either the value 0 or 1 has to be entered for x (x = 0 for boiling liquid, x = 1 for saturated steam). The calculation for x values between 0 and 1 is not possible.

If the state point to be calculated is located in the two phase region, it is adequate to enter either the given value for t and p = -1000, or the given value for p and t = -1000, plus the value for x between 0 and 1

When calculating wet steam and p and t and x are entered as given values, the program will consider p and t to be appropriate to represent the saturation-pressure curve. If it is not the case the calculation for the quantity of the chosen function to be calculated results in -1000.

Wet steam region: Temperature ranges from $t=0^{\circ}$ C to $t_{c}=290.94^{\circ}$ C

Pressure rangesfrom $p_s(0^{\circ}C)=0.00078993$ bar to $p_c=14.151055$ bar

Results for wrong input values

Result UPTXMDM = -1000, U = -1000 or u ptx MDM = -1000 for input values:

Single phase region: p > 300 bar or p < 0,00078993 bar or

(x = -1) $t > 400 \,^{\circ}\text{C}$ or $t < 0 \,^{\circ}\text{C}$

Wet steam region: at p = -1000 and $t > t_c = 290.94$ °C to t < 0°C

at t = -1000 and $p > p_c = 14.151055$ bar

or $p < p_s(0^{\circ}C) = 0.00078993$ bar or

or $p > p_c = 14.151055$ bar or $p < p_s(0^{\circ}C) = 0.00078993$ bar and

Specific Volume v = f(p, t, x)

Function Name: v_ptx_MDM

Subroutine with function value: REAL*8 FUNCTION VPTXMDM(P,T,X)

for call from Fortran REAL*8 P,T,X

Subroutine with parameter: INTEGER*4 FUNCTION C_VPTXMDM(V,P,T,X)

for call from DLL REAL*8 V,P,T,X

Input Values:

P - Pressure *p* in bar

T - Temperature t in °C

X - Vapor fraction *x* (kg of saturated steam)/(kg wet steam)

Result

VPTXMDM, **V** or **v_ptx_MDM** – Specific volume v in m^3/kg

Range of validity

Temperature range: from t = 0°C to 400°C

Pressure range: from p = 0.00078993 bar to 300 bar

Details on the vapor fraction x and on the calculation of wet steam

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction *x* are to be considered:

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

If the state point to be calculated is located in the two phase region (wet steam), either the value 0 or 1 has to be entered for x (x = 0 for boiling liquid, x = 1 for saturated steam). The calculation for x values between 0 and 1 is not possible.

If the state point to be calculated is located in the two phase region, it is adequate to enter either the given value for t = -1000, or the given value for p = -1000, plus the value for t = -1000, plus the value fo

When calculating wet steam and p and t and t are entered as given values, the program will consider p and t to be appropriate to represent the saturation-pressure curve. If it is not the case the calculation for the quantity of the chosen function to be calculated results in -1000.

Wet steam region: Temperature ranges from t=0°C to $t_{\rm c}=290.94$ °C

Pressure rangesfrom $p_s(0^{\circ}C)=0.00078993$ bar to $p_c=14.151055$ bar

Results for wrong input values

Result **VPTXMDM = -1000**, **V = -1000** or **v_ptx_MDM = -1000** for input values:

Single phase region: p > 300 bar or p < 0,00078993 bar or

(x = -1) $t > 400 \,^{\circ}\text{C}$ or $t < 0 \,^{\circ}\text{C}$

Wet steam region: at p = -1000 and $t > t_c = 290.94$ °C to t < 0°C

at t = -1000 and $p > p_c = 14.151055$ bar

or $p < p_s(0^{\circ}C) = 0.00078993$ bar or

or $p > p_c = 14.151055$ bar or $p < p_s(0^{\circ}C) = 0.00078993$ bar and

Isentropic Speed of Sound w = f(p,t,x)

Function Name: w_ptx_MDM

Subroutine with function value: REAL*8 FUNCTION WPTXMDM(P,T,X)

for call from Fortran REAL*8 P,T,X

Subroutine with parameter: INTEGER*4 FUNCTION C_WPTXMDM(W,P,T,X)

for call from DLL REAL*8 W,P,T,X

Input Values:

P - Pressure p in bar

T - Temperature t in °C

X - Vapor fraction *x* (kg of saturated steam)/(kg wet steam)

Result

WPTXMDM, W or w_ptx_MDM - Speed of sound w in m/s

Range of validity

Temperature range: from t = 0°C to 400°C

Pressure range: from p = 0.00078993 bar to 300 bar

Details on the vapor fraction x and on the calculation of wet steam

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction *x* are to be considered:

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

If the state point to be calculated is located on the boiling curve, x = 0 must be entered. When calculating saturated steam (dew curve) x = 1 is entered as given value. The calculation for x values between 0 and 1 is not possible.

If the state point to be calculated is located in the two phase region, it is adequate to enter either the given value for t and p = -1000, or the given value for p and t = -1000, plus the value for x between 0 and 1. When calculating wet steam and p and t and x are entered as given values, the program will consider p and t to be appropriate to represent the saturation-pressure curve.

Boiling and dew curve: Temperature ranges from t=0°C to $t_{\rm C}=290.94$ °C

Pressure ranges from $p_s(0^{\circ}C) = 0.00078993$ bar to $p_c = 14.151055$ bar

Results for wrong input values

Result WPTXMDM = -1000, W = -1000 or w ptx MDM = -1000 for input values:

Single phase region: p > 300 bar or p < 0,00078993 bar or

(x = -1) $t > 400 \,^{\circ}\text{C}$ or $t < 0 \,^{\circ}\text{C}$

Boiling or dew curve: at p = -1000 and $t > t_c = 290.94$ °C to t < 0°C

at t = -1000 and $p > p_c = 14.151055$ bar

or $p < p_s(0^{\circ}C) = 0.00078993$ bar or

or $p > p_c = 14.151055$ bar or $p < p_s(0^{\circ}C) = 0.00078993$ bar and

Backward Function: Vapor fraction x = f(p,h)

Function Name: x_ph_MDM

Subroutine with function value: REAL*8 FUNCTION XPHMDM(P,H)

for call from Fortran REAL*8 P,H

Subroutine with parameter: INTEGER*4 FUNCTION C_XPHMDM(X,P,H)

for call from DLL REAL*8 X,P,H

Input Values:

P - Pressure p in bar

H - Specific enthalpy h in kJ/kg

Result

XPHMDM, **X** or **x_ph_MDM** - Vapor fraction *x* in (kg saturated steam/kg wet steam)

Range of validity

Temperature range: from t = 0°C to 400°C

Pressure range: from p = 0.00078993 bar to 300 bar

Details on the calculation of wet steam

The wet steam region is calculated automatically. That means the given values of p and h are taken as a basis and the subprogram will determine whether the state point to be calculated is located within the single-phase region (liquid or superheated steam) or the wet steam region. In case of wet steam, x will be calculated, otherwise the result is set to x = -1.

Wet steam region: Pressure rangesfrom $p_s(0^{\circ}C)=0.00078993$ bar to $p_c=14.151055$ bar

Results for wrong input values

Result X_PH_MDM , X = -1 or $x_ph_MDM = -1$ for input values:

If the state point is located in the single phase region:

 $p > p_c = 14.151055$ bar or $p < p_s(0^{\circ}C) = 0.00078993$ bar

Backward Function: Vapor Fraction x = f(p,s)

Function Name: x_ps_MDM

Subroutine with function value: REAL*8 FUNCTION XPSMDM(P,S)

for call from Fortran REAL*8 P,S

Subroutine with parameter: INTEGER*4 FUNCTION C_XPSMDM(X,P,S)

for call from DLL REAL*8 X,P,S

Input Values:

P - Pressure p in bar

S - Specific entropy s in kJ/(kg K)

Result

XPSMDM, **X** or **x_ps_MDM** - Vapor fraction *x* in (kg saturated steam/kg wet steam)

Range of validity

Temperature range: from t = 0°C to 400°C

Pressure range: from p = 0.00078993 bar to 300 bar

Details on the calculation of wet steam

The wet steam region is calculated automatically. That means the given values of p and h are taken as a basis and the subprogram will determine whether the state point to be calculated is located within the single-phase region (liquid or superheated steam) or the wet steam region. In case of wet steam, x will be calculated, otherwise the result is set to x = -1.

Wet steam region: Pressure rangesfrom $p_s(0^{\circ}C)=0.00078993$ bar to $p_c=14.151055$ bar

Results for wrong input values

Result X_PS_MDM , X = -1 or $x_ps_MDM = -1$ for input values:

If the state point is located in the single phase region:

 $p > p_c = 14.151055$ bar or $p < p_s(0^{\circ}C) = 0.00078993$ bar

Compression Factor Z = f(p,t,x)

Function Name: Z_ptx_MDM

Subroutine with function value: REAL*8 FUNCTION ZPTXMDM(P,T,X)

for call from Fortran REAL*8 P,T,X

Subroutine with parameter: INTEGER*4 FUNCTION C_ZPTXMDM(Z,P,T,X)

for call from DLL REAL*8 Z,P,T,X

Input Values:

P - Pressure p in bar

T - Temperature t in °C

X - Vapor fraction *x* (kg of saturated steam)/(kg wet steam)

Result

ZPTXMDM, Z or Z_ptx_MDM - Compression Factor

Range of validity

Temperature range: from t = 0°C to 400°C

Pressure range: from p = 0.00078993 bar to 300 bar

Details on the vapor fraction x and on the calculation of wet steam

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction *x* are to be considered:

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

If the state point to be calculated is located on the boiling curve, x = 0 must be entered. When calculating saturated steam (dew curve) x = 1 is entered as given value. The calculation for x values between 0 and 1 is not possible.

If the state point to be calculated is located in the two phase region, it is adequate to enter either the given value for t and p = -1000, or the given value for p and t = -1000, plus the value for x between 0 and 1. When calculating wet steam and p and t and x are entered as given values, the program will consider p and t to be appropriate to represent the saturation-pressure curve.

Boiling and dew curve: Temperature ranges from t=0°C to $t_c=290.94$ °C

Pressure rangesfrom $p_s(0^{\circ}C)=0.00078993$ bar to $p_c=14.151055$ bar

Results for wrong input values

Result **ZPTXMDM = -1000**, **Z = -1000** or **Z_ptx_MDM = -1000** for input values:

Single phase region: p > 300 bar or p < 0,00078993 bar or

(x = -1) $t > 400 \,^{\circ}\text{C}$ or $t < 0 \,^{\circ}\text{C}$

Boiling or dew curve: at p = -1000 and $t > t_c = 290.94$ °C to t < 0°C

at t = -1000 and $p > p_c = 14.151055$ bar

or $p < p_s(0^{\circ}C) = 0.00078993$ bar or

or $p > p_c = 14.151055$ bar or $p < p_s(0^{\circ}C) = 0.00078993$ bar and

KCE-ThermoFluidProperties www.thermofluidprop.com

Property Libraries for Calculating Heat Cycles, Boilers, Turbines and Refrigerators

Water and Steam

Library LibIF97

- Industrial Formulation
- Supplementary Standards
- IAPWS-IF97-S01
- IAPWS-IF97-S03rev
- IAPWS-IF97-S04
- IAPWS-IF97-S05
- IAPWS Revised Advisory Note No. 3 on Thermodynamic Derivatives (2008)

Library LibSBTL IF97 Library LibSBTL 95

IAPWS-IF97 (Revision 2007) Extremely fast property calculations according to the

IAPWS Guideline 2015 Spline-based Table Look-up Method (SBTL)

applied to the

Industrial Formulation IAPWS-IF97 and to the

Scientific Formulation IAPWS-95 for Computational Fluid Dynamics and simulating non-stationary processes

Humid Combustion Gas Mixtures

Library LibHuGas

Model: Ideal mixture of the real fluids:

CO₂ - Span, Wagner H₂O - IAPWS-95

O₂ - Schmidt, Wagner N₂ - Span et al.

Ar - Tegeler et al.

and of the ideal gases:

SO₂, CO, Ne

(Scientific Formulation of Bücker et al.)

Consideration of:

- Dissociation from VDI 4670
- Poynting effect

Humid Air

Library LibHuAir

Model: Ideal mixture of the real fluids:

- Drv air from Lemmon et al.
- Steam, water and ice from IAPWS-IF97 and IAPWS-06

Consideration of:

- Condensation and freezing of steam
- Dissociation from VDI 4670
- Poynting effect from ASHRAE RP-1485

Carbon Dioxide **Including Dry Ice Library LibCO2**

Formulation of Span and Wagner (1996)

Seawater

Library LibSeaWa

IAPWS Industrial Formulation 2013

Ice

Library LibICE

Ice from IAPWS-06, Melting and sublimation pressures from IAPWS-08, Water from IAPWS-IF97, Steam from IAPWS-95 and -IF97

Ideal Gas Mixtures

Library LibIdGasMix

Model: Ideal mixture of the ideal gases:

Ar	NO	не	Propylene
Ne	H ₂ O	F_2	Propane
N_2	SO ₂	NH ₃	Iso-Butane
O_2	H ₂	Methane	n-Butane
CO	H ₂ S	Ethane	Benzene
CO ₂	OH	Ethylene	Methanol
Air			

Consideration of:

Dissociation from the VDI Guideline 4670

Library LibIDGAS

Model: Ideal gas mixture from VDI Guideline 4670

Consideration of:

Dissociation from the VDI Guideline 4670

Humid Air Library ASHRAE LibHuAirProp

Model: Virial equation from ASHRAE Report RP-1485 for real mixture of the real fluids:

- Dry air

- Steam

Consideration of:

 Enhancement of the partial saturation pressure of water vapor at elevated total pressures

www.ashrae.org/bookstore

Dry Air **Including Liquid Air** Library LibRealAir

Formulation of Lemmon et al. (2000)

Refrigerants

Ammonia

Library LibNH3

Formulation of Tillner-Roth et al. (1993)

R134a

Library LibR134a

Formulation of Tillner-Roth and Baehr (1994)

Iso-Butane

Library LibButane Iso

Formulation of Bücker and Wagner (2006)

n-Butane

Library LibButane n

Formulation of Bücker and Wagner (2006)

Mixtures for Absorption Processes

Ammonia/Water Mixtures

Library LibAmWa

IAPWS Guideline 2001 of Tillner-Roth and Friend (1998)

Helmholtz energy equation for the mixing term (also useable for calculating the Kalina Cycle)

Water/Lithium Bromide Mixtures

Library LibWaLi

Formulation of Kim and Infante Ferreira (2004) Gibbs energy equation for the mixing term

Liquid Coolants

Liquid Secondary Refrigerants

Library LibSecRef

Liquid solutions of water with

C₂H₆O₂ Ethylene glycol Propylene glycol C₃H₈O₂ C₂H₅OH Ethanol

CH₂OH Methanol C₃H₈O₃ Glycerol

 NH_3

K₂CO₃ Potassium carbonate CaCl₂ Calcium chloride MgCl₂ Magnesium chloride NaCl Sodium chloride C₂H₃KO₂ Potassium acetate CHKO₂ Potassium formate LiCI Lithium chloride

Ammonia Formulation of the International Institute of Refrigeration (IIR 2010)

Ethanol

Library LibC2H5OH

Formulation of Schroeder (2012)

Methanol Library LibCH3OH

Formulation of de Reuck and Craven (1993)

Propane

Library LibPropane

Formulation of Lemmon et al. (2009)

Siloxanes as ORC Working Fluids

Octamethylcyclotetrasiloxane C₈H₂₄O₄Si₄ Library LibD4

Decamethylcyclopentasiloxane C₁₀H₃₀O₅Si₅ Library LibD5

Tetradecamethylhexasiloxane C₁₄H₄₂O₅Si₆ Library LibMD4M

Hexamethyldisiloxane C₆H₁₈OSi₂ Library LibMM

Formulation of Colonna et al. (2006)

Dodecamethylcyclohexasiloxane C₁₂H₃₆O₆Si₆ Library LibD6

Decamethyltetrasiloxane C₁₀H₃₀O₃Si₄ Library LibMD2M

Dodecamethylpentasiloxane C₁₂H₃₆O₄Si₅ Library LibMD3M

Octamethyltrisiloxane C₈H₂₄O₂Si₃ Library LibMDM

Formulation of Colonna et al. (2008)

Nitrogen and Oxygen

Libraries LibN2 and LibO2

Formulations of Span et al. (2000) and Schmidt and Wagner (1985)

Hydrogen Library LibH2

Formulation of Leachman et al. (2009)

Helium

Library LibHe

Formulation of Arp et al. (1998)

Hydrocarbons

Decane C₁₀H₂₂ Library LibC10H22

Isopentane C₅H₁₂ Library LibC5H12_ISO

Neopentane C₅H₁₂ Library LibC5H12_NEO

Isohexane C₆H₁₄ Library LibC6H14

Toluene C₇H₈ Library LibC7H8

Formulation of Lemmon and Span (2006)

Further Fluids

Carbon monoxide CO Library LibCO

Carbonyl sulfide COS Library LibCOS

Hydrogen sulfide H₂S Library LibH2S

Nitrous oxide N₂O Library LibN2O

Sulfur dioxide SO₂ Library LibSO₂

Acetone C₃H₆O Library LibC3H6O

Formulation of Lemmon and Span (2006)

For more information please contact:

KCE-ThermoFluidProperties UG (limited liability) & Co. KG Professor Hans-Joachim Kretzschmar

Wallotstr. 3

01307 Dresden, Germany

Internet: www.thermofluidprop.com E-mail: info@thermofluidprop.com

Phone: +49-351-27597860 Mobile: +49-172-7914607

Fax: +49-3222-4262250

The following thermodynamic and transport properties can be calculated^a:

Thermodynamic Properties

- Vapor pressure p_s
- Saturation temperature T_s
- Density ρ
- Specific volume v
- Enthalpy h
- Internal energy u
- Entropy s
- Exergy e
- Isobaric heat capacity c_p
- Isochoric heat capacity c_v
- Isentropic exponent κ
- Speed of sound w
- Surface tension σ

Transport Properties

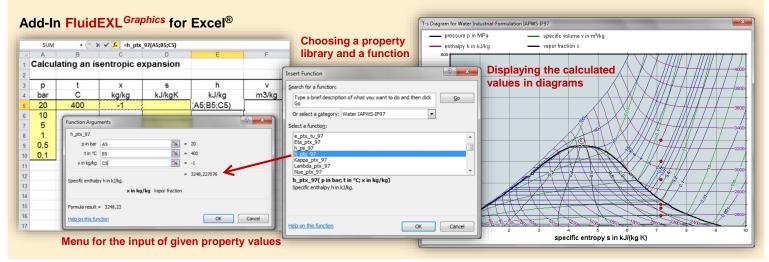
- Dynamic viscosity η
- Kinematic viscosity v
- Thermal conductivity λ
- Prandtl number Pr

Backward Functions

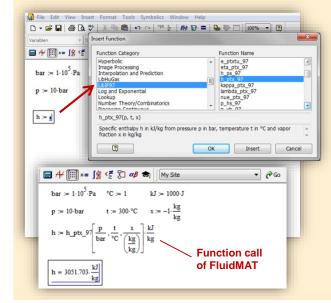
- T, v, s (p,h)
- T, v, h (p,s)
- p, T, v(h,s)
- p, T (v,u)
- p, T (v,h)

Thermodynamic Derivatives

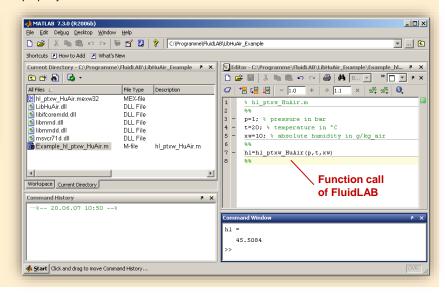
· Partial derivatives can be calculated.


^a Not all of these property functions are available in all property libraries.

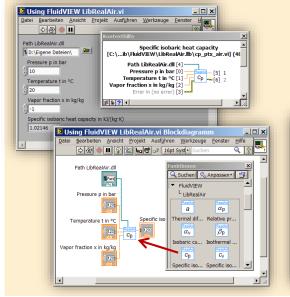
KCE-ThermoFluidProperties www.thermofluidprop.com



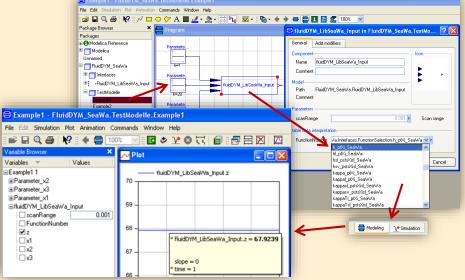
Property Software for Calculating Heat Cycles, Boilers, Turbines and Refrigerators


Add-In FluidMAT for Mathcad®

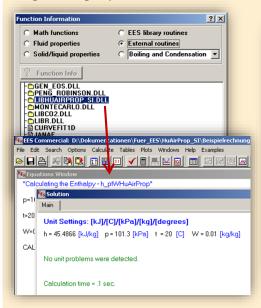
The property libraries can be used in Mathcad®.


Add-In FluidLAB for MATLAB®

Using the Add-In FluidLAB the property functions can be called in MATLAB®.


Add-On FluidVIEW for LabVIEW™

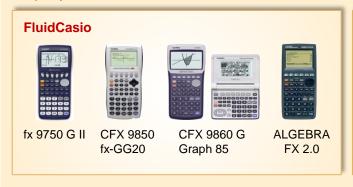
The property functions can be calculated in LabVIEW™.



Add-In FluidDYM for DYMOLA® (Modelica) and SimulationX®

The property functions can be called in DYMOLA® and SimulationX®.

Add-In FluidEES for Engineering Equation Solver®


App International Steam Tables for iPhone, iPad, iPod touch, Android Smartphones and Tablets

Online Property Calculator at www.thermofluidprop.com

Property Software for Pocket Calculators

For more information please contact:

KCE-ThermoFluidProperties UG (limited liability) & Co. KG Professor Hans-Joachim Kretzschmar

Wallotstr. 3

01307 Dresden, Germany

Internet: www.thermofluidprop.com E-mail: info@thermofluidprop.com

Phone: +49-351-27597860 Mobile: +49-172-7914607 Fax: +49-3222-4262250

The following thermodynamic and transport properties^a can be calculated in Excel[®], MATLAB[®], Mathcad[®], Engineering Equation Solver[®] (EES), DYMOLA[®] (Modelica), SimulationX[®] and LabVIEW[™]:

Thermodynamic Properties

- Vapor pressure $p_{\rm s}$
- Saturation temperature T_s
- Density ρ
- · Specific volume v
- Enthalpy h
- Internal energy u
- Entropy s
- Exergy e
- Isobaric heat capacity c_p
- Isochoric heat capacity c_{ν}
- Isentropic exponent κ
- Speed of sound w
- Surface tension σ

Transport Properties

- Dynamic viscosity η
- Kinematic viscosity v
- Thermal conductivity λ
- Prandtl number Pr

Backward Functions

- T, v, s (p,h)
- T, v, h (p,s)
- p, T, v (h,s)
- p, T (v,h)
- p, T (v,u)

Thermodynamic Derivatives

 Partial derivatives can be calculated.

^a Not all of these property functions are available in all property libraries.

5. References

- [1] Colonna, P.; Nannan, N. R.; Guardone Multiparameter equations of state for selected siloxanes Fluid Phase Equilibria, 263, (2008) pp. 115-130
- [2] Span, R.Multiparameter Equations of State;An Accurate Source of Thermodynamic Property Data Springer Verlag 2000
- [3] Chung, T. H.; Ajlan, M.; Lee, L. L.; Starling, K. E. Generalized multiparameter correlation for nonpolar and polar fluid transport properties Industrial & Engineering Chemistry Research, 27, (1988) pp. 671-679
- [4] Poling, B. E.; Prausnitz, J. M.; O'Connel, J. P. The Properties of Gases and Liquids McGraw-Hill, New York, 5th Edition, 2001, Chapter 9.40, 10.23
- [5] Olchowy, G. A.; Sengers, J. V. A simplified representation for the thermal conductivity of fluids in the critical region International Journal of Thermophysics, 10, (1989) pp. 417-426

6. Satisfied Customers

Date: 05/2018

The following companies and institutions use the property libraries

- FluidEXL^{Graphics} for Excel[®]
- FluidLAB for MATLAB®
- FluidMAT for Mathcad®
- FluidEES for Engineering Equation Solver® EES
- FluidDYM for Dymola $^{\mbox{\scriptsize R}}$ (Modelica) and Simulation $^{\mbox{\scriptsize R}}$
- FluidVIEW for LabVIEW[™].

2018

Universität Madrid, Madrid, Spanien	05/2018
HS Zittau/ Görlitz, Fakultät Wirtschaft, Zittau	05/2018
HS Niederrhein, Krefeld	05/2018
GRS, Köln	03/2018
RONAL AG, Härklingen, Schweiz	02/2018
Ingenieurbüro Leipert, Riegelsberg	02/2018
AIXPROCESS, Aachen	02/2018
KRONES, Neutraubling	02/2018
Doosan Lentjes, Ratingen	01/2018

2017

Compact Kältetechnik, Dresden	12/2017
Endress + Hauser Messtechnik GmbH +Co. KG, Hannover	12/2017
TH Mittelhessen, Gießen	11/2017
Haarslev Industries, Søndersø, Denmark	11/2017
Hochschule Zittau/Görlitz, Fachgebiet Energiesystemtechnik	11/2017
ATESTEO, Alsdorf	10/2017
Wijbenga, PC Geldermalsen, Netherlands	10/2017
Fels-Werke GmbH, Elbingerode	10/2017
KIT Karlsruhe, Institute für Neutronenphysik und Reaktortechnik	09/2017
Air-Consult, Jena	09/2017
Papierfabrik Koehler, Oberkirch	09/2017
ZWILAG, Würenlingen, Switzerland	09/2017
TLK-Thermo Universität Braunschweig, Braunschweig	08/2017
Fichtner IT Consulting AG, Stuttgart	07/2017
Hochschule Ansbach, Ansbach	06/2017
RONAL, Härkingen, Switzerland	06/2017
BORSIG Service, Berlin	06/2017

BOGE Kompressoren, Bielefeld	06/2017
STEAG Energy Services, Zwingenberg	06/2017
CES clean energy solutions, Wien, Austria	04/2017
Princeton University, Princeton, USA	04/2017
B2P Bio-to-Power, Wadersloh	04/2017
TU Dresden, Institute for Energy Engineering, Dresden	04/2017
SAINT-GOBAIN, Vaujours, France	03/2017
TU Bergakademie Freiberg, Chair of Thermodynamics, Freiberg	03/2017
SCHMIDT + PARTNER, Therwil, Switzerland	03/2017
KAESER Kompressoren, Gera	03/2017
F&R, Praha, Czech Republic	03/2017
ULT Umwelt-Lufttechnik, Löbau	02/2017
JS Energie & Beratung, Erding	02/2017
Kelvion Brazed PHE, Nobitz-Wilchwitz	02/2017
MTU Aero Engines, München	02/2017
Hochschule Zittau/Görlitz, IPM	01/2017
CombTec ProCE, Zittau	01/2017
SHELL Deutschland Oil, Wesseling	01/2017
MARTEC Education Center, Frederikshaven, Denmark	01/2017
SynErgy Thermal Management, Krefeld	01/2017

2016

BOGE Druckluftsysteme, Bielefeld	12/2016
BFT Planung, Aachen	11/2016
Midiplan, Bietigheim-Bissingen	11/2016
BBE Barnich IB	11/2016
Wenisch IB,	11/2016
INL, Idaho Falls	11/2016
TU Kältetechnik, Dresden	11/2016
Kopf SynGas, Sulz	11/2016
INTVEN, Bellevne (USA)	11/2016
DREWAG Dresden, Dresden	10/2016
AGO AG Energie+Anlagen, Kulmbach	10/2016
Universität Stuttgart, ITW, Stuttgart	09/2016
Pöyry Deutschland GmbH, Dresden	09/2016
Siemens AG, Erlangen	09/2016
BASF über Fichtner IT Consulting AG	09/2016
B+B Engineering GmbH, Magdeburg	09/2016
Wilhelm Büchner Hochschule, Pfungstadt	08/2016

	Webasto Thermo & Comfort SE, Gliching		3/2016
	TU Dresden, Dresden		3/2016
	Endress+Hauser Messtechnik GmbH+Co. KG, Hannover		3/2016
	D + B Kältetechnik, Althausen		/2016
	Fichtner IT Consulting AG, Stuttgart	07	7/2016
	AB Electrolux, Krakow, Poland	07	7/2016
	ENEXIO Germany GmbH, Herne	07	7/2016
	VPC GmbH, Vetschau/Spreewald	07	7/2016
	INWAT, Lodz, Poland	07	7/2016
	E.ON SE, Düsseldorf	07	7/2016
	Planungsbüro Waidhas GmbH, Chemnitz	07	7/2016
	EEB Enerko, Aldershoven	07	7/2016
	IHEBA Naturenergie GmbH & Co. KG, Pfaffenhofen	07	7/2016
	SSP Kälteplaner AG, Wolfertschwenden	07	7/2016
	EEB ENERKO Energiewirtschaftliche Beratung GmbH, Berlin	07	//2016
	BOGE Kompressoren Otto BOGE GmbH & Co KG, Bielefeld	06	3/2016
	Universidad Carlos III de Madrid, Madrid, Spain	04	/2016
	INWAT, Lodzi, Poland	04	/2016
	Planungsbüro WAIDHAS GmbH, Chemnitz	04	/2016
	STEAG Energy Services GmbH, Laszlo Küppers, Zwingenber	rg 03	3/2016
	WULFF & UMAG Energy Solutions GmbH, Husum	03	3/2016
	FH Bielefeld, Bielefeld	03	3/2016
	EWT Eckert Wassertechnik GmbH, Celle	03	3/2016
	ILK Institut für Luft- und Kältetechnik GmbH, Dresden	02/2016, 06/201	6 (2x)
	IEV KEMA - DNV GV – Energie, Dresden	02	2/2016
	Allborg University, Department of Energie, Aalborg, Denmark	02	2/2016
	G.A.M. Heat GmbH, Gräfenhainichen		2/2016
	Institut für Luft- und Kältetechnik, Dresden	02/2016, 05/2016, 06	
	Bosch, Stuttgart		2/2016
	INL Idaho National Laboratory, Idaho, USA	11/2016, 01	
	Friedl ID, Wien, Austria		/2016
	Technical University of Dresden, Dresden		/2016
	,		
20	015		
	EES Enerko, Aachen	12	2/2015
	Ruldolf IB, Strau, Austria	12	2/2015
	Allborg University, Department of Energie, Aalborg, Denmark	12	2/2015
	University of Lyubljana, Slovenia	12	2/2015
	Steinbrecht IB, Berlin	11	/2015
	Universidad Carlos III de Madrid, Madrid, Spain	11	/2015
	STEAK, Essen	11	/2015

Bosch, Lohmar Team Turbo Machines, Rouen, France BTC – Business Technology Consulting AG, Oldenburg KIT Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen ILK, Dresden Schniewindt GmbH & Co. KG, Neuenwalde	10/2015 09/2015 07/2015 07/2015 07/2015 08/2015
2014	
PROJEKTPLAN, Dohna	04/2014
Technical University of Vienna, Austria	04/2014
MTU Aero Engines AG, Munich	04/2014
GKS, Schweinfurt	03/2014
Technical University of Nuremberg	03/2014
EP-E, Niederstetten	03/2014
Rückert NatUrgas GmbH, Lauf	03/2014
YESS-World, South Korea	03/2014
ZAB, Dessau	02/2014
KIT-TVT, Karlsruhe	02/2014
Stadtwerke Neuburg	02/2014
COMPAREX, Leipzig for RWE Essen	02/2014
Technical University of Prague, Czech Republic	02/2014
HS Augsburg	02/2014
Envi-con, Nuremberg	01/2014
DLR, Stuttgart	01/2014
Doosan Lentjes, Ratingen	01/2014
Technical University of Berlin	01/2014
Technical University of Munich	01/2014
Technical University of Braunschweig	01/2014
M&M Turbinentechnik, Bielefeld	01/2014
2013	
TRANTER-GmbH, Artern	12/2013
SATAKE, Shanghai, China	12/2013
VOITH, Kunshan, China	12/2013
ULT, Löbau	12/2013
MAN, Copenhagen, Dänemark	11/2013
DREWAG, Dresden	11/2013
Haarslev Industries, Herlev, Dänemark	11/2013
STEAG, Herne	11/2013, 12/2013
Ingersoll-Rand, Oberhausen	11/2013
Wilhelm-Büchner HS, Darmstadt	10/2013

INV. OL	10/0010
IAV, Chemnitz	10/2013
Technical University of Regensburg	10/2013
PD-Energy, Bitterfeld	09/2013
Thermofin, Heinsdorfergrund	09/2013
SHI, New Jersey, USA	09/2013
M&M Turbinentechnik, Bielefeld	08/2013
BEG-BHV, Bremerhaven	08/2013
TIG-Group, Husum	08/2013
COMPAREX, Leipzig for RWE Essen	08/2013, 11/2013
	12/2013
University of Budapest, Hungary	08/2013
Siemens, Frankenthal	08/2013, 10/2013
VOD Faran	11/2013
VGB, Essen	07/2013, 11/2013
Brunner Energieberatung, Zurich, Switzerland	07/2013
Technical University of Deggendorf	07/2013
University of Maryland, USA	07/2013, 08/2013
University of Princeton, USA	07/2013
NIST, Boulder, USA	06/2013
IGUS GmbH, Dresden	06/2013
BHR Bilfinger, Essen	06/2013
SÜDSALZ, Bad Friedrichshall	06/2013, 12/2013
Technician School of Berlin	05/2013
KIER, Gajeong-ro, Südkorea	05/2013
Schwing/Stetter GmbH, Memmingen	05/2013
Vattenfall, Berlin	05/2013
AUTARK, Kleinmachnow	05/2013
STEAG, Zwingenberg	05/2013
Hochtief, Düsseldorf	05/2013
University of Stuttgart	04/2013
Technical University -Bundeswehr, Munich	04/2013
Rerum Cognitio Forschungszentrum, Frankfurt	04/2013
Kältetechnik Dresen + Bremen, Alfhausen	04/2013
University Auckland, New Zealand	04/2013
MASDAR Institut, Abu Dhabi, United Arab Emirates	03/2013
Simpelkamp, Dresden	02/2013
VEO, Eisenhüttenstadt	02/2013
ENTEC, Auerbach	02/2013
Caterpillar, Kiel	02/2013
Technical University of Wismar	02/2013
Technical University of Dusseldorf	02/2013
•	

ILK, Dresden Fichtner IT, Stuttgart Schnepf Ingeniuerbüro, Nagold Schütz Engineering, Wadgassen Endress & Hauser, Reinach, Switzerland Oschatz GmbH, Essen frischli Milchwerke, Rehburg-Loccum	01/2013, 08/2013 01/2013, 11/2013 01/2013 01/2013 01/2013 01/2013 01/2013
2012	
Voith, Bayreuth Technical University of Munich Dillinger Huette University of Stuttgart Siemens, Muehlheim Sennheiser, Hannover Oschatz GmbH, Essen Fichtner IT, Stuttgart Helbling Technik AG, Zurich, Switzerland University of Duisburg Rerum Cognitio Forschungszentrum, Frankfurt Pöyry Deutschland GmbH, Dresden Extracciones, Guatemala RWE, Essen Weghaus Consulting Engineers, Wuerzburg GKS, Schweinfurt	12/2012 12/2012 12/2012 11/2012 11/2012 11/2012 10/2012 10/2012 10/2012 10/2012 09/2012 08/2012 08/2012 08/2012 08/2012 08/2012 08/2012
GKS, Schweinfurt COMPAREX, Leipzig	07/2012 07/2012
for RWE Essen GEA, Nobitz Meyer Werft, Papenburg STEAG, Herne GRS, Cologne Fichtner IT Consult, Chennai, India Siemens, Freiburg Nikon Research of America, Belmont, USA Niederrhein University of Applied Sciences, Krefeld STEAG, Zwingenberg Mainova, Frankfurt on Main via Fichtner IT Consult Endress & Hauser PEU, Espenheim Luzern University of Applied Sciences, Switzerland	07/2012 07/2012 07/2012 06/2012 06/2012 06/2012 06/2012 06/2012 06/2012 05/2012

BASF, Ludwigshafen (general license) via Fichtner IT Consult	05/2012
SPX Balcke-Dürr, Ratingen	05/2012, 07/2012
Gruber-Schmidt, Wien, Austria	04/2012
Vattenfall, Berlin	04/2012
ALSTOM, Baden	04/2012
SKW, Piesteritz	04/2012
TERA Ingegneria, Trento, Italy	04/2012
Siemens, Erlangen	04/2012, 05/2012
LAWI Power, Dresden	04/2012
Stadtwerke Leipzig	04/2012
SEITZ, Wetzikon, Switzerland	03/2012, 07/2012
M & M, Bielefeld	03/2012
Sennheiser, Wedemark	03/2012
SPG, Montreuil Cedex, France	02/2012
German Destilation, Sprendlingen	02/2012
Lopez, Munguia, Spain	02/2012
Endress & Hauser, Hannover	02/2012
Palo Alto Research Center, USA	02/2012
WIPAK, Walsrode	02/2012
Freudenberg, Weinheim	01/2012
Fichtner, Stuttgart	01/2012
airinotec, Bayreuth	01/2012, 07/2012
University Auckland, New Zealand	01/2012
VPC, Vetschau	01/2012
Franken Guss, Kitzingen	01/2012
2011	
XRG-Simulation, Hamburg	12/2011
Smurfit Kappa PPT, AX Roermond, Netherlands	12/2011
AWTEC, Zurich, Switzerland	12/2011
eins-energie, Bad Elster	12/2011
BeNow, Rodenbach	11/2011
Luzern University of Applied Sciences, Switzerland	11/2011
GMVA, Oberhausen	11/2011
CCI, Karlsruhe	10/2011
WBüchner University of Applied Sciences, Pfungstadt	10/2011
PLANAIR, La Sagne, Switzerland	10/2011
LAWI, Dresden	10/2011
Lopez, Munguia, Spain	10/2011
University of KwaZulu-Natal, Westville, South Africa	10/2011

Voith, Heidenheim	09/2011
SpgBe Montreal, Canada	09/2011
SPG TECH, Montreuil Cedex, France	09/2011
Voith, Heidenheim-Mergelstetten	09/2011
MTU Aero Engines, Munich	08/2011
MIBRAG, Zeitz	08/2011
RWE, Essen	07/2011
Fels, Elingerode	07/2011
Weihenstephan University of Applied Sciences	07/2011, 09/2011
	10/2011
Forschungszentrum Juelich	07/2011
RWTH Aachen University	07/2011, 08/2011
INNEO Solutions, Ellwangen	06/2011
Caliqua, Basel, Switzerland	06/2011
Technical University of Freiberg	06/2011
Fichtner IT Consulting, Stuttgart	05/2011, 06/2011,
	08/2011
Salzgitter Flachstahl, Salzgitter	05/2011
Helbling Beratung & Bauplanung, Zurich, Switzerland	05/2011
INEOS, Cologne	04/2011
Enseleit Consulting Engineers, Siebigerode	04/2011
Witt Consulting Engineers, Stade	03/2011
Helbling, Zurich, Switzerland	03/2011
MAN Diesel, Copenhagen, Denmark	03/2011
AGO, Kulmbach	03/2011
University of Duisburg	03/2011, 06/2011
CCP, Marburg	03/2011
BASF, Ludwigshafen	02/2011
ALSTOM Power, Baden, Switzerland	02/2011
Universität der Bundeswehr, Munich	02/2011
Calorifer, Elgg, Switzerland	01/2011
STRABAG, Vienna, Austria	01/2011
TUEV Sued, Munich	01/2011
ILK Dresden	01/2011
Technical University of Dresden	01/2011, 05/2011
ř	06/2011, 08/2011
2010	
Umweltinstitut Neumarkt	12/2010
YIT Austria, Vienna, Austria	12/2010
MCI Innsbruck, Austria	12/2010

Halicanalte of Otaliana	40/0040
University of Stuttgart	12/2010
HS Cooler, Wittenburg	12/2010
Visteon, Novi Jicin, Czech Republic	12/2010
CompuWave, Brunntal	12/2010
Stadtwerke Leipzig	12/2010
MCI Innsbruck, Austria	12/2010
EVONIK Energy Services, Zwingenberg	12/2010
Caliqua, Basel, Switzerland	11/2010
Shanghai New Energy Resources Science & Technology, China	11/2010
Energieversorgung Halle	11/2010
Hochschule für Technik Stuttgart, University of Applied Sciences	11/2010
Steinmueller, Berlin	11/2010
Amberg-Weiden University of Applied Sciences	11/2010
AREVA NP, Erlangen	10/2010
MAN Diesel, Augsburg	10/2010
KRONES, Neutraubling	10/2010
Vaillant, Remscheid	10/2010
PC Ware, Leipzig	10/2010
Schubert Consulting Engineers, Weißenberg	10/2010
Fraunhofer Institut UMSICHT, Oberhausen	10/2010
Behringer Consulting Engineers, Tagmersheim	09/2010
Saacke, Bremen	09/2010
WEBASTO, Neubrandenburg	09/2010
Concordia University, Montreal, Canada	09/2010
Compañía Eléctrica de Sochagota, Bogota, Colombia	08/2010
Hannover University of Applied Sciences	08/2010
ERGION, Mannheim	07/2010
Fichtner IT Consulting, Stuttgart	07/2010
TF Design, Matieland, South Africa	07/2010
MCE, Berlin	07/2010, 12/2010
IPM, Zittau/Goerlitz University of Applied Sciences	06/2010
TUEV Sued, Dresden	06/2010
RWE IT, Essen	06/2010
Glen Dimplex, Kulmbach	05/2010, 07/2010
	10/2010
Hot Rock, Karlsruhe	05/2010
Darmstadt University of Applied Sciences	05/2010
Voith, Heidenheim	04/2010
CombTec, Zittau	04/2010
University of Glasgow, Great Britain	04/2010
Universitaet der Bundeswehr, Munich	04/2010
•	·

Technical University of Hamburg-Harburg	04/2010
Vattenfall Europe, Berlin	04/2010
HUBER Consulting Engineers, Berching	04/2010
VER, Dresden	04/2010
CCP, Marburg	03/2010
Offenburg University of Applied Sciences	03/2010
Technical University of Berlin	03/2010
NIST Boulder CO, USA	03/2010
Technical University of Dresden	02/2010
Siemens Energy, Nuremberg	02/2010
Augsburg University of Applied Sciences	02/2010
ALSTOM Power, Baden, Switzerland	02/2010, 05/2010
MIT Massachusetts Institute of Technology Cambridge MA, USA	02/2010
Wieland Werke, Ulm	01/2010
Siemens Energy, Goerlitz	01/2010, 12/2010
Technical University of Freiberg	01/2010
ILK, Dresden	01/2010, 12/2010
Fischer-Uhrig Consulting Engineers, Berlin	01/2010
2009	
ALSTOM Power, Baden, Schweiz	01/2009, 03/2009
	05/2009
Nordostschweizerische Kraftwerke AG, Doettingen, Switzerland	02/2009
RWE, Neurath	02/2009
Brandenburg University of Technology, Cottbus	02/2009
Hamburg University of Applied Sciences	02/2009
Kehrein, Moers	03/2009
EPP Software, Marburg	03/2009
Bernd Münstermann, Telgte	03/2009
Suedzucker, Zeitz	03/2009
CPP, Marburg	03/2009
Gelsenkirchen University of Applied Sciences	04/2009
Regensburg University of Applied Sciences	05/2009
Gatley & Associates, Atlanta, USA	05/2009
BOSCH, Stuttgart	06/2009, 07/2009
Dr. Nickolay, Consulting Engineers, Gommersheim	06/2009
Ferrostal Power, Saarlouis	06/2009
BHR Bilfinger, Essen	06/2009
Intraserv, Wiesbaden	06/2009
Lausitz University of Applied Sciences, Senftenberg	06/2009
Nuernberg University of Applied Sciences	06/2009

Technical University of Berlin	06/2009
Fraunhofer Institut UMSICHT, Oberhausen	07/2009
Bischoff, Aurich	07/2009
Fichtner IT Consulting, Stuttgart	07/2009
Techsoft, Linz, Austria	08/2009
DLR, Stuttgart	08/2009
Wienstrom, Vienna, Austria	08/2009
RWTH Aachen University	09/2009
Vattenfall, Hamburg	10/2009
AIC, Chemnitz	10/2009
Midiplan, Bietigheim-Bissingen	11/2009
Institute of Air Handling and Refrigeration ILK, Dresden	11/2009
FZD, Rossendorf	11/2009
Techgroup, Ratingen	11/2009
Robert Sack, Heidelberg	11/2009
EC, Heidelberg	11/2009
MCI, Innsbruck, Austria	12/2009
Saacke, Bremen	12/2009
ENERKO, Aldenhoven	12/2009
2008	
Pink, Langenwang	01/2008
Fischer-Uhrig, Berlin	01/2008
University of Karlsruhe	01/2008
MAAG, Kuesnacht, Switzerland	02/2008
M&M Turbine Technology, Bielefeld	02/2008
Lentjes, Ratingen	03/2008
Siemens Power Generation, Goerlitz	04/2008
Evonik, Zwingenberg (general EBSILON program license)	04/2008
WEBASTO, Neubrandenburg	04/2008
CFC Solutions, Munich	04/2008
RWE IT, Essen	04/2008
Rerum Cognitio, Zwickau	04/2008, 05/2008
ARUP, Berlin	05/2008
Research Center, Karlsruhe	07/2008
AWECO, Neukirch	07/2008
Technical University of Dresden,	07/2008
Professorship of Building Services	07/0000 40/0000
Technical University of Cottbus,	07/2008, 10/2008
Chair in Power Plant Engineering	00/0000
Ingersoll-Rand, Unicov, Czech Republic	08/2008

Technip Benelux BV, Zoetermeer, Netherlands	08/2008
Fennovoima Oy, Helsinki, Finland	08/2008
Fichtner Consulting & IT, Stuttgart	09/2008
PEU, Espenhain	09/2008
Poyry, Dresden	09/2008
WINGAS, Kassel	09/2008
TUEV Sued, Dresden	10/2008
Technical University of Dresden,	10/2008, 11/2008
Professorship of Thermic Energy Machines and Plants	
AWTEC, Zurich, Switzerland	11/2008
Siemens Power Generation, Erlangen	12/2008
2007	
Audi, Ingolstadt	02/2007
ANO Abfallbehandlung Nord, Bremen	02/2007
TUEV NORD SysTec, Hamburg	02/2007
VER, Dresden	02/2007
Technical University of Dresden, Chair in Jet Propulsion Systems	02/2007
Redacom, Nidau, Switzerland	02/2007
Universität der Bundeswehr, Munich	02/2007
Maxxtec, Sinsheim	03/2007
University of Rostock, Chair in Technical Thermodynamics	03/2007
AGO, Kulmbach	03/2007
University of Stuttgart, Chair in Aviation Propulsions	03/2007
Siemens Power Generation, Duisburg	03/2007
ENTHAL Haustechnik, Rees	05/2007
AWECO, Neukirch	05/2007
ALSTOM, Rugby, Great Britain	06/2007
SAAS, Possendorf	06/2007
Grenzebach BSH, Bad Hersfeld	06/2007
Reichel Engineering, Haan	06/2007
Technical University of Cottbus,	06/2007
Chair in Power Plant Engineering	
Voith Paper Air Systems, Bayreuth	06/2007
Egger Holzwerkstoffe, Wismar	06/2007
Tissue Europe Technologie, Mannheim	06/2007
Dometic, Siegen	07/2007
RWTH Aachen University, Institute for Electrophysics	09/2007
National Energy Technology Laboratory, Pittsburg, USA	10/2007
Energieversorgung Halle	10/2007
AL-KO, Jettingen	10/2007
Grenzebach BSH, Bad Hersfeld	10/2007

Wiesbaden University of Applied Sciences, Department of Engineering Sciences	10/2007
Endress+Hauser Messtechnik, Hannover	11/2007
Munich University of Applied Sciences,	11/2007
Department of Mechanical Engineering	
Rerum Cognitio, Zwickau	12/2007
Siemens Power Generation, Erlangen	11/2007
University of Rostock, Chair in Technical Thermodynamics	11/2007, 12/2007
2006	
STORA ENSO Sachsen, Eilenburg	01/2006
Technical University of Munich, Chair in Energy Systems	01/2006
NUTEC Engineering, Bisikon, Switzerland	01/2006, 04/2006
Conwel eco, Bochov, Czech Republic	01/2006
Offenburg University of Applied Sciences	01/2006
KOCH Transporttechnik, Wadgassen	01/2006
BEG Bremerhavener Entsorgungsgesellschaft	02/2006
Deggendorf University of Applied Sciences,	02/2006
Department of Mechanical Engineering and Mechatronics	
University of Stuttgart,	02/2006
Department of Thermal Fluid Flow Engines	
Technical University of Munich,	02/2006
Chair in Apparatus and Plant Engineering	
Energietechnik Leipzig (company license),	02/2006
Siemens Power Generation, Erlangen	02/2006, 03/2006
RWE Power, Essen	03/2006
WAETAS, Pobershau	04/2006
Siemens Power Generation, Goerlitz	04/2006
Technical University of Braunschweig,	04/2006
Department of Thermodynamics	
EnviCon & Plant Engineering, Nuremberg	04/2006
Brassel Engineering, Dresden	05/2006
University of Halle-Merseburg,	05/2006
Department of USET Merseburg incorporated society	
Technical University of Dresden,	05/2006
Professorship of Thermic Energy Machines and Plants	
Fichtner Consulting & IT Stuttgart	05/2006
(company licenses and distribution)	
Suedzucker, Ochsenfurt	06/2006
M&M Turbine Technology, Bielefeld	06/2006
Feistel Engineering, Volkach	07/2006
ThyssenKrupp Marine Systems, Kiel	07/2006

Caliqua, Basel, Switzerland (company license)	09/2006
Atlas-Stord, Rodovre, Denmark	09/2006
Konstanz University of Applied Sciences,	10/2006
Course of Studies Construction and Development	
Siemens Power Generation, Duisburg	10/2006
Hannover University of Applied Sciences,	10/2006
Department of Mechanical Engineering	
Siemens Power Generation, Berlin	11/2006
Zikesch Armaturentechnik, Essen	11/2006
Wismar University of Applied Sciences, Seafaring Department	11/2006
BASF, Schwarzheide	12/2006
Enertech Energie und Technik, Radebeul	12/2006
2005	
TUEV Nord, Hannover	01/2005
J.H.K Plant Engineering and Service, Bremerhaven	01/2005
Electrowatt-EKONO, Zurich, Switzerland	01/2005
FCIT, Stuttgart	01/2005
Energietechnik Leipzig (company license)	02/2005, 04/2005
	07/2005
eta Energieberatung, Pfaffenhofen	02/2005
FZR Forschungszentrum, Rossendorf/Dresden	04/2005
University of Saarbruecken	04/2005
Technical University of Dresden	04/2005
Professorship of Thermic Energy Machines and Plants	
Grenzebach BSH, Bad Hersfeld	04/2005
TUEV Nord, Hamburg	04/2005
Technical University of Dresden, Waste Management	05/2005
Siemens Power Generation, Goerlitz	05/2005
Duesseldorf University of Applied Sciences,	05/2005
Department of Mechanical Engineering and Process Engineering	
Redacom, Nidau, Switzerland	06/2005
Dumas Verfahrenstechnik, Hofheim	06/2005
Alensys Engineering, Erkner	07/2005
Stadtwerke Leipzig	07/2005
SaarEnergie, Saarbruecken	07/2005
ALSTOM ITC, Rugby, Great Britain	08/2005
Technical University of Cottbus, Chair in Power Plant Engineering	08/2005
Vattenfall Europe, Berlin (group license)	08/2005
Technical University of Berlin	10/2005
Basel University of Applied Sciences,	10/2005
Department of Mechanical Engineering, Switzerland	

Midiplan, Bietigheim-Bissingen Technical University of Freiberg, Chair in Hydrogeology STORA ENSO Sachsen, Eilenburg Energieversorgung Halle (company license) KEMA IEV, Dresden	11/2005 11/2005 12/2005 12/2005 12/2005
2004	
Vattenfall Europe (group license)	01/2004
TUEV Nord, Hamburg	01/2004
University of Stuttgart, Institute of Thermodynamics and Heat Engineering	
MAN B&W Diesel A/S, Copenhagen, Denmark	02/2004
Siemens AG Power Generation, Erlangen	02/2004
Ulm University of Applied Sciences	03/2004
	3/2004, 10/2004
Technical University of Dresden,	
Professorship of Thermic Energy Machines and Plants	04/2004
Rerum Cognitio, Zwickau	04/2004
University of Saarbruecken	04/2004
Grenzebach BSH, Bad Hersfeld	04/2004
SOFBID Zwingenberg (general EBSILON program license)	04/2004
EnBW Energy Solutions, Stuttgart	05/2004
HEW-Kraftwerk, Tiefstack	06/2004
h s energieanlagen, Freising	07/2004
FCIT, Stuttgart	08/2004
Physikalisch Technische Bundesanstalt (PTB), Braunschweig	08/2004
Mainova Frankfurt	08/2004
Rietschle Energieplaner, Winterthur, Switzerland	08/2004
MAN Turbo Machines, Oberhausen	09/2004
TUEV Sued, Dresden	10/2004
STEAG Kraftwerk, Herne	0/2004, 12/2004
University of Weimar	10/2004
energeticals (e-concept), Munich	11/2004
SorTech, Halle	11/2004
Enertech EUT, Radebeul (company license)	11/2004
Munich University of Applied Sciences	12/2004
STORA ENSO Sachsen, Eilenburg	12/2004
Technical University of Cottbus, Chair in Power Plant Engineering	12/2004
Freudenberg Service, Weinheim	12/2004
2003	
Paper Factory, Utzenstorf, Switzerland	01/2003
MAB Plant Engineering, Vienna, Austria	01/2003

Wulff Energy Systems, Husum	01/2003
Technip Benelux BV, Zoetermeer, Netherlands	01/2003
ALSTOM Power, Baden, Switzerland	01/2003, 07/2003
VER, Dresden	02/2003
Rietschle Energieplaner, Winterthur, Switzerland	02/2003
DLR, Leupholdhausen	04/2003
Emden University of Applied Sciences, Department of Technology	05/2003
Petterssson+Ahrends, Ober-Moerlen	05/2003
SOFBID ,Zwingenberg (general EBSILON program license)	05/2003
Ingenieurbuero Ostendorf, Gummersbach	05/2003
TUEV Nord, Hamburg	06/2003
Muenstermann GmbH, Telgte-Westbevern	06/2003
University of Cali, Colombia	07/2003
Atlas-Stord, Rodovre, Denmark	08/2003
ENERKO, Aldenhoven	08/2003
STEAG RKB, Leuna	08/2003
eta Energieberatung, Pfaffenhofen	08/2003
exergie, Dresden	09/2003
AWTEC, Zurich, Switzerland	09/2003
Energie, Timelkam, Austria	09/2003
Electrowatt-EKONO, Zurich, Switzerland	09/2003
LG, Annaberg-Buchholz	10/2003
FZR Forschungszentrum, Rossendorf/Dresden	10/2003
EnviCon & Plant Engineering, Nuremberg	11/2003
Visteon, Kerpen	11/2003
VEO Vulkan Energiewirtschaft Oderbruecke, Eisenhuettenstadt	11/2003
Stadtwerke Hannover	11/2003
SaarEnergie, Saarbruecken	11/2003
Fraunhofer-Gesellschaft, Munich	12/2003
Erfurt University of Applied Sciences,	12/2003
Department of Supply Engineering	
SorTech, Freiburg	12/2003
Mainova, Frankfurt	12/2003
Energieversorgung Halle	12/2003
2002	
Hamilton Medical AG, Rhaezuens, Switzerland	01/2002
Bochum University of Applied Sciences,	01/2002
Department of Thermo- and Fluid Dynamics	
SAAS, Possendorf/Dresden	02/2002
Siemens, Karlsruhe	02/2002
(general license for the WinIS information system)	

FZR Forschungszentrum, Rossendorf/Dresden CompAir, Simmern	03/2002 03/2002
GKS Gemeinschaftskraftwerk, Schweinfurt	04/2002
ALSTOM Power Baden, Switzerland (group licenses)	05/2002
InfraServ, Gendorf	05/2002
SoftSolutions, Muehlhausen (company license)	05/2002
DREWAG, Dresden (company license)	05/2002
SOFBID, Zwingenberg	06/2002
(general EBSILON program license)	
Kleemann Engineering, Dresden	06/2002
Caliqua, Basel, Switzerland (company license)	07/2002
PCK Raffinerie, Schwedt (group license)	07/2002
Fischer-Uhrig Engineering, Berlin	08/2002
Fichtner Consulting & IT, Stuttgart	08/2002
(company licenses and distribution)	
Stadtwerke Duisburg	08/2002
Stadtwerke Hannover	09/2002
Siemens Power Generation, Goerlitz	10/2002
Energieversorgung Halle (company license)	10/2002
Bayer, Leverkusen	11/2002
Dillinger Huette, Dillingen	11/2002
G.U.N.T. Geraetebau, Barsbuettel	12/2002
(general license and training test benches)	12/2002
VEAG, Berlin (group license)	12/2002
VE/IC, Bermi (group moonse)	12/2002
2001	
ALSTOM Power, Baden, Switzerland	01/2001, 06/2001
	12/2001
KW2 B. V., Amersfoot, Netherlands	01/2001, 11/2001
Eco Design, Saitamaken, Japan	01/2001
M&M Turbine Technology, Bielefeld	01/2001, 09/2001
MVV Energie, Mannheim	02/2001
Technical University of Dresden, Department of	02/2001
Power Machinery and Plants	
PREUSSAG NOELL, Wuerzburg	03/2001
Fichtner Consulting & IT Stuttgart	04/2001
(company licenses and distribution)	0 1/2001
Muenstermann GmbH, Telgte-Westbevern	05/2001
SaarEnergie, Saarbruecken	05/2001
Siemens, Karlsruhe	08/2001
	00/2001
(general license for the WinIS information system)	09/2001
Neusiedler AG, Ulmerfeld, Austria	09/2001

h s energieanlagen, Freising Electrowatt-EKONO, Zurich, Switzerland IPM Zittau/Goerlitz University of Applied Sciences (general license) eta Energieberatung, Pfaffenhofen ALSTOM Power Baden, Switzerland VEAG, Berlin (group license)	09/2001 09/2001 10/2001 11/2001 12/2001
2000	0.4./0.0.0
SOFBID, Zwingenberg	01/2000
(general EBSILON program license)	0.4/0.000
AG KKK - PGW Turbo, Leipzig	01/2000
PREUSSAG NOELL, Wuerzburg	01/2000
M&M Turbine Technology, Bielefeld	01/2000
IBR Engineering Reis, Nittendorf-Undorf	02/2000
GK, Hannover	03/2000
KRUPP-UHDE, Dortmund (company license)	03/2000
UMAG W. UDE, Husum	03/2000
VEAG, Berlin (group license)	03/2000
Thinius Engineering, Erkrath	04/2000
SaarEnergie, Saarbruecken	05/2000, 08/2000
DVO Data Processing Service, Oberhausen	05/2000
RWTH Aachen University	06/2000
VAUP Process Automation, Landau	08/2000
Knuerr-Lommatec, Lommatzsch	09/2000
AVACON, Helmstedt	10/2000
Compania Electrica, Bogota, Colombia	10/2000
G.U.N.T. Geraetebau, Barsbuettel	11/2000
(general license for training test benches)	
Steinhaus Informationssysteme, Datteln	12/2000
(general license for process data software)	
1999	
Bayernwerk, Munich	01/1999
DREWAG, Dresden (company license)	02/1999
KEMA IEV, Dresden	03/1999
Regensburg University of Applied Sciences	04/1999
Fichtner Consulting & IT, Stuttgart	07/1999
(company licenses and distribution)	2233
Technical University of Cottbus, Chair in Power Plant Engineering	07/1999
Technical University of Graz, Department of Thermal Engineering, Aus	
Ostendorf Engineering, Gummersbach	12/1999
	. =, . 500

Technical University of Cottbus, Chair in Power Plant Engineering	05/1998
Fichtner Consulting & IT (CADIS information systems) Stuttgart	05/1998
(general KPRO program license)	
M&M Turbine Technology Bielefeld	06/1998
B+H Software Engineering Stuttgart	08/1998
Alfa Engineering, Switzerland	09/1998
VEAG Berlin (group license)	09/1998
NUTEC Engineering, Bisikon, Switzerland	10/1998
SCA Hygiene Products, Munich	10/1998
RWE Energie, Neurath	10/1998
Wilhelmshaven University of Applied Sciences	10/1998
BASF, Ludwigshafen (group license)	11/1998
Energieversorgung, Offenbach	11/1998
1997	
Gerb, Dresden	06/1997
Siemens Power Generation, Goerlitz	07/1997