

Property Library for Dodecamethylpentasiloxane (MD3M) C₁₂H₃₆Si₅O₄

FluidDYM with LibMD3M for DYMOLA®

Prof. Hans-Joachim Kretzschmar Dr. Sebastian Herrmann Dr. Matthias Kunick

Property Software for Dodecamethylpentasiloxane

C₁₂H₃₆Si₅O₄ (LibMD3M)

FluidDYM for DYMOLA®

Contents

- 0. Package Contents
- 1. Property Functions
 - 1.1 Calculation Programs
 - 1.2 p,v Diagram
 - 1.3 h,s Diagram
 - 1.4 T,s Diagram
- 2. Application of FluidDYM in DYMOLA®
 - 2.1 Installing FluidDYM
 - 2.2 Example: Calculation of the Specific Enthalpy h = f(p,t,x) of Dodecamethylpentasiloxane
 - 2.3 Removing FluidDYM
- 3. Program Documentation
- 4. Property Libraries for Calculating Heat Cycles, Boilers, Turbines, and Refrigerators
- 5. References
- 6. Satisfied Customers
- KCE-ThermoFluidProperties UG (with limited liability) & Co. KG Professor Hans-Joachim Kretzschmar Wallotstr. 3, 01307 Dresden, Germany Phone: +49-351-27597860 Mobile: +49-172-7914607 Fax: +49-3222-4262250 Email: info@thermofluidprop.com Internet: www.thermofluidprop.com

0 Package Contents

0.1 Zip file for 32-bit DYMOLA®

"CD_FluidDYM_LibCO2.zip"

Including the following files:

FluidDYM_LibCO2_Setup.exe

LibCO2.dll FluidDYM_LibCO2_Docu.pdf Folder "Users_Guide" Installation Program for the FluidDYM Add-In for use in DYMOLA[®] Dynamic Link Library f User's Guide Includes the complete User's Guide

0.2 Zip file for 64-bit MATLAB®

"CD_FluidDYM_LibCO2_64.zip"

Including the following files and folders:

Files:	
Setup.exe	 Self-extracting and self-installing program for FluidLAB
FluidDYM_LibCO2_64.msi	 Installation program for the FluidLAB Add-On for use in MATLAB[®]
LibCO2.dll	- Dynamic Link Library for carbon dioxide for use in MATLAB®
FluidLAB_LibCO2_Docu.pdf	- User's Guide
Folders:	
vcredist_x64	 Folder containing the "Microsoft Visual C++ 2010 x64 Redistributable Pack"
WindowsInstaller3_1	 Folder containing the "Microsoft Windows Installer"

1. Property Functions

1.1 Calculation Programs

"MD3M" means Dodecamethylpentasiloxane (C₁₂H₃₆Si₅O₄)

Functional	Function Name	Call from	Call in DLL LibMD3M	Property or	Unit of the	
Dependence		Fortran program	as parameter	Function	result	
$c_p = f(p, t, x)$ cp_ptx_MD3M		CPPTXMD3M(P,T,X)	C_CPPTXMD3M(CP,P,T,X)	Specific isobaric heat capacity	kJ/(kg K)	
$c_{v} = f(p, t, x)$	cv_ptx_MD3M	CVPTXMD3M(P,T,X)	C_CVPTXMD3M(CV,P,T,X)	Specific isochoric heat capacity	kJ/(kg K)	
$\left(\frac{\partial p}{\partial T}\right)_{v} = f(p, t, x)$	dpdtv_ptx_MD3M	DPDTVMD3M(P,T,X)	C_DPDTVMD3M(DPDT,P,T,X)	Derivative of pressure with respect to temperature (at constant specific volume)	kPa/K	
$\left(\frac{\partial p}{\partial v}\right)_T = f(p, t, x)$	dpdvt_ptx_MD3M	DPDVTMD3M(P,T,X)	C_DPDVTMD3M(DPDV,P,T,X)	Derivative of pressure with respect to specific volume (at constant temperature)	kPa/(m³/kg)	
h = f(p, t, x)	h_ptx_MD3M	HPTXMD3M(P,T,X)	C_HPTXMD3M(H,P,T,X)	Specific enthalpy	kJ/kg	
$\kappa = f(p, t, x)$	kappa_ptx_MD3M	KAPPAPTXMD3M(P,T,X)	C_KAPPAPTXMD3M(KAPPA,P,T,X)	Isentropic exponent	-	
$p_{\rm S} = f(t)$	ps_t_MD3M	PSTMD3M(T)	C_PSTMD3M(PS,T)	Vapor pressure from temperature	bar	
$\rho = f(p, t, x)$	rho_ptx_MD3M	RHOPTXMD3M(P,T,X)	C_RHOPTXMD3M(RHO,P,T,X)	Density	kg/m ³	
s = f(p, t, x)	s_ptx_MD3M	SPTXMD3M(P,T,X)	C_SPTXMD3M(S,P,T,X)	Specific entropy	kJ/(kg K)	
t = f(p, h)	t_ph_MD3M	TPHMD3M(P,H)	C_TPHMD3M(T,P,H)	Backward function: Temperature from pressure and enthalpy	°C	
t = f(p, s)	t_ps_MD3M	TPSMD3M(P,S)	C_TPSMD3M(T,P,S)	Backward function: Temperature from pressure and entropy	°C	
$t_{\rm s} = f(p)$	ts_p_MD3M	TSPMD3M(P)	C_TSPMD3M(TS,P)	Saturation temperature from pressure	°C	
u = f(p, t, x)	u_ptx_MD3M	UPTXMD3M(P,T,X)	C_UPTXMD3M(U,P,T,X)	Specific internal energy	kJ/kg	
v = f(p, t, x)	v_ptx_MD3M	VPTXMD3M(P,T,X)	C_VPTXMD3M(V,P,T,X)	Specific volume	m³/kg	
w = f(p, t, x)	w_ptx_MD3M	WPTXMD3M(P,T,X)	C_WPTXMD3M(W,P,T,X)	Isentropic speed of sound	m/s	
$x = f(p,h)$ x_ph_MD3M XPHMD3M(P,H)		XPHMD3M(P,H)	C_XPHMD3M(X,P,H)	Backward function: Vapor fraction from pressure and enthalpy	kg/kg	

Functional Dependence	Function Name	Call from Fortran program	Call in DLL LibMD3M as parameter	Property or Function	Unit of the result
x = f(p, s)	x_ps_MD3M	XPSMD3M(P,S)	_ 、 、 、 、	Backward function: Vapor fraction from pressure and entropy	kg/kg
Z = f(p, t, x)	Z_ptx_MD3M	ZPTXMD3M(P,T,X)	C_ZPTXMD3M(W,P,T,X)	Compression factor	-

Units:

tin °C

p in bar

x in (kg of saturated steam)/(kg wet steam)

Range of validity

Temperature range:	from $t = 0^{\circ}$ C to 400 °C
Pressure range:	from $p = 0.0000048971$ bar to 300 bar
Deference etete	

Reference state

h = 0 kJ/kg and s = 0 kJ/(kg K) at $t_B = 229.88$ °C on the boiling curve (x = 0; $p_s = p_N = 1.01325$ bar)

Details on the vapor fraction x and on the calculation of wet steam

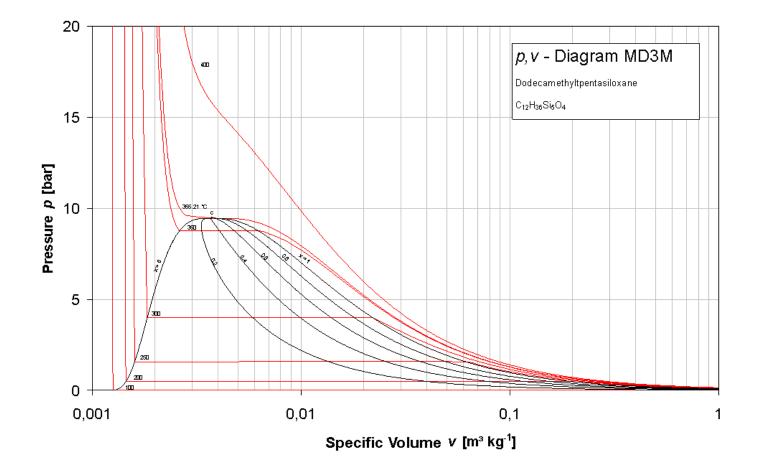
The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction x are to be considered:

Single-phase region

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

Wet-steam region

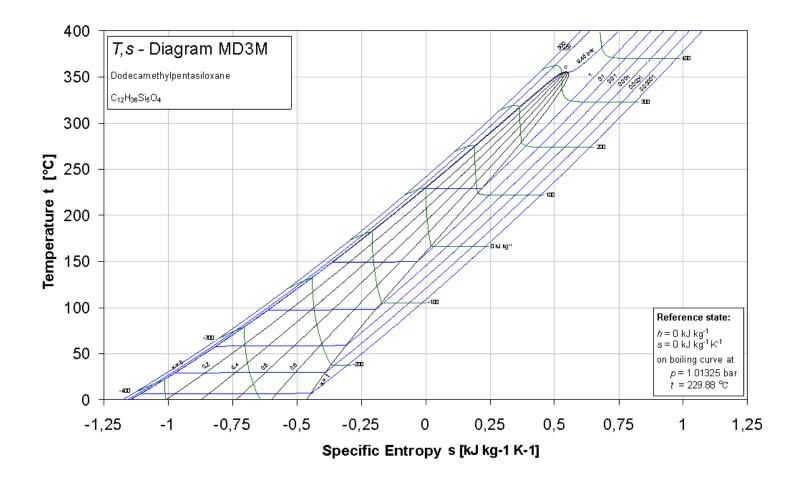
If the state point to be calculated is located in the wet steam region, a value for x between 0 and 1 (x = 0 for saturated liquid, x = 1 for saturated steam) must be entered. In this case, the backward functions result in the appropriate value between 0 and 1 for x. When calculating wet steam either the given value for t and p = -1000 or the given value for p and t = -1000 and in both cases the value for x between 0 and 1 must be entered.


If p and t and x are entered as given values, the program considers p and t to be appropriate to represent the vapor pressure curve. If this is not the case the calculation for the property of the chosen function results in -1000.

Wet steam region: Temperature range from t = 0 °C to $t_c = 355.21$ °C Pressure range from p_s (0 °C) = 0.00078994 bar to $p_c = 9.45229$ bar

Note.

If the calculation results in –1000, the values entered represent a state point beyond the range of validity of MD3M. For further information on each function and its range of validity see Chapter 3. The same information may also be accessed via the online help pages.


1.2 p,v-Diagram

1.3 h,s-Diagram

1.4 T,s-Diagram

2. Application of FluidDYM in Dymola[®]

The FluidDYM Add-In has been developed to calculate thermodynamic properties in Dymola[®] more conveniently. Within Dymola[®] it enables the direct call of functions relating to Dodecamethylpentasiloxane from the LibMD3M property library. The 32-bit version of FluidDYM LibMD3M runs on both the 32-bit and 64-bit version of DYMOLA[®].

2.1 Installing FluidDYM

In this section, the installation of FluidDYM and LibMD3M is described.

Before you begin, it is best to close any Windows[®] applications, since Windows[®] may need to be rebooted during the installation process.

After you have downloaded and extracted the zip-file

"CD_FluidDYM_LibMD3M.zip,"	(32-bit version)

"CD_FluidDYM_LibMD3M_64.zip," (64-bit version)

you will see the folder

CD_FluidDYM_LibMD3M	(32-bit version)
CD_FluidDYM_LibMD3M_64	(64-bit version)

in your Windows Explorer[®], Norton Commander[®] etc.

Now, open this folder by double-clicking on it.

Within the folder for the 32-bit version you will see the following files

FluidDYM_LibMD3M_Users_Guide.pdf

FluidDYM_LibMD3M_Setup.exe (32-bit version)

and the folder

"Users_Guide."

Within the folder for the 64-bit version you will see the following files

FluidDYM_LibMD3M_Users_Guide.pdf FluidDYM_LibMD3M_64_Setup.msi Setup.exe

and the folder

"Users_Guide."

In order to run the installation of **32-bit** FluidDYM including the LibMD3M property library double-click the file

FluidDYM_LibMD3M_Setup.exe.

Installation may start with a window noting that all Windows[®] programs should be closed. When this is the case, the installation can be continued. Click the "Continue" button.

In the following dialog box, "Choose Destination Location," the default path offered automatically for the installation of FluidDYM is

C:\Program Files\FluidDYM\LibMD3M.

By clicking the "Browse..." button, you can change the installation directory before

installation (see figure below).

🕌 FluidDYM LibMD3M	X
Destination Location	
Setup will install FluidDYM LibMD3M in the fo	llowing folder.
To install into a different folder, click Browse,	and select another folder.
You can choose not to install FluidDYM LibM	D3M by clicking Cancel to exit Setup.
Destination Folder C:\Program Files\FluidDYM\LibMD3M	B <u>r</u> owse
Wise Installation Wizard®	< <u>B</u> ack <u>N</u> ext> Cancel

Figure 2.1: Dialog window "Destination Location"

Finally, click on "Next >" to continue installation; click "Next >" again in the "Start Installation" window which follows in order to start the installation of FluidDYM.

After FluidDYM has been installed, you will see the sentence "FluidDYM LibMD3M has been successfully installed." Confirm this by clicking the "Finish" button.

The installation of FluidDYM 32-bit has been completed.

In order to run the installation of **64-bit** FluidDYM including the LibMD3M property library double-click the file

Setup.exe.

Installation may start with a window noting that all Windows[®] programs should be closed. When this is the case, the installation can be continued. Click the "Continue" button.

In the following dialog box, "Choose Destination Location," the default path offered automatically for the installation of FluidDYM is

C:\Users\...\Documents\FluidDYM_64\LibMD3M.

By clicking the "Browse..." button, you can change the installation directory before installation (see figure below).

Finally, click on "Next >" to continue installation; click "Next >" again in the "Start Installation" window which follows in order to start the installation of FluidDYM.

After FluidDYM has been installed, you will see the sentence "FluidDYM LibMD3M has been successfully installed." Confirm this by clicking the "Finish" button.

The installation of FluidDYM 64-bit has been completed.

The installation program has copied the following files into the directory "C:\Program Files\FluidDYM\LibMD3M":

- Dynamic link library "LibMD3M.dll".

- Link up Dynamic link library "LibMD3M_Dym.dll" and other necessary system DLL files.

- Library File "LibMD3M_DYM.lib"

- Header File "LibMD3M_DYM.h" and other necessary system DLL files.

- Modelica File "FluidDYM_LibMD3M.mo", includes the following property functions:

cp_ptx_MD3M	t_ph_MD3M
cv_ptx_MD3M	t_ps_MD3M
dpdtv_ptx_MD3M	ts_p_MD3M
dpdvt_ptx_MD3M	u_ptx_MD3M
h_ptx_MD3M	v_ptx_MD3M
kappa_ptx_MD3M	w_ptx_MD3M
ps_t_MD3M	x_ph_MD3M
rho_ptx_MD3M	x_ps_MD3M
s_ptx_MD3M	Z_ptx_MD3M

Now, you have to overwrite the file "LibMD3M.dll" in your LibMD3M directory with the file of the same name provided in your CD folder with FluidDYM.

To do this, open the CD folder "CD_FluidDYM_LibMD3M_Eng" in "My Computer" and click on the file "LibMD3M.dll" in order to highlight it.

Then click on the "Edit" menu in your Explorer and select "Copy".

Now, open your LibMD3M directory (the standard being

C:\Program Files\FluidDYM\LibMD3M)

and insert the file "LibMD3M.dll" by clicking the "Edit" menu in your Explorer and then select "Paste".

Answer the question whether you want to replace the file by clicking the "Yes" button. Now, you have overwritten the file "LibMD3M.dll" successfully.

In the next step, copy the folder "Users_Guide" into your Dymola LibMD3M directory with the file of the same name provided in your CD folder of FluidDYM.

To do this, open the CD folder "CD_FluidDYM_LibMD3M_Eng" in "My Computer" and click on the folder "Users_Guide" to highlight it. Then click on the "Edit" menu in your Explorer and select "Copy".

Now, open your Dymola LibMD3M directory (the standard being:

C:\Program Files\FluidDYM\LibMD3M)

and insert the folder "Users_Guide" by clicking the "Edit" menu in your Explorer and then selecting "Paste". Now, the folder "Users_Guide" has been successfully placed in your installation directory.

Licensing the LibMD3M Property Library

The licensing procedure has to be carried out when DYMOLA[®] is running and a model simulation starts. In this case, you will see the "License Information" window (see figure below).

License Information	
LibMD3M	
Please type in your license key!	?
ОК	Cancel

Figure 2.2: "License Information" window

Here you will have to type in the license key which you have obtained from the Zittau/Goerlitz University of Applied Sciences. You can find contact information on the "Content" page of this User's Guide or by clicking the yellow question mark in the "License Information" window. Then the following window will appear:



Figure 2.3: "Help" window

If you do not enter a valid license it is still possible to use DYMOLA[®] by clicking "Cancel". In this case, the LibMD3M property library will display the result "–11111111" for every calculation.

The "License Information" window will appear every time you start DYMOLA unless you uninstall FluidDYM_LibMD3M according to the description in section 2.3 of this User's Guide. Should you not wish to license the LibMD3M property library, you have to delete the files

LibMD3M.dll LibMD3M_DYM.dll LibMD3M_DYM.lib LibMD3M_DYM.h LibMD3M_DYM.mo

in the installation folder of Dymola® (the standard being

C:\Program Files\FluidDYM)

using an appropriate program such as Explorer® or Norton Commander.

2.2 Example: Calculation of the Specific Enthalpy h = f(p,t,x) of Dodecamethylpentasiloxane

Now we will calculate, step by step, the specific enthalpy *h* of Dodecamethylpentasiloxane as a function of pressure *p*, temperature *t* and vapor fraction *x*, using DYMOLA[®].

Please carry out the following instructions:

- Start Windows Explorer[®], Total Commander[®], My Computer or another file manager program.

The description here refers to Windows Explorer.

- Your Windows Explorer should be set to Details for a better view. Click the "View" (Ansicht) button and select "Details".
- Switch into the program directory of FluidDYM in which you will find the folder "\LibMD3M"; the standard location is: "C:\Program Files\FluidDYM\LibMD3M"
- Create the folder "\LibMD3M_Example" by clicking on "File" in the Explorer menu, then "New" in the menu which appears, and then selecting "Folder". Name the new folder "\LibMD3M_Example".
- You will see the following window:

😂 FluidDYM		
<u>D</u> atei <u>B</u> earbeiten <u>A</u> nsicht <u>F</u> avoriten E	i <u>x</u> tras <u>?</u>	
🌀 Zurück 🝷 🕥 - 🏂 🔎 Suche	en 📂 Ordner 💷 🕶	
Adresse 🛅 C:\Program Files\FluidDYM		💌 🄁 Wechseln zu
Ordner 2	Name 🔺	Größe Typ
 dell Dokumente und Einstellungen drivers EES32 escwsa i386 install install MDT MSOCache Program Files EES32 FluidDYM LibMD3M 	LibMD3M LibMD3M_Example	Dateion Dateion
LibMD3M_Example	× <	

Figure 2.4: Highlighted *LibMD3M_Example* directory in FluidDYM

- Switch into the directory "\LibMD3M" within "\FluidDYM", the standard being: "C:\Program Files\FluidDYM\LibMD3M".

- You will see the following window:

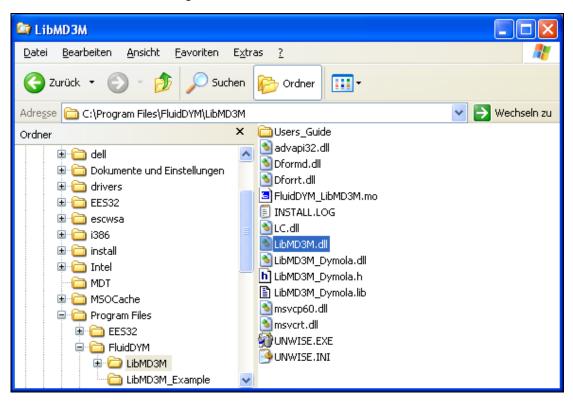


Figure 2.5: LibMD3M directory including installed files

In order to calculate the function h = f(p,t,x), the following files are necessary. Copy them into the directory "C:\Program Files\FluidDYM\LibMD3M_Example":

- "advapi32.dll"
- "Dformd.dll"
- "Dforrt.dll"
- "FluidDYM_LibMD3M.mo"
- "LC.dll"
- "LibMD3M.dll"
- "LibMD3M_Dymola.dll"
- "LibMD3M_Dymola.h"
- "LibMD3M_Dymola.lib"
- "msvcp60.dll"
- "Msvcrt.dll"
- the folder "Users_Guide"
- Mark up these files, then click "Edit" in the upper menu bar and select "Copy".
- Switch into the directory "C:\Program Files\FluidDYM\LibMD3M_Example", click "Edit" and then "Paste".

- You will see the following window:

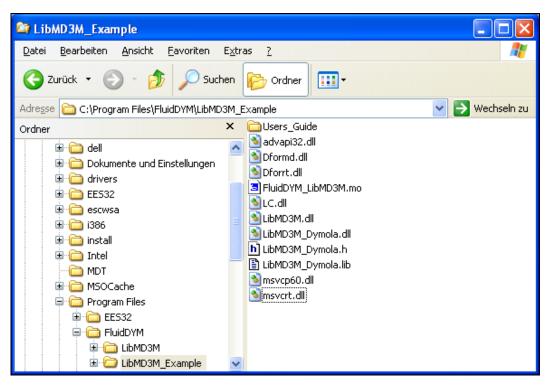


Figure 2.6: LibMD3M_Example directory including the newly-copied files

- Start Dymola[®].
- Now click on "File" in the Dymola[®] menu bar and select "Open" (see Figure 2.7).

🖶 Dymola - Dynamic Modeling Laboratory - [Diagram]													-					
E F	ile	Edit Simulation	Plot	Anima														
		- 5a⊻e As 5ave <u>A</u> ll	Ctrl+O Ctrl+S	;		*	1		• 🅭 • [<u>₩</u> • •	+ ■			100%		
	\ 2 1 ه	5ave <u>T</u> otal /ersion _lear All 5earch _hange <u>D</u> irector	y	•														
∉ <u>Co</u> ⊒[Print Export Save Log Save Script Elear Log Recent Files	Ctrl+P	•	K													
	E	E⊻it																
Oper	naM	1odelica file.												E) Modelin	9 <u>v</u>	Simula	ition

Figure 2.7: Selecting the menu entry "Open"

- Search and click on the directory "C:\Program Files\FluidDYM\LibMD3M_Example" in the pop-up menu.

Select the "FluidDYM_LibMD3M.mo" file and click on the "Open" button (see Figure 2.8).

Open		? 🗙
<u>S</u> uchen in:	🔁 LibMD3M_Example 🔽 🗢 🖻 📅	
Zuletzt verwendete D	Cusers_Guide	
Desktop		
igene Dateien		
Arbeitsplatz		
Netzwerkumgeb ung	Dateiname: FluidDYM_LibMD3M.mo) <u>f</u> fnen
ang	Dateityp: All Modelica files (*.mo *.moe)	brechen

Figure 2.8: Selecting the FluidDYM_LibMD3M.mo file

- The library will be loaded by Dymola which may take a few seconds.
- After Dymola has finished loading the LibMD3M library, you will see the window shown in Figure 2.9.

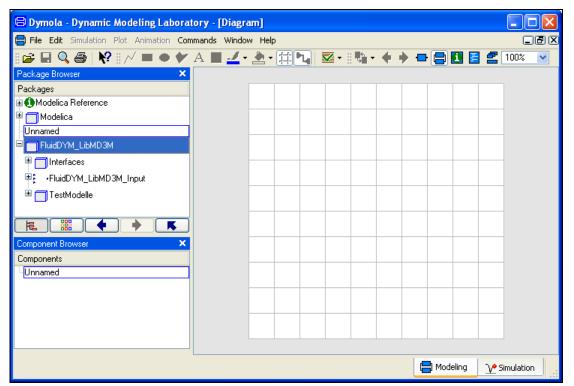


Figure 2.9: Dymola window after loading the LibMD3M library

- Now, click on "File" in the Dymola menu bar and select "Change Directory..." in order to open the folder "\LibMD3M_Example" (see Figure 2.10).

	8	Dyn	nola - I	Dynami	c Mod	eling	Lab	orator	т <mark>у - [</mark>	Diagra
		File	Edit 3	imulation	Plot	Anima	ation	Comma	ands	Windov
	8	. ~	<u>N</u> ew			•	•	🐓 A		-
	Pa	B	Open	•	Ctrl+C			×		
	Pa		Librarie	s		- F				
			De <u>m</u> os			- F				
			<u>S</u> ave		Ctrl+9	;				
			Sa <u>v</u> e A	s			-			
			Save A	ļ				- 11		
			Save <u>T</u>	otal						
			Version	1		•				
			<u>⊂</u> lear A	.11						
6		Q	<u>S</u> earch				5			
N	-		Change	e <u>D</u> irector			ν.			
		8	Print		Ctrl+F		_			
	Co		<u>E</u> xport			•		×		
	Co		Save L	<u>og</u>						
	1.		Save S	cript						
			Clear L	од						
			<u>R</u> ecent	Files		•				
			E⊻it							

Figure 2.10: Selecting the menu entry "Change Directory..."

- Search and click on the directory "C:\Program Files\FluidDYM\LibMD3M_Example" in the pop-up menu (see Figure 2.11).

Ordner suchen	?×
Change current directory	
📄 🕀 🛅 i386	~
🗊 🛅 install	
🗈 🗀 Intel	
mDT	
🗈 🛅 MSOCache	=
😑 🧰 Program Files	_
🕀 🧰 EE532	
FluidDYM	
E LibMD3M	
	~
Neuen Ordner erstellen OK Abbre	echen

Figure 2.11: Selecting the LibMD3M_Example directory

- Confirm your selection by clicking the "OK" button.

As indicated in the table of property functions in Chapter 1, you have to call up the function "h_ptx_MD3M" as follows for calculating h = f(p,t,x).

- Click on the Dymola-Block "Testmodelle," which can be found in the FluidDYM_LibMD3M package in the "Package Browser" on the left hand side of the Dymola window. Here choose Example1 by double-clicking on it.
- Now click on the 🕒 button in the Dymola menu bar in order to switch to the Diagram Mode. You will see the following window:

😑 Example1 - FluidDYM_LibMD3M.Te	estModelle.Example1 -	[Diagram]			
🚍 File Edit Simulation Plot Animation Co	mmands Window Help				
i 🖆 🖬 🔍 🚳 🙌 i 📈 🗖 🗢 🔗	' A 🖪 🚄 • 🆄 • 🛱	🎦 🗹 🖓 T	+ + 🔁 🖹 🚺	🛃 100% 🕑	
Package Browser 🗙					
Packages 🔨					
🗄 🚺 Modelica Reference					
🗎 🗖 Modelica			Parameter_x1		
Unnamed			+		
🖹 🥅 FluidDYM_LibMD3M			⊳	-	
🗄 🥅 Interfaces					
FluidDYM_LibMD3M_Input			k=1		
E TestModelle					
Example1			Parameter_x2		
	<u>]</u>		Ť		
Component Browser 🛛 🗙				fluidDYM_	LibMD3M_In ᠵ
Components	1		+		
EFluidDYM_LibMD3M.TestModelle.Example1]		k=100		
■ Parameter_x1					
Parameter_x2			Parameter x3		
Parameter_x3			4		
⊞ fluidDYM_LibMD3M_Input					
			k=-1		

Figure 2.12: Dymola in Diagram Mode

- Now double-click on the "fluidDYM_LibMD3M_Input" block on the right hand side of the Dymola window.
- Search and click the "h_ptx_MD3M" function next to "Function Number" in the pop-up menu (see Figure 2.13).

😑 Example1 - FluidDYM_LibMD3M.TestMod	delle.Example1 - [Diagram]	
🖶 File Edit Simulation Plot Animation Commands	s Window Help	
🖙 🖬 🔍 🚳 🕅 🗸 🗖 🗢 🔶 A 🛽	▋ 🛃 • Ѯ • ∰ •₄ 💁 • 🗄 🖬 • ♦ 🔶 🚍 🛃 🛃 🛃 🚺 🗾	
Package Browser X		
Packages 🔼		
🕀 🚯 Modelica Reference		
🖶 🥅 Modelica	Parameter_x1	
Unnamed	4	
E FluidDYM_LibMD3M		
🖻 🗍 Interfaces	😑 fluidDYM_LibMD3M_Input in FluidDYM_LibMD3M. TestMo ? 🔀	
FluidDYM_LibMD3M_Input		
	General Add modifiers	
Example1	Component Con	
	Name fluidDYM_LibMD3M_Input	•
	Comment	
Component Browser ×		
Components	Model	-
FluidDYM_LibMD3M.TestModelle.Example1	Path FluidDYM_LibMD3M.FluidDYM_LibMD3M_Input	
Parameter_x1 Parameter_x2	Comment	
	Parameters	-
	scanRange 0.001 > Scan range	
	table data interpretation	
	FunctionNumber MD3M.Interfaces.FunctionSelection.ps_t_MD3M >	
	ps_t_MD3M	
	ts_p_MD3M v_ptx_MD3M	
	rho ptx MD3M	
	Z_ptx_MD3M	
	H D SM	-
	h_ptx_MD3M	
	S_phr_MD3M	
	cp_ptx_MD3M	-
	cv_ptx_MD3M	

Figure 2.13: Choosing the function *h_ptx_MD3M*

- You can set the scan range (how many times the property will be calculated per second) next to "scanRange". The preset value 0.001 means that the property will be calculated 1000 times per second. E.g. if you enter the value 1, the property will be calculated once per second. Do not change the preset value of 0.001 for our example calculation.

🖨 fluidDYM_LibMD3M_Input in FluidDYM_LibMD3M.TestMo ? 🔀
General Add modifiers
Component Con
Name fluidDYM_LibMD3M_Input
Comment P
Model
Path FluidDYM_LibMD3M.FluidDYM_LibMD3M_Input
Comment
Parameters
scanRange 0.001 Scan range
table data interpretation
FunctionNumber D3M.Interfaces.FunctionSelection.h_ptx_MD3M V>
OK Info Cancel

Figure 2.14: Setting the scan range

- Now we will configure the input parameters x1 to x3, where x1 represents the pressure *p*, x2 represents the temperature *t*, and x3 represents the vapor fraction *x*. When calculating a function with only two input parameters, the third input parameter x3 will not be defined.
- First, double click on the "Parameter_x1" block which represents the first input parameter, here the pressure *p* in bar.

😑 Example1 - FluidDYM_LibMD3M.Te	stModelle.Example1	- [Diagram]			
🖶 File Edit Simulation Plot Animation Con	nmands Window Help				
I 😂 🖬 🔍 🎒 🕅 🗸 🗆 🗢 🔗	A 🖪 🛃 - 🆄 - 🗊	î 🍡 🜌 • 🛛 🖏 •	+ + 🗕 🚍 🚺	🗧 🛃 100% 🔽	
Package Browser 🗙					
Packages 🔥					
🕀 🕕 Modelica Reference		Parameter			
🛡 🥅 Modelica			† \		
Unnamed					
FluidDYM_LibMD3M		k=1	*		
🗏 🔲 Interfaces		R=1			
FluidDYM_LibMD3M_Input		Parameter	_x2		
TestModelle		4			
Example1				dDYM_LibMD ⊨	
		k=100			
Component Browser X					
Components		Parameter	<u></u> ¥3−−− −−		
FluidDYM_LibMD3M.TestModelle.Example1					
Parameter_x1			+		
		k=-1			
■ fluidDYM_LibMD3M_Input					
·					
				📑 Modeling	∑ Y Simulation

Figure 2.15: "Parameter_x1" block in Dymola

- Enter the value 10 on the line next to "k" in the dialog window which appears and then click the "OK" button (see Figure 2.16).

😑 Parameter_x1 in FluidDYM_LibMD3M. TestModell ? 🔀
General Add modifiers
Component Icon
Name Parameter_x1 Constant
Model k=
Path Modelica.Blocks.Sources.Constant ^- Comment Generate constant signal of type Real
Parameters
k 10 Constant output value
OK Info Cancel

Figure 2.16: Entering the value for the pressure *p*

- Now, double click on the "Parameter_x2" block which represents the second input parameter, here the temperature *t* in °C.
- Enter the value 300 on the line next to "k" in the dialog window which appears and then click the "OK" button (see Figure 2.17).

😑 Parameter_x2 in FluidDYM_LibMD2M.TestModell ? 🔀					
General Add modifiers					
Component Con					
Name Parameter_x2 Constant					
Comment					
Model					
Path Modelica.Blocks.Sources.Constant					
Comment Generate constant signal of type Real					
Parameters					
k 300 Constant output value					
OK Info Cancel					

Figure 2.17: Entering the value for the temperature t

- Now, double click on the "Parameter_x3" block which represents the third input parameter, here the vapor fraction *x* in kg/kg.

Since the wet steam region is calculated automatically by the subprograms, the following fixed details on the vapor fraction x are to be considered when the value for x is entered:

Single-phase region

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

Wet-steam region

If the state point to be calculated is located in the wet steam region, a value for x between 0 and 1 (x = 0 for saturated liquid, x = 1 for saturated steam) must be entered.

When calculating wet steam either the given value for t and p = -1 or the given value for p and t = -1 and in both cases the value for x between 0 and 1 must be entered.

If p and t and x are entered as given values, the program considers p and t to be appropriate to represent the vapor pressure curve. If it is not the case the calculation for the property of the chosen function to be calculated results in -1000.

(MD3M Saturation pressure curve:

t = 0 °C to $t_{\text{C}} = 355.21 \text{ °C}$ $p_{\text{S}}(0 \text{ °C}) = 0.00078994$ bar to $p_{\text{C}} = 9.45229$ bar)

- Enter the value -1 on the line next to "k" in the dialog window which appears and then click the "OK" button (see Figure 2.18).

😑 Parameter_x3 in FluidDYM_LibMD3M. TestModell ? 🔀					
General Add modifiers					
Component Con					
Name Parameter_x3 Constant					
Comment					
Model					
Path Modelica.Blocks.Sources.Constant k=					
Comment Generate constant signal of type Real					
Parameters					
k Constant output value					
OK Info Cancel					

Figure 2.18: Entering the value for the vapor fraction x

All parameters have now been defined.

- Click on the <u>Simulation</u> button in the lower right area of Dymola in order to switch into the "Simulation Mode".

In Figure 2.19 you can see how the Dymola "Simulation Mode" looks like.

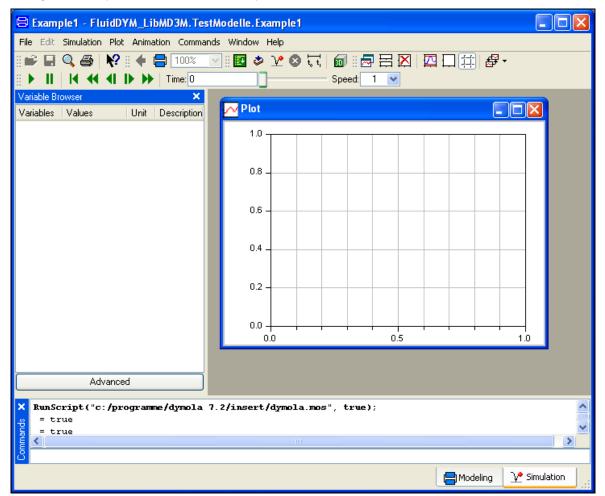


Figure 2.19: "Simulation Mode" window

IMPORTANT NOTICE:

Per default the 64-bit version of Dymola creates a 32-bit simulation process. If you want to create a 64-bit simulation process you must have installed the 64-bit version of FluidDYM and you now need to enter the following command into the command line of Dymola and confirm your entry by pressing the Enter key:

"Advanced.CompileWith64=2"

File Edit Simulation Plot Anim	ation Commands Window Help Linear analysis
j 😅 🔲 🔍 🎒 📢 i 🔶 🚍 100%	🔄 🛛 🖉 🍬 👻 🔇 🗔 📾 🖉 🖛 🗄 🖾 🖓 🏧 🖓 🚺 🖉 🗛 👘 »
) Speed: 1 -
Variable Browser 🗗 🗙	
Variables Values Unit Descrip	Plot 📃 🔍
	1.0
	0.8-
	0.6-
	0.4-
	0.2-
•	0.0
Advanced	0.0 0.5 1.0
× Text style: Custom - b i	u ≣ ≣ ≣ ⊫ ⊭ ∞ ∎ e=
e true	
= true = true	
9 = true E = true	
Advanced.CompileWith64=2	
	🖨 Modeling 🛛 🕑 Simulation

Figure 2.20: "Simulation Mode" window with 64-bit command

Now, your 64-bit Dymola creates 64-bit simulation processes with FluidDYM.

Please note that if you restart Dymola and want to create 64-bit simulation processes again, you will always have to enter this command anew.

For further information concerning this matter, please see the Dymola user's guide.

- Click on the "Simulate" Button in the Dymola menu bar to start the calculation. Now the model will be compiled and the simulation started.
- Afterwards you will see the following entries within the "Variable Browser" window in Dymola (see Figure 2.21):

😂 Example1 - FluidDYM_Lib	MD 3M. Te			
File Edit Simulation Plot Animati	ion Comma			
I 📽 🖬 🔍 🎒 😽 I 🔶 🖥	100%			
 ▶ 4 44 4 ▶ ▶▶	Time: 0			
Variable Browser	×			
Variables 🔻 Value	s I			
Alues Values Values Values Values Values Parameter_x1 Parameter_x2 Parameter_x3 fluidDYM_LibMD3M_Input				

Figure 2.21: "Variable Browser" with new entries

- By clicking on the "New Plot Window" button , a new diagram window will be opened.
- Click on "fluidDYM_LibMD3M_Input" within the "Variable Browser"; then you will see the input and output parameters "scanRange", "FunctionNumber", "z", "x1", "x2" and "x3" (see Figure 2.22).

	Example1 - FluidDYM_LibMD3M.Te
	File Edit Simulation Plot Animation Commi
	💕 🖬 🔍 🎒 🙌 😫 🚺 100%
	🚆 🕨 📕 📕 📢 📢 🜗 🕪 🛛 Time: 🖸
	Variable Browser 🗙
	Variables 🔻 Values 🛛
	Example1 1
	⊞Parameter_x1
	Parameter_x3
\mathbf{q}	■fluidDYM_LibMD3M_Input
	C.001
	- EunctionNumber
	- 🗌 z
	- 🗆 x1
	-□×2
	್ x3

Figure 2.22: Parameters of *fluidDYM_LibMD3M_Input*

- After clicking on the output parameter "z", the calculated property will be represented graphically in the "PlotWindow".
- Move the mouse over the curve to see the result of the simulation at a specific point in time (see Figure 2.23).

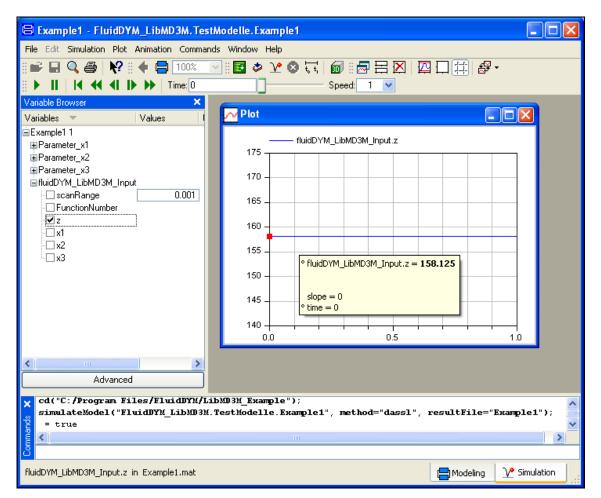


Figure 2.23: "DiagramWindow" showing the result

The result for h appears in the "DiagramWindow"

 \Rightarrow The result in our sample calculation here is: "h = 158.125". The corresponding unit is kJ/kg (see table of the property functions in Chapter 1).

- Now click on the Modeling button in the lower right area of Dymola in order to switch into the "Modeling Mode". Here you can arbitrarily change the values for *p*, *t*, or *x* in the appropriate blocks.

Help Systems in Dymola[®]

Dymola[®] provides detailed help functions. You can choose to read the program documentation or the help page of a specific property function, as desired.

Within the "Modeling-Mode" Holdeling the help may be accessed via two different steps.

First we will show you how to access the program documentation of the property library.

- Make sure Dymola is set to the "Modeling-Mode".
- Now click the 🗾 button in the Dymola menu bar to choose the "Documentation Mode".
- Double-click on the "FluidDYM_LibMD3M" Block at the left and then click on "Users_Guide" (see Figure 2.24).

😑 FluidDYM_LibMD3M	- FluidDYM_LibMI	D3M - [Documentation]			
E File Edit Simulation Pla		•			. ð X
I 🚅 🖬 🔍 🎒 📢 I	// 🔳 🌢 🐓 A	📕 🚣 • 🖄 • 🛱 🍡	🜌 • 🛛 🖏 • 🔶	• 🔶 🕳 🖨 💽] 🛃 🛃 100% 🕑
Package Browser	× Pi	roperty Library LibMD3M			
Packages		formation sers Guide ackage Content			
Interfaces FluidDYM_LibMD3M TestModelle Example1 Component Browser Components FluidDYM_LibMD3M	_Input	Name Interfaces FluidDYM_LibMD3M_Input TestModelle ame: FluidDYM_LibMD3M ath: FluidDYM_LibMD3M ename: C:/Program Files/FluidD ersion: 1 ses:Modelica (version="3.0.1")	Description	nple/FluidDYM_LibM	√D3M.mo
				🖶 Modeling	V ^e Simulation

Figure 2.24: Selecting the "Users_Guide"

- The program documentation will be displayed within your default web browser.

Now, we will show you how to access the help page of a specific property function.

- Make sure Dymola is set to the "Modeling-Mode".
- Now click the 🔝 button in the Dymola menu bar to choose the "Documentation Mode".
- Double-click on the "FluidDYM_LibMD3M_Input" block on the left (see Figure 2.25).

😑 FluidDYM_LibMD3M_Input - FluidD	YM_LibMD	3M. Fluid	DYM_Lil	bMD3M_Input - [l	Documentatio	n] 🔳	
File Edit Simulation Plot Animation Co	mmands Wi	ndow Help					
I 🚅 🖬 🔍 🚳 隆 I 📈 🔳 🔶 🐓	A 🔳 🚄	- 🕭 - [#1	፳ • 🗄 🖬 • 🔶	🔶 🗖 🖨 💽] 🗧 🚅 100%	~
Package Browser X	Parameter	\$					
Packages ▲	Туре	Name		Default		Description	-1
	Beal	scanRand	18	0.001		Scan range	-
Unnamed		interpretatio	·			ocantango	
📮 📩 FluidDYM_LibMD3M		FunctionN		FluidDYM_LibMD3M	Interfaces		
+ Hinterraces		1 and only	lambor]
FluidDYM_LibMD3M_Input							
Do-FMD3M	Connector	15					
" (f) ts_p_MD3M	Туре		Name	Description			
• (f) v_ptx_MD3M	output Re	alOutput	z	"Output"			
(f) rho_ptx_MD3M	input Real	Input	x1	"Parameter x1"			
• (f) Z_ptx_MD3M	input Real	Input	x2	"Parameter x2"			
fu_ptx_MD3M	input Real	Input	xЗ	"Parameter x2"			
🕤 🛉 h_ptx_MD3M							
		·YM_ЕіЬМD:	3M.FluidD1	YM_LibMD3M_Input			
Component Browser 🗙	Filename: C: Version: 1	/Program F	iles/FluidD	YM/LibMD3M_Examp	le/FluidDYM_Libh	MD3M.mo	
Components	Uses:Model	ica (version:	=''3.0.1'')				
FluidDYM_LibMD3M.FluidDYM_LibMD3M_I							
- ■ ×1							
×2 ■ x3							
CX							
					📄 Modeling	Simulation	

Figure 2.25: Selected "FluidDYM_LibMD3M_Input" Block

- Below "FluidDYM_LibMD3M_Input" you will see all functions of the LibMD3M property function (see Figure 2.24).
- Now select a function, e.g. "h_ptx_MD3M", and then click on "Users_Guide" (see Figure 2.26).

🕒 h_ptx_MD3M - FluidDYM_LibMD3M.	FluidDYM	LibMD 3	M_Input.h_	ptx_MD3M - [Documentation]			
File Edit Simulation Plot Animation Co	🚺 File Edit Simulation Plot Animation Commands Window Help						
∥ 🚔 🖬 🔍 🎒 📢 ∥ /⁄ 🔳 ♦ 🐓	A 🔳 🛃	- 🕭 - [#14 🖬	💽 📲 🔹 🔶 📥 🖨 🚺 🗐 🖆 🚺	1% 🔽		
Package Browser ×	Specific o	enthalpy h	in kJ/kg = f	(p.t.x)			
Packages	Informatio Users Guid Inputs						
(f) ps_t_MD3M (f) ts_p_MD3M	Туре	Name	Default	Description			
(f) v_ptx_MD3M	Real	P		Pressure p in bar			
f) rho_ptx_MD3M	Real	t		Temperature t in *C			
(f)Z_ptx_MD3M	Real	×		Vapor fraction x in kg/kg			
(f) u_ptx_MD3M (f) s_ptx_MD3M (f) s_ptx_MD3M	Outputs						
(f) cp_ptx_MD3M	Туре	Name	Descriptio				
📄 🕐 ptx MD3M	Real	h	Specific en	thalpy h in kJ/kg			
Image: Component Browser Image: Component Browser Components Image: Component Struid DYM_LibMD 3M_I	Filename: C Version: 1	DŸM_LibMD	iles/FluidDYM,	LibMD3M_Input.h_ptx_MD3M /LibMD3M_Example/FluidDYM_LibMD3M.mo			
FluidDYM_LibMD3M.FluidDYM_LibMD3M_Input.h_	ptx_MD3M			🔚 Modeling 📝 Simulatio	on;		

Figure 2.26: Marking the "h_ptx_MD3M" function and selecting the "Users_Guide"

- You will now see the help page of the selected function, here "h_ptx_MD3M", in your default web browser (see Figure 2.27).

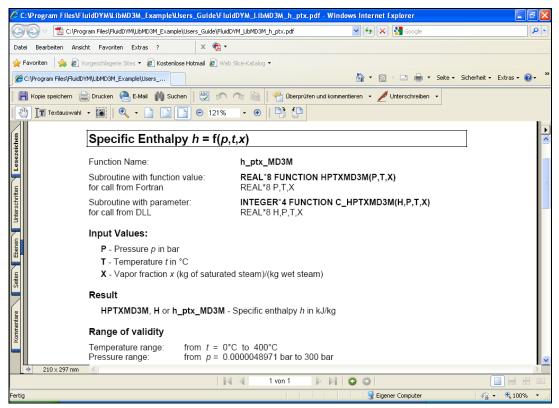


Figure 2.27: Help page of the function "h_ptx_MD3M" in the web browser

2.3 Removing LibMD3M in Dymola

In order to remove the property library LibMD3M from your hard drive in Windows[®], click "Start" in the lower task bar, then "Settings" and "Control Panel".

Afterwards double-click on "Add or Remove Programs".

In the list box of the "Add or Remove Programs" menu which appears, select "FluidDYM LibMD3M" by clicking on it and then clicking the "Change/Remove" button.

In the following dialogue box click "Automatic" and then "Next>".

Confirm the "Perform Uninstall" menu which appears by clicking the "Finish" button.

Finally, close the "Add or Remove Programs" and "Control Panel" windows.

"FluidDYM LibMD3M" has now been removed.

If LibMD3M is the only library installed, the directory "FluidDYM" will be removed as well.

3. Program Documentation

Specific Isobaric Heat Capacity $c_p = f(p, t, x)$

Function Name:	cp_ptx_MD3M
Subroutine with function value: for call from Fortran	REAL*8 FUNCTION CPPTXMD3M(P,T,X) REAL*8 P,T,X
Subroutine with parameter: for call from DLL	INTEGER*4 FUNCTION C_CPPTXMD3M(CP,P,T,X) REAL*8 CP,P,T,X

Input Values:

- **P** Pressure *p* in bar
- T Temperature t in °C
- X Vapor fraction x (kg of saturated steam)/(kg wet steam)

Result

CPPTXMD3M, **CP** or **cp_ptx_MD3M**-specificisobaricheatcapacity c_p inkJ/(kgK)

Range of validity

Temperature range:	from $t = 0^{\circ}$ C to 400° C
Pressure range:	from $p = 0.0000048971$ bar to 300 bar

Details on the vapor fraction x and on the calculation of wet steam

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction *x* are to be considered:

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

If the state point to be calculated is located on the boiling curve, x = 0 must be entered. When calculating saturated steam (dew curve) x = 1 is entered as given value. The calculation for *x* values between 0 and 1 is not possible.

If the state point to be calculated is located in the two phase region, it is adequate to enter either the given value for t and p = -1000, or the given value for p and t = -1000, plus the value for x between 0 and 1. When calculating wet steam and p and t and x are entered as given values, the program will consider p and t to be appropriate to represent the saturation-pressure curve.

Saturated liquid and	Temperature ranges from $t=0^{\circ}$ C to $t_{c}=355.21^{\circ}$ C
saturated vapor line:	Pressure ranges from $p_s(0^{\circ}C)=0.000004897$ bar to $p_c = 9.45229$ bar

Results for wrong input values

Result CPPTXMD3M = -1000, CP = -1000 or cp_ptx_MD3M = -1000 for input values:

Single phase region:	<i>p</i> > 300 bar or <i>p</i> < 0.0000048971 bar or
(<i>x</i> = -1)	<i>t</i> > 400 °C or <i>t</i> < 0°C
Saturation lines:	at $p = -1000$ and $t > t_c = 355.21^{\circ}$ C to $t < 0^{\circ}$ C at $t = -1000$ and $p > p_c = 9.451229$ bar or $p < p_s(0^{\circ}$ C) = 0.0000048971 bar or or $p > p_c = 9.45229$ bar or $p < p_s(0^{\circ}$ C) = 0.0000048971 bar and $t > t_c = 355.21^{\circ}$ C or $t < 0^{\circ}$ C

References: [1], [2]

References: [1], [2]

Specific Isochoric Heat Capacity $c_v = f(p, t, x)$

Function Name:	cv_ptx_MD3M
Subroutine with function value: for call from Fortran	REAL*8 FUNCTION CVPTXMD3M(P,T,X) REAL*8 P,T,X
Subroutine with parameter: for call from DLL	INTEGER*4 FUNCTION C_CVPTXMD3M(CV,P,T,X) REAL*8 CV,P,T,X

Input Values:

- **P** Pressure *p* in bar
- T Temperature t in °C
- **X** Vapor fraction *x* (kg of saturated steam)/(kg wet steam)

Result

CVPTXMD3M, CV or cv_ptx_MD3M – specific isochoric heatcapacity c_v inkJ/(kgK)

Range of validity

Temperature range:	from t	t =	0°C to 400°C
Pressure range:	from <i>p</i>	v =	0.0000048971 bar to 300 bar

Details on the vapor fraction *x* and on the calculation of saturated liquid and saturated steam

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction *x* are to be considered:

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

If the state point to be calculated is located on the boiling curve, x = 0 must be entered. When calculating saturated steam (dew curve) x = 1 is entered as given value. The calculation for *x* values between 0 and 1 is not possible.

If the state point to be calculated is located in the two phase region, it is adequate to enter either the given value for t and p = -1000, or the given value for p and t = -1000, plus the value for x between 0 and 1. When calculating wet steam and p and t and x are entered as given values, the program will consider p and t to be appropriate to represent the saturation-pressure curve.

Saturated liquid and	Temperature ranges from $t=0^{\circ}$ C to $t_{c}=355.21^{\circ}$ C
saturated vapor line:	Pressure ranges from $p_s(0^{\circ}C)=0.000004897$ bar to $p_c = 9.45229$ bar

Results for wrong input values

Result CVPTXMD3M = -1000, CV = -1000 or cv_ptx_MD3M = -1000 for input values:

Single phase region:	<i>p</i> > 300 bar or <i>p</i> < 0.0000048971 bar or
(<i>x</i> = -1)	<i>t</i> > 400 °C or <i>t</i> < 0°C
Saturation lines:	at $p = -1000$ and $t > t_c = 355.21^{\circ}$ C to $t < 0^{\circ}$ C at $t = -1000$ and $p > p_c = 9.451229$ bar or $p < p_s (0^{\circ}$ C) = 0.0000048971 bar or or $p > p_c = 9.45229$ bar or $p < p_s (0^{\circ}$ C) = 0.0000048971 bar and $t > t_c = 355.21^{\circ}$ C or $t < 0^{\circ}$ C

Derivative of Pressure with Respect to Temperature (at

Constant Specific Volume)

dpdtv_ptx_MD3M

∂**p**

Subroutine with function value:

for call from Fortran

REAL*8 FUNCTION DPDTVPTXMD3M(P,T,X) REAL*8 P,T,X

= f(*p*,*t*,*x*)

Subroutine with parameter: for call from DLL

INTEGER*4 FUNCTION C_DPDTVPTXMD3M(DPDTV,P,T,X) REAL*8 DPDTV,P,T,X

Input Values:

Function Name:

- **P** Pressure *p* in bar
- **T** Temperature *t* in °C
- **X** Vapor fraction *x* (kg of saturated steam)/(kg wet steam)

Result

DPDTVPTXMD3M	, DPDTV (or dpdtv _	_ptx_	MD3M	-
--------------	------------------	-------------------	-------	------	---

Derivative of pressure with respect to temperature (at constant specific volume) dpdtv in kPa/K

Range of validity

Temperature range:	from	<i>t</i> =	0°C to 400°C
Pressure range:	from	<i>p</i> =	0.0000048971 bar to 300 bar

Details on the vapor fraction x and on the calculation of saturated liquid and saturated steam

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction *x* are to be considered:

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

If the state point to be calculated is located on the saturated liquid line, x = 0 must be entered. When calculating saturated steam (saturated vapor line) x = 1 must be entered. The calculation for *x*-values between 0 and 1 is not possible.

When calculating saturated liquid or saturated steam, it is adequate to enter either the given value for tand p = -1000, or the given value for p and t = -1000, plus the value for x (x = 0 or x = 1). If p and t and x are entered as given values, the program will consider p and t to be appropriate to represent the vapor pressure curve.

Saturated liquid and	Temperature ranges from $t=0^{\circ}$ C to $t_{c}=355.21^{\circ}$ C
saturated vapor line:	Pressure ranges from $p_s(0^{\circ}C)=0.000004897$ bar to $p_c = 9.45229$ bar

Results for wrong input values

Single phase region:	<i>p</i> > 300 bar or <i>p</i> < 0.0000048971 bar or
(<i>x</i> = -1)	<i>t</i> > 400 °C or <i>t</i> < 0°C
Boiling or dew curve:	at $p = -1000$ and $t > t_c = 355.21^{\circ}$ C to $t < 0^{\circ}$ C at $t = -1000$ and $p > p_c = 9.451229$ bar or $p < p_s(0^{\circ}C) = 0.000004897$ bar or or $p > p_c = 9.45229$ bar or $p < p_s(0^{\circ}C) = 0.0000048971$ bar and $t > t_c = 355.21^{\circ}$ C or $t < 0^{\circ}$ C

Derivative of Pressure with Respect to Specific Volume (at

∂**p**

Constant Temperature)

Function Name:

dpdvt_ptx_MD3M

REAL*8 DPDVT,P,T,X

REAL*8 P.T.X

= f(*p*,*t*,*x*)

Subroutine with function value: for call from Fortran

Subroutine with parameter: for call from DLL

Input Values:

- **P** Pressure *p* in bar
- T Temperature t in °C
- X Vapor fraction x (kg of saturated steam)/(kg wet steam)

Result

DPDVTPTXMD3M	, DPDVT (or dpdvt _	_ptx_	MD3M	-
--------------	-----------	-------------------	-------	------	---

(at constant specific volume) dpdvt in kPa/K

Derivative of pressure with respect to temperature

REAL*8 FUNCTION DPDVTPTXMD3M(P,T,X)

INTEGER*4 FUNCTION C DPDVTPTXMD3M(DPDVT,P,T,X)

Range of validity

Temperature range:	from $t =$	0°C to 400°C
Pressure range:	from $p =$	0.0000048971 bar to 300 bar

Details on the vapor fraction *x* and on the calculation of saturated liquid and saturated steam

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction *x* are to be considered:

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

If the state point to be calculated is located on the saturated liquid line, x = 0 must be entered. When calculating saturated steam (saturated vapor line) x = 1 must be entered. The calculation for *x*-values between 0 and 1 is not possible.

When calculating saturated liquid or saturated steam, it is adequate to enter either the given value for t and p = -1000, or the given value for p and t = -1000, plus the value for x (x = 0 or x = 1). If p and t and x are entered as given values, the program will consider p and t to be appropriate to represent the vapor pressure curve.

Saturated liquid and	Temperature ranges from $t=0^{\circ}$ C to $t_{c}=355.21^{\circ}$ C
saturated vapor line:	Pressure ranges from $p_s(0^{\circ}C)=0.000004897$ bar to $p_c = 9.45229$ bar

Results for wrong input values

Single phase region:	<i>p</i> > 300 bar or <i>p</i> < 0.0000048971 bar or
(<i>x</i> = -1)	<i>t</i> > 400 °C or <i>t</i> < 0°C
Boiling or dew curve:	at $p = -1000$ and $t > t_c = 355.21^{\circ}$ C to $t < 0^{\circ}$ C at $t = -1000$ and $p > p_c = 9.451229$ bar or $p < p_s (0^{\circ}$ C) = 0.0000048971 bar or or $p > p_c = 9.45229$ bar or $p < p_s (0^{\circ}$ C) = 0.0000048971 bar and $t > t_c = 355.21^{\circ}$ C or $t < 0^{\circ}$ C

Specific Enthalpy *h* = f(*p*,*t*,*x*)

Function Name:

Subroutine with function value: for call from Fortran

Subroutine with parameter: for call from DLL

Input Values:

- **P** Pressure *p* in bar
- **T** Temperature *t* in °C
- X Vapor fraction x (kg of saturated steam)/(kg wet steam)

Result

HPTXMD3M, H or h_ptx_MD3M - Specific enthalpy h in kJ/kg

Range of validity

Temperature range:	from	t =	0°C to 400°C
Pressure range:	from	<i>p</i> =	0.0000048971 bar to 300 bar

Details on the vapor fraction x and on the calculation of wet steam

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction *x* are to be considered:

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

If the state point to be calculated is located in the wet steam region, a value for x between 0 and 1 (x = 0 for saturated liquid, x = 1 for saturated steam) must be entered.

When calculating wet steam either the given value for t and p = -1000 or the given value for p and t = -1000 and in both cases the value for x between 0 and 1 must be entered.

If p and t and x are entered as given values, the program considers p and t to be appropriate to represent the vapor pressure curve.

Wet steam region: Temperature ranges from $t=0^{\circ}$ C to $t_{c}=355.21^{\circ}$ C

Pressure ranges from $p_s(0^{\circ}C)=0.000004897$ bar to $p_c = 9.45229$ bar

Results for wrong input values

Single phase region:	<i>p</i> > 300 bar or <i>p</i> < 0.0000048971 bar or
(<i>x</i> = -1)	<i>t</i> > 400 °C or <i>t</i> < 0°C
Wet steam region:	at $p = -1000$ and $t > t_c = 355.21^{\circ}$ C to $t < 0^{\circ}$ C at $t = -1000$ and $p > p_c = 9.451229$ bar or $p < p_s (0^{\circ}$ C) = 0.0000048971 bar or or $p > p_c = 9.45229$ bar or $p < p_s (0^{\circ}$ C) = 0.0000048971 bar and $t > t_c = 355.21^{\circ}$ C or $t < 0^{\circ}$ C

REAL*8 FUNCTION HPTXMD3M(P,T,X) REAL*8 P,T,X

INTEGER*4 FUNCTION C_HPTXMD3M(H,P,T,X) REAL*8 H,P,T,X

Isentropic Exponent $\kappa = f(p, t, x)$

Function Name:

Subroutine with function value: for call from Fortran

kappa_ptx_MD3M

REAL*8 KAPPA,P,T,X

REAL*8 FUNCTION KAPPAPTXMD3M(P,T,X) REAL*8 P,T,X

INTEGER*4 FUNCTION C_KAPPAPTXMD3M(KAPPA, P,T,X)

Subroutine with parameter: for call from DLL

Input Values:

- **P** Pressure *p* in bar
- T Temperature t in °C
- X Vapor fraction x (kg of saturated steam)/(kg wet steam)

Result

KAPPAPTXMD3M, **KAPPA** or **kappa_ptx_MD3M** – Isentropic exponent $\kappa = \frac{w^2}{w}$

Range of validity

Temperature range:	from $t = 0^{\circ}$ C to 400° C
Pressure range:	from $p = 0.0000048971$ bar to 300 bar

Details on the vapor fraction x and on the calculation of saturated liquid and saturated steam

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction x are to be considered:

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x =-1 must be entered as a pro-forma value.

If the state point to be calculated is located on the saturated liquid line, x = 0 must be entered. When calculating saturated steam (saturated vapor line) x = 1 must be entered. The calculation for x-values between 0 and 1 is not possible.

When calculating saturated liquid or saturated steam, it is adequate to enter either the given value for t and p = -1000, or the given value for p and t = -1000, plus the value for x (x = 0 or x = 1). If p and t and x are entered as given values, the program will consider p and t to be appropriate to represent the vapor pressure curve.

Saturated liquid and	Temperature ranges from $t=0^{\circ}$ C to $t_{c}=355.21^{\circ}$ C
saturated vapor line:	Pressure ranges from $p_s(0^{\circ}C)=0.000004897$ bar to $p_c = 9.45229$ bar

Results for wrong input values

Result KAPPAPTXMD3M, KAPPA = -1000 or kappa_ptx_MD3M = -1000 for input values:

Single phase region:	p > 300 bar or $p < 0.0000048971$ bar or
(<i>x</i> = -1)	t > 400 °C or $t < 0$ °C
Boiling or dew curve:	at $p = -1000$ and $t > t_c = 355.21^{\circ}$ C to $t < 0^{\circ}$ C at $t = -1000$ and $p > p_c = 9.451229$ bar or $p < p_s(0^{\circ}$ C) = 0.0000048971 bar or or $p > p_c = 9.45229$ bar or $p < p_s(0^{\circ}$ C) = 0.0000048971 bar and $t > t_c = 355.21^{\circ}$ C or $t < 0^{\circ}$ C

References: [1], [2]

المعتم بالأمين لأمار معمولاته

Vapor Pressure $p_s = f(t)$

Function Name:

Subroutine with function value: for call from Fortran

ps_t_MD3M

REAL*8 PS,T

REAL*8 FUNCTION PSTMD3M(T) REAL*8 T

INTEGER*4 FUNCTION C_PSTMD3M(PS,T)

Subroutine with parameter: for call from DLL

Input Values:

T - Temperature t in °C

Result

PSTMD3M, **ps** or **ps_t_MD3M** – Vapor pressure *p*_s in bar

Range of validity

Temperature ranges from $t=0^{\circ}$ C to $t_{c}=355.21^{\circ}$ C

Results for wrong input values

Result PSTMD3M = -1000, PS = -1000 or ps_t_MD3M = -1000 for input values:

 $t < 0^{\circ}$ C or $t > t_{c} = 355.21^{\circ}$ C

Density $\rho = f(p, t, x)$

Function Name:

Subroutine with function value: for call from Fortran

Subroutine with parameter: for call from DLL

Input Values:

P - Pressure p in bar

T - Temperature *t* in °C

X - Vapor fraction x (kg of saturated steam)/(kg wet steam)

Result

RHOPTXMD3M, **RHO** or **rho_ptx_MD3M** – Density ρ in kg/m³

Range of validity

Temperature range:	from $t = 0^{\circ}$ C to 400° C
Pressure range:	from $p = 0.0000048971$ bar to 300 bar

Details on the vapor fraction x and on the calculation of wet steam

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction *x* are to be considered:

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

rho_ptx_MD3M

REAL*8 P,T,X

REAL*8 RHO, P, T, X

REAL*8 FUNCTION RHOPTXMD3M(P,T,X)

INTEGER*4 FUNCTION C_RHOPTXMD3M(RHO,P,T,X)

If the state point to be calculated is located in the wet steam region, a value for x between 0 and 1 (x = 0 for saturated liquid, x = 1 for saturated steam) must be entered.

When calculating wet steam either the given value for t and p = -1000 or the given value for p and t = -1000 and in both cases the value for x between 0 and 1 must be entered.

If *p* and *t* and *x* are entered as given values, the program considers *p* and *t* to be appropriate to represent the vapor pressure curve.

Wet steam region: Temperature ranges from $t=0^{\circ}$ C to $t_{c}=355.21^{\circ}$ C

Pressure rangesfrom $p_s(0^{\circ}C)=0.000004897$ bar to $p_c = 9.45229$ bar

Results for wrong input values

Single phase region:	<i>p</i> > 300 bar or <i>p</i> < 0.0000048971 bar or
(<i>x</i> = -1)	<i>t</i> > 400 °C or <i>t</i> < 0°C
Wet steam region:	at $p = -1000$ and $t > t_c = 355.21^{\circ}$ C to $t < 0^{\circ}$ C at $t = -1000$ and $p > p_c = 9.451229$ bar or $p < p_s(0^{\circ}$ C) = 0.0000048971 bar or or $p > p_c = 9.45229$ bar or $p < p_s(0^{\circ}$ C) = 0.0000048971 bar and $t > t_c = 355.21^{\circ}$ C or $t < 0^{\circ}$ C

Specific Entropy s = f(p, t, x)

Function Name:

Subroutine with function value: for call from Fortran

Subroutine with parameter:

REAL*8 FUNCTION SPTXMD3M(P,T,X) REAL*8 P,T,X INTEGER*4 FUNCTION C_SPTXMD3M(S,P,T,X) REAL*8 S,P,T,X

s_ptx_MD3M

Input Values:

for call from DLL

- P Pressure p in bar
- T Temperature t in °C
- **X** Vapor fraction *x* (kg of saturated steam)/(kg wet steam)

Result

SPTXMD3M, S or s_ptx_MD3M - Specific entropy s in kJ/kg K

Range of validity

Temperature range:	from $t = 0^{\circ}$ C to 400° C
Pressure range:	from $p = 0.0000048971$ bar to 300 bar

Details on the vapor fraction x and on the calculation of wet steam

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction x are to be considered:

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x =-1 must be entered as a pro-forma value.

If the state point to be calculated is located in the wet steam region, a value for x between 0 and 1 (x = 0 for saturated liquid, x = 1 for saturated steam) must be entered.

When calculating wet steam either the given value for t and p = -1000 or the given value for p and t = -1000 and in both cases the value for x between 0 and 1 must be entered.

If p and t and x are entered as given values, the program considers p and t to be appropriate to represent the vapor pressure curve.

Wet steam region: Temperature ranges from $t=0^{\circ}$ C to $t_{c}=355.21^{\circ}$ C

Pressure ranges from $p_s(0^{\circ}C)=0.000004897$ bar to $p_c = 9.45229$ bar

Results for wrong input values

Result SPTXMD3M = -100	0, S = -1000 or s_ptx_MD3M = -1000 for input values:
Single phase region: (<i>x</i> = -1)	p > 300 bar or $p < 0.0000048971$ bar or t > 400 °C or $t < 0$ °C
Wet steam region:	at $p = -1000$ and $t > t_c = 355.21^{\circ}$ C to $t < 0^{\circ}$ C at $t = -1000$ and $p > p_c = 9.451229$ bar or $p < p_s (0^{\circ}$ C) = 0.0000048971 bar or or $p > p_c = 9.45229$ bar or $p < p_s (0^{\circ}$ C) = 0.0000048971 bar and $t > t_c = 355.21^{\circ}$ C or $t < 0^{\circ}$ C

Backward Function: Temperature t = f(p,h)

Function Name:

Subroutine with function value: for call from Fortran

Subroutine with parameter: for call from DLL

t_ph_MD3M REAL*8 FUNCTION TPHMD3M(P,H) REAL*8 P,H INTEGER*4 FUNCTION C_TPHMD3M(T,P,H) REAL*8 T,P,H

Input Values:

P - Pressure *p* in bar

H - Specific enthalpy h in kJ/kg

Result

TPHMD3M, T or t_ph_MD3M - Temperature t in °C

Range of validity

Temperature range:	from	t =	0°C to 400°C
Pressure range:	from	<i>p</i> =	0.0000048971 bar to 300 bar

Details on the calculation of wet steam

The wet steam region is calculated automatically. This means that from the given values of p and h the function will determine whether the state point to be calculated is located within the single-phase region (liquid or steam) or the wet steam region. Afterwards the calculation of t in the appropriate region will be carried out.

Wet steam region: Pressure ranges from $p_s(0^{\circ}C)=0.000004897$ bar to $p_c = 9.45229$ bar

Results for wrong input values

Result T_PH_MD3M, T = -1000 or t_ph_MD3M = -1000 for input values:

Single phase region:	<i>p</i> > 300 bar or <i>p</i> < 0.0000048971 bar or
(<i>x</i> = -1)	at result <i>t</i> > 400 °C or <i>t</i> < 0°C
Boiling or dew curve:	or $p > p_{\rm C} = 9.45229$ bar or $p < p_{\rm S}(0^{\circ}{\rm C}) = 0.0000048971$ bar and at result $t > t_{\rm C} = 355.21^{\circ}{\rm C}$ or $t < 0^{\circ}{\rm C}$

Backward Function: Temperature t = f(p, s)

Function Name:

Subroutine with function value: for call from Fortran

t_ps_MD3M REAL*8 FUNCTION TPSMD3M(P,S) REAL*8 P,S INTEGER*4 FUNCTION C_TPSMD3M(T,P,S) REAL*8 T,P,S

Input Values:

for call from DLL

P - Pressure p in bar

Subroutine with parameter:

S - Specific entropy s in kJ/(kg K)

Result

TPSMD3M, T or t_ps_MD3M - Temperature t in °C

Range of validity

Temperature range:	from $t = 0^{\circ}$ C to 400° C
Pressure range:	from $p = 0.0000048971$ bar to 300 bar

Details on the calculation of wet steam

The wet steam region is calculated automatically. This means that from the given values of p and s the function will determine whether the state point to be calculated is located within the single-phase region (liquid or steam) or the wet steam region. Afterwards the calculation of t in the appropriate region will be carried out.

Wet steam region: Pressure ranges from $p_s(0^{\circ}C)=0.000004897$ bar to $p_c = 9.45229$ bar

Results for wrong input values

Result T_PS_MD3M, T = -1000 or t_ps_MD3M = -1000 for input values:

Single phase region:	<i>p</i> > 300 bar or <i>p</i> < 0.0000048971 bar or
(<i>x</i> = -1)	at result <i>t</i> > 400 °C or <i>t</i> < 0°C
Boiling or dew curve:	or $p > p_c = 9.45229$ bar or $p < p_s(0^{\circ}C) = 0.0000048971$ bar and at result $t > t_c = 326.25^{\circ}C$ or $t < 0^{\circ}C$

Saturation Temperature $t_s = f(p)$

Subroutine with function value: for call from Fortran

ts_p_MD3M

REAL*8 TS,P

INTEGER*4 FUNCTION C_TSPMD3M(TS,P)

REAL*8 FUNCTION TSPMD3M(P) REAL*8 P

Subroutine with parameter: for call from DLL

Input Values:

P - Pressure p in bar

Result

TSPMD3M, **TS** or **ts_p_MD3M** – Saturation Temperature $t_s in^\circ C$

Range of validity

Pressure ranges from $p_s(0^{\circ}C)=0.000004897$ bar to $p_c = 9.45229$ bar

Results for wrong input values

Result **TSPMD3M = -1000**, **TS = -1000** or **ts_p_MD3M = -1000** for input values:

 $p > p_{c} = 9.45229$ bar or $p < p_{s}(0^{\circ}C) = 0.0000048971$ bar

Specific Internal Energy *u* = f(*p*,*t*,*x*)

Function Name:

Subroutine with function value: for call from Fortran

Subroutine with parameter: for call from DLL

Input Values:

- P Pressure p in bar
- T Temperature t in °C
- X Vapor fraction x (kg of saturated steam)/(kg wet steam)

Result

UPTXMD3M, U or u_ptx_MD3M - Specific internal energy u in kJ/kg

Range of validity

Temperature range:	from $t = 0^{\circ}$ C to 400° C
Pressure range:	from $p = 0.0000048971$ bar to 300 bar

Details on the vapor fraction x and on the calculation of wet steam

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction *x* are to be considered:

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

u_ptx_MD3M

REAL*8 P,T,X

REAL*8 U,P,T,X

REAL*8 FUNCTION UPTXMD3M(P,T,X)

INTEGER*4 FUNCTION C_UPTXMD3M(U,P,T,X)

If the state point to be calculated is located in the two phase region (wet steam), either the value 0 or 1 has to be entered for x (x = 0 for boiling liquid, x = 1 for saturated steam). The calculation for x values between 0 and 1 is not possible.

If the state point to be calculated is located in the two phase region, it is adequate to enter either the given value for t and p = -1000, or the given value for p and t = -1000, plus the value for x between 0 and 1.

When calculating wet steam and p and t and x are entered as given values, the program will consider p and t to be appropriate to represent the saturation-pressure curve. If it is not the case the calculation for the quantity of the chosen function to be calculated results in -1000.

Wet steam region:	Temperature ranges from $t=0^{\circ}$ C to $t_{c}=355.21^{\circ}$ C
	Dreaming representation $p(0, C) = 0.0000000000000000000000000000000000$

Pressure rangesfrom $p_s(0^{\circ}C)=0.000004897$ bar to $p_c = 9.45229$ bar

Results for wrong input values

Single phase region:	<i>p</i> > 300 bar or <i>p</i> < 0.0000048971 bar or
(<i>x</i> = -1)	<i>t</i> > 400 °C or <i>t</i> < 0°C
Wet steam region:	at $p = -1000$ and $t > t_c = 355.21^{\circ}$ C to $t < 0^{\circ}$ C at $t = -1000$ and $p > p_c = 9.451229$ bar or $p < p_s (0^{\circ}$ C) = 0.0000048971 bar or or $p > p_c = 9.45229$ bar or $p < p_s (0^{\circ}$ C) = 0.0000048971 bar and $t > t_c = 355.21^{\circ}$ C or $t < 0^{\circ}$ C

Specific Volume v = f(p,t,x)

Function Name:

Subroutine with function value: for call from Fortran

v_ptx_MD3M

REAL*8 V,P,T,X

REAL*8 FUNCTION VPTXMD3M(P,T,X) REAL*8 P,T,X

INTEGER*4 FUNCTION C_VPTXMD3M(V,P,T,X)

Subroutine with parameter: for call from DLL

Input Values:

- **P** Pressure *p* in bar
- **T** Temperature *t* in °C
- X Vapor fraction x (kg of saturated steam)/(kg wet steam)

Result

VPTXMD2M, V or v_ptx_MD2M – Specific volume v in m^3/kg

Range of validity

Temperature range:	from $t = 0^{\circ}$ C to 400° C
Pressure range:	from $p = 0.0000048971$ bar to 300 bar

Details on the vapor fraction x and on the calculation of wet steam

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction *x* are to be considered:

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

If the state point to be calculated is located in the two phase region (wet steam), either the value 0 or 1 has to be entered for x (x = 0 for boiling liquid, x = 1 for saturated steam). The calculation for x values between 0 and 1 is not possible.

If the state point to be calculated is located in the two phase region, it is adequate to enter either the given value for t and p = -1000, or the given value for p and t = -1000, plus the value for x between 0 and 1.

When calculating wet steam and p and t and x are entered as given values, the program will consider p and t to be appropriate to represent the saturation-pressure curve. If it is not the case the calculation for the quantity of the chosen function to be calculated results in -1000.

Wet steam region: Temperature ranges from $t=0^{\circ}$ C to $t_{c}=355.21^{\circ}$ C Pressure rangesfrom $p_{s}(0^{\circ}C)=0.000004897$ bar to $p_{c}=9.45229$ bar

Results for wrong input values

Result VPTXMD3M = -1000, V = -1000 or v_ptx_MD3M = -1000 for input values:

Single phase region:	<i>p</i> > 300 bar or <i>p</i> < 0.0000048971 bar or
(<i>x</i> = -1)	<i>t</i> > 400 °C or <i>t</i> < 0°C
Wet steam region:	at $p = -1000$ and $t > t_c = 355.21^{\circ}$ C to $t < 0^{\circ}$ C at $t = -1000$ and $p > p_c = 9.451229$ bar or $p < p_s (0^{\circ}$ C) = 0.0000048971 bar or or $p > p_c = 9.45229$ bar or $p < p_s (0^{\circ}$ C) = 0.0000048971 bar and $t > t_c = 355.21^{\circ}$ C or $t < 0^{\circ}$ C

Isentropic Speed of Sound w = f(p, t, x)

Function Name:

Subroutine with function value: for call from Fortran

Subroutine with parameter:

w_ptx_MD3M REAL*8 FUNCTION WPTXMD3M(P,T,X)

REAL*8 P,T,X

REAL*8 W,P,T,X

INTEGER*4 FUNCTION C_WPTXMD3M(W,P,T,X)

Subroutine with parameter: for call from DLL

Input Values:

- **P** Pressure *p* in bar
- **T** Temperature *t* in °C
- **X** Vapor fraction *x* (kg of saturated steam)/(kg wet steam)

Result

WPTXMD3M, W or w_ptx_MD3M - Speed of sound w in m/s

Range of validity

Temperature range:	from $t =$	0°C to 400°C
Pressure range:	from $p =$	0.0000048971 bar to 300 bar

Details on the vapor fraction x and on the calculation of wet steam

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction *x* are to be considered:

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

If the state point to be calculated is located on the boiling curve, x = 0 must be entered. When calculating saturated steam (dew curve) x = 1 is entered as given value. The calculation for *x* values between 0 and 1 is not possible.

If the state point to be calculated is located in the two phase region, it is adequate to enter either the given value for t and p = -1000, or the given value for p and t = -1000, plus the value for x between 0 and 1. When calculating wet steam and p and t and x are entered as given values, the program will consider p and t to be appropriate to represent the saturation-pressure curve.

Boiling and dew curve: Temperature ranges from $t=0^{\circ}$ C to $t_{c}=355.21^{\circ}$ C Pressure ranges from $p_{s}(0^{\circ}$ C)=0.000004897 bar to $p_{c}=9.45229$ bar

Results for wrong input values

Result WPTXMD3M = -1000, W = -1000 or w_ptx_MD3M = -1000 for input values:

Single phase region:	<i>p</i> > 300 bar or <i>p</i> < 0.0000048971 bar or
(<i>x</i> = -1)	<i>t</i> > 400 °C or <i>t</i> < 0°C
Boiling or dew curve:	at $p = -1000$ and $t > t_c = 355.21^{\circ}$ C to $t < 0^{\circ}$ C at $t = -1000$ and $p > p_c = 9.451229$ bar or $p < p_s (0^{\circ}$ C) = 0.0000048971 bar or or $p > p_c = 9.45229$ bar or $p < p_s (0^{\circ}$ C) = 0.0000048971 bar and $t > t_c = 355.21^{\circ}$ C or $t < 0^{\circ}$ C

Backward Function: Vapor fraction x = f(p,h)

Function Name:

Subroutine with function value: for call from Fortran

Subroutine with parameter: for call from DLL

x_ph_MD3M REAL*8 FUNCTION XPHMD3M(P,H) REAL*8 P,H INTEGER*4 FUNCTION C_XPHMD3M(X,P,H) REAL*8 X,P,H

Input Values:

P - Pressure p in bar

H - Specific enthalpy h in kJ/kg

Result

XPHMD3M, X or x_ph_MD3M - Vapor fraction x in (kg saturated steam/kg wet steam)

Range of validity

Temperature range:	from $t = 0^{\circ}$ C to 400° C
Pressure range:	from $p = 0.0000048971$ bar to 300 bar

Details on the calculation of wet steam

The wet steam region is calculated automatically. That means the given values of p and h are taken as a basis and the subprogram will determine whether the state point to be calculated is located within the single-phase region (liquid or superheated steam) or the wet steam region. In case of wet steam, x will be calculated, otherwise the result is set to x = -1.

Wet steam region: Pressure ranges from $p_s(0^{\circ}C)=0.000004897$ bar to $p_c = 9.45229$ bar

Results for wrong input values

Result X_PH_MD3M, X = -1 or x_ph_MD3M = -1 for input values:

If the state point is located in the single phase region:

 $p > p_{c} = 9.45229$ bar or $p < p_{s}(0^{\circ}C) = 0.0000048971$ bar

Backward Function: Vapor Fraction x = f(p, s)

Function Name:

Subroutine with function value: for call from Fortran

REAL*8 FUNCTION XPSMD3M(P,S) REAL*8 P,S INTEGER*4 FUNCTION C_XPSMD3M(X,P,S) REAL*8 X,P,S

x_ps_MD3M

Input Values:

for call from DLL

P - Pressure p in bar

Subroutine with parameter:

S - Specific entropy s in kJ/(kg K)

Result

XPSMD3M, X or x_ps_MD3M - Vapor fraction x in (kg saturated steam/kg wet steam)

Range of validity

Temperature range:	from $t = 0^{\circ}$ C to 400° C
Pressure range:	from $p = 0.0000048971$ bar to 300 bar

Details on the calculation of wet steam

The wet steam region is calculated automatically. That means the given values of p and h are taken as a basis and the subprogram will determine whether the state point to be calculated is located within the single-phase region (liquid or superheated steam) or the wet steam region. In case of wet steam, x will be calculated, otherwise the result is set to x = -1.

Wet steam region: Pressure ranges from $p_s(0^{\circ}C)=0.000004897$ bar to $p_c = 9.45229$ bar

Results for wrong input values

Result X_PS_MD3M, X = -1 or x_ps_MD3M = -1 for input values:

If the state point is located in the single phase region:

 $p > p_{\rm c} = 9.45229$ bar or $p < p_{\rm s} (0^{\circ}{\rm C}) = 0.0000048971$ bar

Compression Factor Z = f(p, t, x)

Function Name:

Subroutine with function value: for call from Fortran

REAL*8 FUNCTION ZPTXMD3M(P,T,X) REAL*8 P,T,X INTEGER*4 FUNCTION C_ZPTXMD3M(Z,P,T,X) REAL*8 Z,P,T,X

Z_ptx_MD3M

Subroutine with parameter: for call from DLL

Input Values:

- P Pressure p in bar
- T Temperature t in °C
- **X** Vapor fraction x (kg of saturated steam)/(kg wet steam)

Result

ZPTXMD3M, Z or Z_ptx_MD3M - Compression Factor

Range of validity

Temperature range:	from $t = 0^{\circ}$ C to 400° C
Pressure range:	from $p = 0.0000048971$ bar to 300 bar

Details on the vapor fraction x and on the calculation of wet steam

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction *x* are to be considered:

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

If the state point to be calculated is located on the boiling curve, x = 0 must be entered. When calculating saturated steam (dew curve) x = 1 is entered as given value. The calculation for *x* values between 0 and 1 is not possible.

If the state point to be calculated is located in the two phase region, it is adequate to enter either the given value for t and p = -1000, or the given value for p and t = -1000, plus the value for x between 0 and 1. When calculating wet steam and p and t and x are entered as given values, the program will consider p and t to be appropriate to represent the saturation-pressure curve.

Boiling and dew curve: Temperature ranges from $t=0^{\circ}$ C to $t_{c}=355.21^{\circ}$ C

Pressure ranges from $p_s(0^{\circ}C)=0.000004897$ bar to $p_c = 9.45229$ bar

Results for wrong input values

Result ZPTXMD3M = -1000, Z = -1000	or Z_ptx_MD3M = -1000	for input values:
---	------------------------------	-------------------

Single phase region:	<i>p</i> > 300 bar or <i>p</i> < 0.0000048971 bar or
(<i>x</i> = -1)	<i>t</i> > 400 °C or <i>t</i> < 0°C
Boiling or dew curve:	at $p = -1000$ and $t > t_c = 355.21^{\circ}$ C to $t < 0^{\circ}$ C at $t = -1000$ and $p > p_c = 9.451229$ bar or $p < p_s(0^{\circ}$ C) = 0.0000048971 bar or or $p > p_c = 9.45229$ bar or $p < p_s(0^{\circ}$ C) = 0.0000048971 bar and $t > t_c = 355.21^{\circ}$ C or $t < 0^{\circ}$ C

4/1

Property Libraries for Calculating Heat Cycles, Boilers, Turbines and Refrigerators

Water and Steam

Library LibIF97

- Industrial Formulation
 Library LibSBIL_95
 IAPWS-IF97 (Revision 2007) Extremely fast property calculations
- Supplementary Standards
 IAPWS-IF97-S01
 - IAPWS-IF97-S03rev
 - IAPWS-IF97-S04
- IAPWS-IF97-S05
- IAPWS Revised Advisory Note No. 3 on Thermodynamic Derivatives (2008)

Library LibSBTL_IF97

Library LibSBTL_95

Extremely fast property calculations according to the IAPWS Guideline 2015 Spline-based Table Look-up Method (SBTL) applied to the Industrial Formulation IAPWS-IF97 and to the Scientific Formulation IAPWS-95

for Computational Fluid Dynamics and simulating non-stationary processes

Humid Combustion Gas Mixtures

Library LibHuGas

Model: Ideal mixture of the real fluids:

 CO_2 - Span, Wagner H₂O - IAPWS-95 O₂ - Schmidt, Wagner N₂ - Span et al. Ar - Tegeler et al. and of the ideal gases: SO₂, CO, Ne

(Scientific Formulation of Bücker et al.) Consideration of:

- Dissociation from VDI 4670
- Poynting effect

Humid Air

Library LibHuAir

Model: Ideal mixture of the real fluids:

- Dry air from Lemmon et al.
 Steam, water and ice from
- IAPWS-IF97 and IAPWS-06

Consideration of:

- Condensation and freezing of steam
- Dissociation from VDI 4670Poynting effect from
- ASHRAE RP-1485

Carbon Dioxide Including Dry Ice

Library LibCO2

Formulation of Span and Wagner (1996)

Seawater

Library LibSeaWa

IAPWS Industrial Formulation 2013

lce

Library LibICE

Ice from IAPWS-06, Melting and sublimation pressures from IAPWS-08, Water from IAPWS-IF97, Steam from IAPWS-95 and -IF97

Ideal Gas Mixtures

Library LibldGasMix

Model: Ideal mixture of the ideal gases:

Ar	NO	He	Propylene
Ne	H ₂ O	F ₂	Propane
N ₂	SO ₂	NH ₃	Iso-Butane
O ₂	H ₂	Methane	n-Butane
СО	H₂S	Ethane	Benzene
CO ₂	ОН	Ethylene	Methanol
Air			

Consideration of: • Dissociation from the VDI Guideline 4670

Library LibIDGAS

Model: Ideal gas mixture from VDI Guideline 4670

Consideration of: • Dissociation from the VDI Guideline 4670

Humid Air

Library ASHRAE LibHuAirProp

Model: Virial equation from ASHRAE Report RP-1485 for real mixture of the real fluids: - Dry air

- Steam
- Consideration of:
- Enhancement of the partial saturation pressure of water vapor at elevated total pressures

www.ashrae.org/bookstore

Dry Air Including Liquid Air Library LibRealAir

Formulation of Lemmon et al. (2000)

Refrigerants

Ammonia

Library LibNH3

Formulation of Tillner-Roth et al. (1993)

R134a

Library LibR134a

Formulation of Tillner-Roth and Baehr (1994)

Iso-Butane

Library LibButane_Iso

Formulation of Bücker and Wagner (2006)

n-Butane

Library LibButane_n

Formulation of Bücker and Wagner (2006)

Mixtures for Absorption Processes

Ammonia/Water Mixtures

Library LibAmWa

IAPWS Guideline 2001 of Tillner-Roth and Friend (1998) Helmholtz energy equation for the mixing term (also useable for calculating the Kalina Cycle)

Water/Lithium Bromide Mixtures

Library LibWaLi

Formulation of Kim and Infante Ferreira (2004) Gibbs energy equation for the mixing term

Liquid Coolants

Liquid Secondary Refrigerants

Library LibSecRef

Liquid solutions of water with		
$C_2H_6O_2$	Ethylene glycol	
$C_3H_8O_2$	Propylene glycol	
C₂H₅OH	Ethanol	
CH₃OH	Methanol	
C ₃ H ₈ O ₃	Glycerol	
K ₂ CO ₃	Potassium carbonate	
CaCl ₂	Calcium chloride	
MgCl ₂	Magnesium chloride	
NaCl	Sodium chloride	
$C_2H_3KO_2$	Potassium acetate	
CHKO ₂	Potassium formate	
LiCl	Lithium chloride	
NH ₃	Ammonia	

Formulation of the International Institute of Refrigeration (IIR 2010)

Ethanol

Library LibC2H5OH

Formulation of Schroeder (2012)

Methanol Library LibCH3OH

Formulation of de Reuck and Craven (1993)

Propane Library LibPropane

Formulation of Lemmon et al. (2009)

Siloxanes as ORC Working Fluids

Octamethylcyclotetrasiloxane $C_8H_{24}O_4Si_4$ Library LibD4 Decamethylcyclopentasiloxane $C_{10}H_{30}O_5Si_5$ Library LibD5 Tetradecamethylhexasiloxane $C_{14}H_{42}O_5Si_6$ Library LibMD4M Hexamethyldisiloxane $C_6H_{18}OSi_2$ Library LibMM Formulation of Colonna et al. (2006)

Dodecamethylcyclohexasiloxane $C_{12}H_{36}O_6Si_6$ Library LibD6 Decamethyltetrasiloxane $C_{10}H_{30}O_3Si_4$ Library LibMD2M Dodecamethylpentasiloxane $C_{12}H_{36}O_4Si_5$ Library LibMD3M Octamethyltrisiloxane $C_8H_{24}O_2Si_3$ Library LibMDM Formulation of Colonna et al. (2008)

Nitrogen and Oxygen Libraries LibN2 and LibO2

Formulations of Span et al. (2000) and Schmidt and Wagner (1985)

Hydrogen Library LibH2

Formulation of Leachman et al. (2009)

Helium

Library LibHe

Formulation of Arp et al. (1998)

Hydrocarbons

Decane $C_{10}H_{22}$ Library LibC10H22 Isopentane C_5H_{12} Library LibC5H12_ISO Neopentane C_5H_{12} Library LibC5H12_NEO Isohexane C_6H_{14} Library LibC6H14 Toluene C_7H_8 Library LibC7H8 Formulation of Lemmon and Span (2006)

Further Fluids

Carbon monoxide CO Library LibCO Carbonyl sulfide COS Library LibCOS Hydrogen sulfide H_2S Library LibH2S Nitrous oxide N_2O Library LibN2O Sulfur dioxide SO₂ Library LibSO2 Acetone C_3H_6O Library LibC3H6O Formulation of Lemmon and Span (2006)

For more information please contact:

KCE-ThermoFluidProperties UG (limited liability) & Co. KG Professor Hans-Joachim Kretzschmar

Wallotstr. 3 01307 Dresden, Germany

Internet: www.thermofluidprop.com E-mail: info@thermofluidprop.com Phone: +49-351-27597860 Mobile: +49-172-7914607 Fax: +49-3222-4262250

The following thermodynamic and transport properties can be calculated^a:

Thermodynamic Properties

- Vapor pressure ps
- Saturation temperature T_s
- Density ρ
- Specific volume v
- Enthalpy h
- Internal energy u
- Entropy s
- Exergy e
- Isobaric heat capacity c_p
- Isochoric heat capacity c_v
- Isentropic exponent κ
- Speed of sound w
- Surface tension σ

Transport Properties

- Dynamic viscosity η
- Kinematic viscosity v
- Thermal conductivity λ
- Prandtl number Pr
- *p*, *T*(*v*,*h*) *p*, *T*(*v*,*u*)

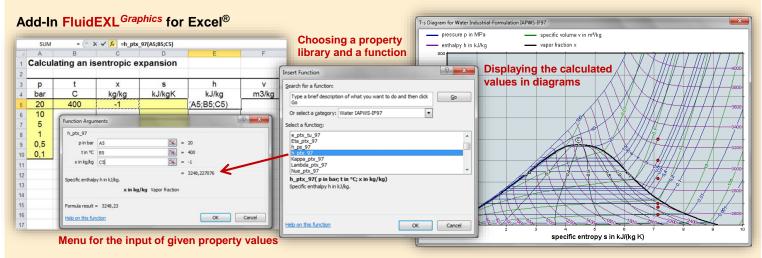
• T, v, s(p,h)

• *T*, *v*, *h*(*p*,*s*)

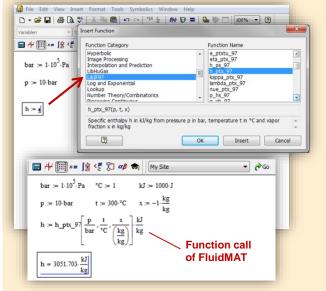
• p, T, v(h,s)

Backward Functions

Thermodynamic Derivatives


 Partial derivatives can be calculated.

^a Not all of these property functions are available in all property libraries.



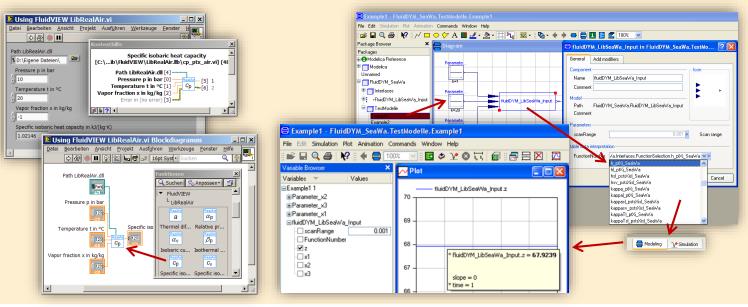
Property Software for Calculating Heat Cycles, Boilers, Turbines and Refrigerators

Add-In FluidMAT for Mathcad®

The property libraries can be used in Mathcad[®].

Add-In FluidLAB for MATLAB®

Using the Add-In FluidLAB the property functions can be called in MATLAB[®].


EMATLAR 7-3-0 (R2006b) le Edit Debug Desktop Window Help) 22 ↓ 3 ma ma con con bar 1 € 2 ↓ 2 ↓ CilProg hortcuts 2 How to Add 2 What's New ument Directory - CilProgramme\FluidLAB\LibHuAir_Examp C 1 ↔ 1 € C •	
Al Files ∠	Image: Command Window Image: Command Window Image: Command Window Image: Command Window

Add-On FluidVIEW for LabVIEW™

The property functions can be calculated in LabVIEW™.

Add-In FluidDYM for DYMOLA® (Modelica) and SimulationX®

The property functions can be called in DYMOLA® and SimulationX®.

Add-In FluidEES for Engineering Equation Solver[®]

? × Function Inform ○ EES library routines Math functions Fluid properties External routines ○ Boiling and Condensation 💌 Solid/liquid properties CIEBR.DLL CHENG ROBINSON.DLL CLIBHUAIRPROP SI.DLL CHIBCO2.DLL CLIBBC.DLL CURVEFIT1D n\Fuer_EES\HuAirProp_SI\Beisp Tables Plots Windows Help Exa Equations Window ulating the Enthalpy - h_ptWHuAirPn p=11 Main t=20 Unit Settings: [kJ]/[C]/[kPa]/[kg]/[degrees] W=(h = 45.4866 [kJ/kg] p = 101.3 [kPa] t = 20 [C] W = 0.01 [kg/kg] CAL No unit problems were detected. Calculation time = .1 sec.

App International Steam Tables for iPhone, iPad, iPod touch, Android Smartphones and Tablets

International Steam Tables

IAPWS-IF97

p,x t,x p,h p,s

Spe Den

Online Property Calculator at www.thermofluidprop.com

Zittau's	Fluid Property	Calculator		
Fluid:	Water and Steam IAPWS-IF	97 - LiblF97 💌	12XXXV	
Function:	Specific enthalpy h(p.t.x)	• //		
Unit System:	SI 💌			
Enter given	values: Range of validity			
Pressure p		100	bar	-
Temperature	et	400	-C	·
Vapor fractio	on x le vapor fraction x	-1	kg/kg	
	CONTRACTOR DE LA CONTRACTÓRIA DE LA CONTRACTOR DE LA CONTRA	e / Recalculate		K
Result:	1981 141	THARTS	119991	XX
Specific ent	halpy h	= 3097.38	kJ/kg	
Engineering E here.	ormation on property libraries quation Solver®, DYMOLA® iculating steam properties on description	(Modelica). Simulation	nX®, and LabView®	click
Faculty of Me Department of	University of Applied Sciences chanical Engineering of Technical Thermodynamics sachim Kretzschmar cker	Tel. +49-3583-61-184 Fax: +49-3583-61-184 E-mail: info@thermoo www.thermodynamics	46 dynamics-zittau.de	A A

Property Software for Pocket Calculators

For more information please contact:

KCE-ThermoFluidProperties UG (limited liability) & Co. KG Professor Hans-Joachim Kretzschmar

Wallotstr. 3 01307 Dresden, Germany Internet: www.thermofluidprop.com E-mail: info@thermofluidprop.com Phone: +49-351-27597860 Mobile: +49-172-7914607 Fax: +49-3222-4262250

The following thermodynamic and transport properties^a can be calculated in Excel[®], MATLAB[®], Mathcad[®], Engineering Equation Solver[®] (EES), DYMOLA[®] (Modelica), SimulationX[®] and LabVIEW[™]:

Thermodynamic Properties

- Vapor pressure p_s
- Saturation temperature T_s
- Density ρ
- Specific volume v
- Enthalpy h
- Internal energy u
- Entropy s
- Exergy e
- Isobaric heat capacity c_p
- Isochoric heat capacity c_v
- Isentropic exponent κ
- Speed of sound w
- Surface tension σ

Transport Properties

- Dynamic viscosity η
- Kinematic viscosity v
- Thermal conductivity λ
- Prandtl number Pr

Backward Functions

- *T*, *v*, *s*(*p*,*h*)
- T, v, h (p,s)
- p, T, v(h,s)
- p, T (v,h)
- p, T (v,u)

Thermodynamic Derivatives

 Partial derivatives can be calculated.

^a Not all of these property functions are available in all property libraries.

5. References

- [1] Colonna, P.; Nannan, N. R.; Guardone Multiparameter equations of state for selected siloxanes Fluid Phase Equilibria, 263, (2008) S. 115-130
- Span, R.
 Multiparameter Equations of State;
 An Accurate Source of Thermodynamic Property Data Springer Verlag 2000

6. Satisfied Customers

Date: 05/2018

The following companies and institutions use the property libraries

- FluidEXL^{Graphics} for Excel[®]
- FluidLAB for MATLAB®
- FluidMAT for Mathcad®
- FluidEES for Engineering Equation Solver[®] EES
- FluidDYM for Dymola $^{\ensuremath{\mathbb{R}}}$ (Modelica) and Simulation $X^{\ensuremath{\mathbb{R}}}$
- FluidVIEW for LabVIEW[™].

2018

Universität Madrid, Madrid, Spanien	05/2018
HS Zittau/ Görlitz, Fakultät Wirtschaft, Zittau	05/2018
HS Niederrhein, Krefeld	05/2018
GRS, Köln	03/2018
RONAL AG, Härklingen, Schweiz	02/2018
Ingenieurbüro Leipert, Riegelsberg	02/2018
AIXPROCESS, Aachen	02/2018
KRONES, Neutraubling	02/2018
Doosan Lentjes, Ratingen	01/2018

Compact Kältetechnik, Dresden	12/2017
Endress + Hauser Messtechnik GmbH +Co. KG, Hannover	12/2017
TH Mittelhessen, Gießen	11/2017
Haarslev Industries, Søndersø, Denmark	11/2017
Hochschule Zittau/Görlitz, Fachgebiet Energiesystemtechnik	11/2017
ATESTEO, Alsdorf	10/2017
Wijbenga, PC Geldermalsen, Netherlands	10/2017
Fels-Werke GmbH, Elbingerode	10/2017
KIT Karlsruhe, Institute für Neutronenphysik und Reaktortechnik	09/2017
Air-Consult, Jena	09/2017
Papierfabrik Koehler, Oberkirch	09/2017
ZWILAG, Würenlingen, Switzerland	09/2017
TLK-Thermo Universität Braunschweig, Braunschweig	08/2017
Fichtner IT Consulting AG, Stuttgart	07/2017
Hochschule Ansbach, Ansbach	06/2017
RONAL, Härkingen, Switzerland	06/2017
BORSIG Service, Berlin	06/2017

BOGE Kompressoren, Bielefeld	06/2017
STEAG Energy Services, Zwingenberg	06/2017
CES clean energy solutions, Wien, Austria	04/2017
Princeton University, Princeton, USA	04/2017
B2P Bio-to-Power, Wadersloh	04/2017
TU Dresden, Institute for Energy Engineering, Dresden	04/2017
SAINT-GOBAIN, Vaujours, France	03/2017
TU Bergakademie Freiberg, Chair of Thermodynamics, Freiberg	03/2017
SCHMIDT + PARTNER, Therwil, Switzerland	03/2017
KAESER Kompressoren, Gera	03/2017
F&R, Praha, Czech Republic	03/2017
ULT Umwelt-Lufttechnik, Löbau	02/2017
JS Energie & Beratung, Erding	02/2017
Kelvion Brazed PHE, Nobitz-Wilchwitz	02/2017
MTU Aero Engines, München	02/2017
Hochschule Zittau/Görlitz, IPM	01/2017
CombTec ProCE, Zittau	01/2017
SHELL Deutschland Oil, Wesseling	01/2017
MARTEC Education Center, Frederikshaven, Denmark	01/2017
SynErgy Thermal Management, Krefeld	01/2017

BOGE Druckluftsysteme, Bielefeld	12/2016
BFT Planung, Aachen	11/2016
Midiplan, Bietigheim-Bissingen	11/2016
BBE Barnich IB	11/2016
Wenisch IB,	11/2016
INL, Idaho Falls	11/2016
TU Kältetechnik, Dresden	11/2016
Kopf SynGas, Sulz	11/2016
INTVEN, Bellevne (USA)	11/2016
DREWAG Dresden, Dresden	10/2016
AGO AG Energie+Anlagen, Kulmbach	10/2016
Universität Stuttgart, ITW, Stuttgart	09/2016
Pöyry Deutschland GmbH, Dresden	09/2016
Siemens AG, Erlangen	09/2016
BASF über Fichtner IT Consulting AG	09/2016
B+B Engineering GmbH, Magdeburg	09/2016
Wilhelm Büchner Hochschule, Pfungstadt	08/2016

	Webasto Thermo & Comfort SE, Gliching	08/2016
	TU Dresden, Dresden	08/2016
	Endress+Hauser Messtechnik GmbH+Co. KG, Hannover	08/2016
	D + B Kältetechnik, Althausen	07/2016
	Fichtner IT Consulting AG, Stuttgart	07/2016
	AB Electrolux, Krakow, Poland	07/2016
	ENEXIO Germany GmbH, Herne	07/2016
	VPC GmbH, Vetschau/Spreewald	07/2016
	INWAT, Lodz, Poland	07/2016
	E.ON SE, Düsseldorf	07/2016
	Planungsbüro Waidhas GmbH, Chemnitz	07/2016
	EEB Enerko, Aldershoven	07/2016
	IHEBA Naturenergie GmbH & Co. KG, Pfaffenhofen	07/2016
	SSP Kälteplaner AG, Wolfertschwenden	07/2016
	EEB ENERKO Energiewirtschaftliche Beratung GmbH, Berlin	07/2016
	BOGE Kompressoren Otto BOGE GmbH & Co KG, Bielefeld	06/2016
	Universidad Carlos III de Madrid, Madrid, Spain	04/2016
	INWAT, Lodzi, Poland	04/2016
	Planungsbüro WAIDHAS GmbH, Chemnitz	04/2016
	STEAG Energy Services GmbH, Laszlo Küppers, Zwingenberg	03/2016
	WULFF & UMAG Energy Solutions GmbH, Husum	03/2016
	FH Bielefeld, Bielefeld	03/2016
	EWT Eckert Wassertechnik GmbH, Celle	03/2016
	ILK Institut für Luft- und Kältetechnik GmbH, Dresden 02/2016, 06/2	2016 (2x)
	IEV KEMA - DNV GV – Energie, Dresden	02/2016
	Allborg University, Department of Energie, Aalborg, Denmark	02/2016
	G.A.M. Heat GmbH, Gräfenhainichen	02/2016
	Institut für Luft- und Kältetechnik, Dresden 02/2016, 05/2016	06/2016
	Bosch, Stuttgart	02/2016
	INL Idaho National Laboratory, Idaho, USA 11/2016	01/2016
	FriedI ID, Wien, Austria	01/2016
	Technical University of Dresden, Dresden	01/2016
~		
20	015	
	EES Enerko, Aachen	12/2015
	Ruldolf IB, Strau, Austria	12/2015
	Allborg University, Department of Energie, Aalborg, Denmark	12/2015

Bosch, Lohmar	10/2015
Team Turbo Machines, Rouen, France	09/2015
BTC – Business Technology Consulting AG, Oldenburg	07/2015
KIT Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen	07/2015
ILK, Dresden	07/2015
Schniewindt GmbH & Co. KG, Neuenwalde	08/2015
2014	
PROJEKTPLAN, Dohna	04/2014
Technical University of Vienna, Austria	04/2014
MTU Aero Engines AG, Munich	04/2014
GKS, Schweinfurt	03/2014
Technical University of Nuremberg	03/2014
EP-E, Niederstetten	03/2014
Rückert NatUrgas GmbH, Lauf	03/2014
YESS-World, South Korea	03/2014
ZAB, Dessau	02/2014
KIT-TVT, Karlsruhe	02/2014
Stadtwerke Neuburg	02/2014
COMPAREX, Leipzig for RWE Essen	02/2014
Technical University of Prague, Czech Republic	02/2014
HS Augsburg	02/2014
Envi-con, Nuremberg	01/2014
DLR, Stuttgart	01/2014
Doosan Lentjes, Ratingen	01/2014
Technical University of Berlin	01/2014
Technical University of Munich	01/2014
Technical University of Braunschweig	01/2014
M&M Turbinentechnik, Bielefeld	01/2014
2013	
TRANTER-GmbH, Artern	12/2013
SATAKE, Shanghai, China	12/2013
VOITH, Kunshan, China	12/2013
ULT, Löbau	12/2013
MAN, Copenhagen, Dänemark	11/2013
DREWAG, Dresden	11/2013
Haarslev Industries, Herlev, Dänemark	11/2013
STEAG, Herne	11/2013, 12/2013
Ingersoll-Rand, Oberhausen	11/2013
Wilhelm-Büchner HS, Darmstadt	10/2013

IAN/ Characita	10/0012
IAV, Chemnitz	10/2013
Technical University of Regensburg	10/2013
PD-Energy, Bitterfeld	09/2013
Thermofin, Heinsdorfergrund	09/2013
SHI, New Jersey, USA	09/2013
M&M Turbinentechnik, Bielefeld	08/2013
BEG-BHV, Bremerhaven	08/2013
TIG-Group, Husum	08/2013
COMPAREX, Leipzig for RWE Essen	08/2013, 11/2013 12/2013
	08/2013
University of Budapest, Hungary	
Siemens, Frankenthal	08/2013, 10/2013
	11/2013
VGB, Essen	07/2013, 11/2013
Brunner Energieberatung, Zurich, Switzerland	07/2013
Technical University of Deggendorf	07/2013
University of Maryland, USA	07/2013, 08/2013
University of Princeton, USA	07/2013
NIST, Boulder, USA	06/2013
IGUS GmbH, Dresden	06/2013
BHR Bilfinger, Essen	06/2013
SÜDSALZ, Bad Friedrichshall	06/2013, 12/2013
Technician School of Berlin	05/2013
KIER, Gajeong-ro, Südkorea	05/2013
Schwing/Stetter GmbH, Memmingen	05/2013
Vattenfall, Berlin	05/2013
AUTARK, Kleinmachnow	05/2013
STEAG, Zwingenberg	05/2013
Hochtief, Düsseldorf	05/2013
University of Stuttgart	04/2013
Technical University -Bundeswehr, Munich	04/2013
Rerum Cognitio Forschungszentrum, Frankfurt	04/2013
Kältetechnik Dresen + Bremen, Alfhausen	04/2013
University Auckland, New Zealand	04/2013
MASDAR Institut, Abu Dhabi, United Arab Emirates	03/2013
Simpelkamp, Dresden	02/2013
VEO, Eisenhüttenstadt	02/2013
ENTEC, Auerbach	02/2013
Caterpillar, Kiel	02/2013
Technical University of Wismar	02/2013
Technical University of Dusseldorf	02/2013
,	

ILK, Dresden Fichtner IT, Stuttgart Schnepf Ingeniuerbüro, Nagold Schütz Engineering, Wadgassen Endress & Hauser, Reinach, Switzerland Oschatz GmbH, Essen frischli Milchwerke, Rehburg-Loccum	01/2013, 08/2013 01/2013, 11/2013 01/2013 01/2013 01/2013 01/2013 01/2013 01/2013
2012	
Voith, Bayreuth	12/2012
Technical University of Munich	12/2012
Dillinger Huette	12/2012
University of Stuttgart	11/2012
Siemens, Muehlheim	11/2012
Sennheiser, Hannover	11/2012
Oschatz GmbH, Essen	10/2012
Fichtner IT, Stuttgart	10/2012, 11/2012
Helbling Technik AG, Zurich, Switzerland	10/2012
University of Duisburg	10/2012
Rerum Cognitio Forschungszentrum, Frankfurt	09/2012
Pöyry Deutschland GmbH, Dresden	08/2012
Extracciones, Guatemala	08/2012
RWE, Essen	08/2012
Weghaus Consulting Engineers, Wuerzburg	08/2012
GKS, Schweinfurt	07/2012
COMPAREX, Leipzig for RWE Essen	07/2012
GEA, Nobitz	07/2012
Meyer Werft, Papenburg	07/2012
STEAG, Herne	07/2012
GRS, Cologne	06/2012
Fichtner IT Consult, Chennai, India	06/2012
Siemens, Freiburg	06/2012
Nikon Research of America, Belmont, USA	06/2012
Niederrhein University of Applied Sciences, Krefeld	06/2012
STEAG, Zwingenberg	06/2012
Mainova, Frankfurt on Main via Fichtner IT Consult	05/2012
Endress & Hauser	05/2012
PEU, Espenheim	05/2012
Luzern University of Applied Sciences, Switzerland	05/2012

BASF, Ludwigshafen (general license) via Fichtner IT Consult	05/2012
SPX Balcke-Dürr, Ratingen	05/2012, 07/2012
Gruber-Schmidt, Wien, Austria	04/2012
Vattenfall, Berlin	04/2012
ALSTOM, Baden	04/2012
SKW, Piesteritz	04/2012
TERA Ingegneria, Trento, Italy	04/2012
Siemens, Erlangen	04/2012, 05/2012
LAWI Power, Dresden	04/2012
Stadtwerke Leipzig	04/2012
SEITZ, Wetzikon, Switzerland	03/2012, 07/2012
M & M, Bielefeld	03/2012
Sennheiser, Wedemark	03/2012
SPG, Montreuil Cedex, France	02/2012
German Destilation, Sprendlingen	02/2012
Lopez, Munguia, Spain	02/2012
Endress & Hauser, Hannover	02/2012
Palo Alto Research Center, USA	02/2012
WIPAK, Walsrode	02/2012
Freudenberg, Weinheim	01/2012
Fichtner, Stuttgart	01/2012
airinotec, Bayreuth	01/2012, 07/2012
University Auckland, New Zealand	01/2012
VPC, Vetschau	01/2012
Franken Guss, Kitzingen	01/2012
2011	
XRG-Simulation, Hamburg	12/2011
Smurfit Kappa PPT, AX Roermond, Netherlands	12/2011
AWTEC, Zurich, Switzerland	12/2011
eins-energie, Bad Elster	12/2011
BeNow, Rodenbach	11/2011
Luzern University of Applied Sciences, Switzerland	11/2011
GMVA, Oberhausen	11/2011
CCI, Karlsruhe	10/2011
WBüchner University of Applied Sciences, Pfungstadt	10/2011
PLANAIR, La Sagne, Switzerland	10/2011
LAWI, Dresden	10/2011
Lopez, Munguia, Spain	10/2011
University of KwaZulu-Natal, Westville, South Africa	10/2011

Voith, Heidenheim	09/2011
SpgBe Montreal, Canada	09/2011
SPG TECH, Montreuil Cedex, France	09/2011
Voith, Heidenheim-Mergelstetten	09/2011
MTU Aero Engines, Munich	08/2011
MIBRAG, Zeitz	08/2011
RWE, Essen	07/2011
Fels, Elingerode	07/2011
Weihenstephan University of Applied Sciences	07/2011, 09/2011
	10/2011
Forschungszentrum Juelich	07/2011
RWTH Aachen University	07/2011, 08/2011
INNEO Solutions, Ellwangen	06/2011
Caliqua, Basel, Switzerland	06/2011
Technical University of Freiberg	06/2011
Fichtner IT Consulting, Stuttgart	05/2011, 06/2011,
	08/2011
Salzgitter Flachstahl, Salzgitter	05/2011
Helbling Beratung & Bauplanung, Zurich, Switzerland	05/2011
INEOS, Cologne	04/2011
Enseleit Consulting Engineers, Siebigerode	04/2011
Witt Consulting Engineers, Stade	03/2011
Helbling, Zurich, Switzerland	03/2011
MAN Diesel, Copenhagen, Denmark	03/2011
AGO, Kulmbach	03/2011
University of Duisburg	03/2011, 06/2011
CCP, Marburg	03/2011
BASF, Ludwigshafen	02/2011
ALSTOM Power, Baden, Switzerland	02/2011
Universität der Bundeswehr, Munich	02/2011
Calorifer, Elgg, Switzerland	01/2011
STRABAG, Vienna, Austria	01/2011
TUEV Sued, Munich	01/2011
ILK Dresden	01/2011
Technical University of Dresden	01/2011, 05/2011
	06/2011, 08/2011
	,

Umweltinstitut Neumarkt	12/2010
YIT Austria, Vienna, Austria	12/2010
MCI Innsbruck, Austria	12/2010

Link services of Obstituted	40/0040
University of Stuttgart	12/2010
HS Cooler, Wittenburg	12/2010
Visteon, Novi Jicin, Czech Republic	12/2010 12/2010
CompuWave, Brunntal	
Stadtwerke Leipzig	12/2010 12/2010
MCI Innsbruck, Austria	12/2010
EVONIK Energy Services, Zwingenberg	
Caliqua, Basel, Switzerland	11/2010 11/2010
Shanghai New Energy Resources Science & Technology, China	
Energieversorgung Halle	11/2010
Hochschule für Technik Stuttgart, University of Applied Sciences	11/2010
Steinmueller, Berlin	11/2010 11/2010
Amberg-Weiden University of Applied Sciences	
AREVA NP, Erlangen	10/2010
MAN Diesel, Augsburg	10/2010
KRONES, Neutraubling	10/2010
Vaillant, Remscheid	10/2010
PC Ware, Leipzig	10/2010
Schubert Consulting Engineers, Weißenberg	10/2010
Fraunhofer Institut UMSICHT, Oberhausen	10/2010
Behringer Consulting Engineers, Tagmersheim	09/2010
Saacke, Bremen	09/2010
WEBASTO, Neubrandenburg	09/2010
Concordia University, Montreal, Canada	09/2010
Compañía Eléctrica de Sochagota, Bogota, Colombia	08/2010
Hannover University of Applied Sciences	08/2010
ERGION, Mannheim	07/2010
Fichtner IT Consulting, Stuttgart	07/2010
TF Design, Matieland, South Africa	07/2010
MCE, Berlin	07/2010, 12/2010
IPM, Zittau/Goerlitz University of Applied Sciences	06/2010
TUEV Sued, Dresden	06/2010
RWE IT, Essen	06/2010
Glen Dimplex, Kulmbach	05/2010, 07/2010
	10/2010
Hot Rock, Karlsruhe	05/2010
Darmstadt University of Applied Sciences	05/2010
Voith, Heidenheim	04/2010
CombTec, Zittau	04/2010
University of Glasgow, Great Britain	04/2010
Universitaet der Bundeswehr, Munich	04/2010

Technical University of Hamburg-Harburg	04/2010
Vattenfall Europe, Berlin	04/2010
HUBER Consulting Engineers, Berching	04/2010
VER, Dresden	04/2010
CCP, Marburg	03/2010
Offenburg University of Applied Sciences	03/2010
Technical University of Berlin	03/2010
NIST Boulder CO, USA	03/2010
Technical University of Dresden	02/2010
Siemens Energy, Nuremberg	02/2010
Augsburg University of Applied Sciences	02/2010
ALSTOM Power, Baden, Switzerland	02/2010, 05/2010
MIT Massachusetts Institute of Technology Cambridge MA, USA	02/2010
Wieland Werke, Ulm	01/2010
Siemens Energy, Goerlitz	01/2010, 12/2010
Technical University of Freiberg	01/2010
ILK, Dresden	01/2010, 12/2010
Fischer-Uhrig Consulting Engineers, Berlin	01/2010
2000	
2009	
ALSTOM Power, Baden, Schweiz	01/2009, 03/2009
	05/2009
Nordostschweizerische Kraftwerke AG, Doettingen, Switzerland	02/2009
RWE, Neurath	02/2009
Brandenburg University of Technology, Cottbus	02/2009
Hamburg University of Applied Sciences	02/2009
Kehrein, Moers	03/2009
EPP Software, Marburg	03/2009
Bernd Münstermann, Telgte	03/2009
Suedzucker, Zeitz	03/2009
CPP, Marburg	03/2009
Gelsenkirchen University of Applied Sciences	04/2009
Regensburg University of Applied Sciences	05/2009
Gatley & Associates, Atlanta, USA	05/2009
BOSCH, Stuttgart	06/2009, 07/2009
Dr. Nickolay, Consulting Engineers, Gommersheim	06/2009
Ferrostal Power, Saarlouis	06/2009
BHR Bilfinger, Essen	06/2009
Intraserv, Wiesbaden	06/2009
Lausitz University of Applied Sciences, Senftenberg	06/2009
Nuernberg University of Applied Sciences	06/2009

Technical University of Berlin	06/2009
Fraunhofer Institut UMSICHT, Oberhausen	07/2009
Bischoff, Aurich	07/2009
Fichtner IT Consulting, Stuttgart	07/2009
Techsoft, Linz, Austria	08/2009
DLR, Stuttgart	08/2009
Wienstrom, Vienna, Austria	08/2009
RWTH Aachen University	09/2009
Vattenfall, Hamburg	10/2009
AIC, Chemnitz	10/2009
Midiplan, Bietigheim-Bissingen	11/2009
Institute of Air Handling and Refrigeration ILK, Dresden	11/2009
FZD, Rossendorf	11/2009
Techgroup, Ratingen	11/2009
Robert Sack, Heidelberg	11/2009
EC, Heidelberg	11/2009
MCI, Innsbruck, Austria	12/2009
Saacke, Bremen	12/2009
ENERKO, Aldenhoven	12/2009

Pink, Langenwang	01/2008
Fischer-Uhrig, Berlin	01/2008
University of Karlsruhe	01/2008
MAAG, Kuesnacht, Switzerland	02/2008
M&M Turbine Technology, Bielefeld	02/2008
Lentjes, Ratingen	03/2008
Siemens Power Generation, Goerlitz	04/2008
Evonik, Zwingenberg (general EBSILON program license)	04/2008
WEBASTO, Neubrandenburg	04/2008
CFC Solutions, Munich	04/2008
RWE IT, Essen	04/2008
Rerum Cognitio, Zwickau	04/2008, 05/2008
ARUP, Berlin	05/2008
Research Center, Karlsruhe	07/2008
AWECO, Neukirch	07/2008
Technical University of Dresden,	07/2008
Professorship of Building Services	
Technical University of Cottbus,	07/2008, 10/2008
Chair in Power Plant Engineering	
Ingersoll-Rand, Unicov, Czech Republic	08/2008

Technip Benelux BV, Zoetermeer, Netherlands	08/2008
Fennovoima Oy, Helsinki, Finland	08/2008
Fichtner Consulting & IT, Stuttgart	09/2008
PEU, Espenhain	09/2008
Poyry, Dresden	09/2008
WINGAS, Kassel	09/2008
TUEV Sued, Dresden	10/2008
Technical University of Dresden,	10/2008, 11/2008
Professorship of Thermic Energy Machines and Plants	
AWTEC, Zurich, Switzerland	11/2008
Siemens Power Generation, Erlangen	12/2008
2007	
Audi, Ingolstadt	02/2007
ANO Abfallbehandlung Nord, Bremen	02/2007
TUEV NORD SysTec, Hamburg	02/2007
VER, Dresden	02/2007
Technical University of Dresden, Chair in Jet Propulsion Systems	02/2007
Redacom, Nidau, Switzerland	02/2007
Universität der Bundeswehr, Munich	02/2007
Maxxtec, Sinsheim	03/2007
University of Rostock, Chair in Technical Thermodynamics	03/2007
AGO, Kulmbach	03/2007
University of Stuttgart, Chair in Aviation Propulsions	03/2007
Siemens Power Generation, Duisburg	03/2007
ENTHAL Haustechnik, Rees	05/2007
AWECO, Neukirch	05/2007
ALSTOM, Rugby, Great Britain	06/2007
SAAS, Possendorf	06/2007
Grenzebach BSH, Bad Hersfeld	06/2007
Reichel Engineering, Haan	06/2007
Technical University of Cottbus,	06/2007
Chair in Power Plant Engineering	
Voith Paper Air Systems, Bayreuth	06/2007
Egger Holzwerkstoffe, Wismar	06/2007
Tissue Europe Technologie, Mannheim	06/2007
Dometic, Siegen	07/2007
RWTH Aachen University, Institute for Electrophysics	09/2007
National Energy Technology Laboratory, Pittsburg, USA	10/2007
Energieversorgung Halle	10/2007
AL-KO, Jettingen	10/2007
Grenzebach BSH, Bad Hersfeld	10/2007

Wiesbaden University of Applied Sciences,	10/2007
Department of Engineering Sciences	11/2007
Endress+Hauser Messtechnik, Hannover Munich University of Applied Sciences,	11/2007
Department of Mechanical Engineering	11/2007
Rerum Cognitio, Zwickau	12/2007
Siemens Power Generation, Erlangen	11/2007
University of Rostock, Chair in Technical Thermodynamics	11/2007, 12/2007
0000	
2006	
STORA ENSO Sachsen, Eilenburg	01/2006
Technical University of Munich, Chair in Energy Systems	01/2006
NUTEC Engineering, Bisikon, Switzerland	01/2006, 04/2006
Conwel eco, Bochov, Czech Republic	01/2006
Offenburg University of Applied Sciences	01/2006
KOCH Transporttechnik, Wadgassen	01/2006
BEG Bremerhavener Entsorgungsgesellschaft	02/2006
Deggendorf University of Applied Sciences,	02/2006
Department of Mechanical Engineering and Mechatronics	00/0000
University of Stuttgart,	02/2006
Department of Thermal Fluid Flow Engines	
Technical University of Munich,	02/2006
Chair in Apparatus and Plant Engineering	
Energietechnik Leipzig (company license),	02/2006
Siemens Power Generation, Erlangen	02/2006, 03/2006
RWE Power, Essen	03/2006
WAETAS, Pobershau	04/2006
Siemens Power Generation, Goerlitz	04/2006
Technical University of Braunschweig,	04/2006
Department of Thermodynamics	
EnviCon & Plant Engineering, Nuremberg	04/2006
Brassel Engineering, Dresden	05/2006
University of Halle-Merseburg,	05/2006
Department of USET Merseburg incorporated society	05/0000
Technical University of Dresden,	05/2006
Professorship of Thermic Energy Machines and Plants	05/0000
Fichtner Consulting & IT Stuttgart	05/2006
(company licenses and distribution)	/
Suedzucker, Ochsenfurt	06/2006
M&M Turbine Technology, Bielefeld	06/2006
Feistel Engineering, Volkach	07/2006
ThyssenKrupp Marine Systems, Kiel	07/2006

С	aliqua, Basel, Switzerland (company license)		09/2006
A	tlas-Stord, Rodovre, Denmark		09/2006
	onstanz University of Applied Sciences,		10/2006
С	course of Studies Construction and Development		
S	iemens Power Generation, Duisburg		10/2006
	lannover University of Applied Sciences,		10/2006
	Department of Mechanical Engineering		
	iemens Power Generation, Berlin		11/2006
Z	ikesch Armaturentechnik, Essen		11/2006
V	Vismar University of Applied Sciences, Seafaring Department		11/2006
В	ASF, Schwarzheide		12/2006
E	nertech Energie und Technik, Radebeul		12/2006
200	5		
т	UEV Nord, Hannover		01/2005
	H.K Plant Engineering and Service, Bremerhaven		01/2005
	lectrowatt-EKONO, Zurich, Switzerland		01/2005
	CIT, Stuttgart		01/2005
	nergietechnik Leipzig (company license)	02/2005,	
_			07/2005
e	ta Energieberatung, Pfaffenhofen		02/2005
	ZR Forschungszentrum, Rossendorf/Dresden		04/2005
	Iniversity of Saarbruecken		04/2005
	echnical University of Dresden		04/2005
	rofessorship of Thermic Energy Machines and Plants		0 1/2000
	Grenzebach BSH, Bad Hersfeld		04/2005
	UEV Nord, Hamburg		04/2005
	echnical University of Dresden, Waste Management		05/2005
	iemens Power Generation, Goerlitz		05/2005
	Duesseldorf University of Applied Sciences,		05/2005
	pepartment of Mechanical Engineering and Process Engineering		03/2003
	edacom, Nidau, Switzerland		06/2005
	Jumas Verfahrenstechnik, Hofheim		06/2005
	lensys Engineering, Erkner		07/2005
	tadtwerke Leipzig		07/2005
	aarEnergie, Saarbruecken		07/2005
	LSTOM ITC, Rugby, Great Britain		08/2005
	echnical University of Cottbus, Chair in Power Plant Engineering		08/2005
	attenfall Europe, Berlin (group license)		08/2005
	echnical University of Berlin		10/2005
	asel University of Applied Sciences,		10/2005
D	epartment of Mechanical Engineering, Switzerland		

Midiplan, Bietigheim-Bissingen	11/2005
Technical University of Freiberg, Chair in Hydrogeology	11/2005
STORA ENSO Sachsen, Eilenburg	12/2005
Energieversorgung Halle (company license)	12/2005
KEMA IEV, Dresden	12/2005
2004	
Vattenfall Europe (group license)	01/2004
TUEV Nord, Hamburg	01/2004
University of Stuttgart, Institute of Thermodynamics and Heat Engineering	02/2004
MAN B&W Diesel A/S, Copenhagen, Denmark	02/2004
Siemens AG Power Generation, Erlangen	02/2004
Ulm University of Applied Sciences	03/2004
Visteon, Kerpen 03/20	004, 10/2004
Technical University of Dresden,	
Professorship of Thermic Energy Machines and Plants	04/2004
Rerum Cognitio, Zwickau	04/2004
University of Saarbruecken	04/2004
Grenzebach BSH, Bad Hersfeld	04/2004
SOFBID Zwingenberg (general EBSILON program license)	04/2004
EnBW Energy Solutions, Stuttgart	05/2004
HEW-Kraftwerk, Tiefstack	06/2004
h s energieanlagen, Freising	07/2004
FCIT, Stuttgart	08/2004
Physikalisch Technische Bundesanstalt (PTB), Braunschweig	08/2004
Mainova Frankfurt	08/2004
Rietschle Energieplaner, Winterthur, Switzerland	08/2004
MAN Turbo Machines, Oberhausen	09/2004
TUEV Sued, Dresden	10/2004
STEAG Kraftwerk, Herne 10/20	004, 12/2004
University of Weimar	10/2004
energeticals (e-concept), Munich	11/2004
SorTech, Halle	11/2004
Enertech EUT, Radebeul (company license)	11/2004
Munich University of Applied Sciences	12/2004
STORA ENSO Sachsen, Eilenburg	12/2004
Technical University of Cottbus, Chair in Power Plant Engineering	12/2004
Freudenberg Service, Weinheim	12/2004
2003	

Paper Factory, Utzenstorf, Switzerland01/2003MAB Plant Engineering, Vienna, Austria01/2003

	01/2002
Wulff Energy Systems, Husum	01/2003
Technip Benelux BV, Zoetermeer, Netherlands	01/2003
ALSTOM Power, Baden, Switzerland VER, Dresden	01/2003, 07/2003
	02/2003
Rietschle Energieplaner, Winterthur, Switzerland	02/2003
DLR, Leupholdhausen	04/2003
Emden University of Applied Sciences, Department of Technology	05/2003
Petterssson+Ahrends, Ober-Moerlen	05/2003
SOFBID ,Zwingenberg (general EBSILON program license)	05/2003
Ingenieurbuero Ostendorf, Gummersbach	05/2003
TUEV Nord, Hamburg	06/2003
Muenstermann GmbH, Telgte-Westbevern	06/2003
University of Cali, Colombia	07/2003
Atlas-Stord, Rodovre, Denmark	08/2003
ENERKO, Aldenhoven	08/2003
STEAG RKB, Leuna	08/2003
eta Energieberatung, Pfaffenhofen	08/2003
exergie, Dresden	09/2003
AWTEC, Zurich, Switzerland	09/2003
Energie, Timelkam, Austria	09/2003
Electrowatt-EKONO, Zurich, Switzerland	09/2003
LG, Annaberg-Buchholz	10/2003
FZR Forschungszentrum, Rossendorf/Dresden	10/2003
EnviCon & Plant Engineering, Nuremberg	11/2003
Visteon, Kerpen	11/2003
VEO Vulkan Energiewirtschaft Oderbruecke, Eisenhuettenstadt	11/2003
Stadtwerke Hannover	11/2003
SaarEnergie, Saarbruecken	11/2003
Fraunhofer-Gesellschaft, Munich	12/2003
Erfurt University of Applied Sciences,	12/2003
Department of Supply Engineering	
SorTech, Freiburg	12/2003
Mainova, Frankfurt	12/2003
Energieversorgung Halle	12/2003
2002	
	01/2002
Hamilton Medical AG, Rhaezuens, Switzerland	01/2002
Bochum University of Applied Sciences,	01/2002
Department of Thermo- and Fluid Dynamics	00/0000
SAAS, Possendorf/Dresden	02/2002
Siemens, Karlsruhe	02/2002

Siemens, Karlsruhe (general license for the WinIS information system)

FZR Forschungszentrum, Rossendorf/Dresden	03/2002
CompAir, Simmern	03/2002
GKS Gemeinschaftskraftwerk, Schweinfurt	04/2002
ALSTOM Power Baden, Switzerland (group licenses)	05/2002
InfraServ, Gendorf	05/2002
SoftSolutions, Muehlhausen (company license)	05/2002
DREWAG, Dresden (company license)	05/2002
SOFBID, Zwingenberg	06/2002
(general EBSILON program license)	
Kleemann Engineering, Dresden	06/2002
Caliqua, Basel, Switzerland (company license)	07/2002
PCK Raffinerie, Schwedt (group license)	07/2002
Fischer-Uhrig Engineering, Berlin	08/2002
Fichtner Consulting & IT, Stuttgart	08/2002
(company licenses and distribution)	
Stadtwerke Duisburg	08/2002
Stadtwerke Hannover	09/2002
Siemens Power Generation, Goerlitz	10/2002
Energieversorgung Halle (company license)	10/2002
Bayer, Leverkusen	11/2002
Dillinger Huette, Dillingen	11/2002
G.U.N.T. Geraetebau, Barsbuettel	12/2002
(general license and training test benches)	
VEAG, Berlin (group license)	12/2002
2001	
ALSTOM Power, Baden, Switzerland	01/2001, 06/2001
	12/2001
KW2 B. V., Amersfoot, Netherlands	01/2001, 11/2001
Eco Design, Saitamaken, Japan	01/2001
M&M Turbine Technology, Bielefeld	01/2001, 09/2001
MVV Energie, Mannheim	02/2001
Technical University of Dresden, Department of	02/2001
Power Machinery and Plants	
PREUSSAG NOELL, Wuerzburg	03/2001
Fichtner Consulting & IT Stuttgart	04/2001
(company licenses and distribution)	
Muenstermann GmbH, Telgte-Westbevern	05/2001
SaarEnergie, Saarbruecken	05/2001
Siemens, Karlsruhe	08/2001
(general license for the WinIS information system)	
Neusiedler AG, Ulmerfeld, Austria	09/2001

h s energieanlagen, Freising Electrowatt-EKONO, Zurich, Switzerland IPM Zittau/Goerlitz University of Applied Sciences (general license) eta Energieberatung, Pfaffenhofen ALSTOM Power Baden, Switzerland VEAG, Berlin (group license)	09/2001 09/2001 10/2001 11/2001 12/2001 12/2001
2000	
SOFBID, Zwingenberg	01/2000
(general EBSILON program license)	
AG KKK - PGW Turbo, Leipzig	01/2000
PREUSSAG NOELL, Wuerzburg	01/2000
M&M Turbine Technology, Bielefeld	01/2000
IBR Engineering Reis, Nittendorf-Undorf	02/2000
GK, Hannover	03/2000
KRUPP-UHDE, Dortmund (company license)	03/2000
UMAG W. UDE, Husum	03/2000
VEAG, Berlin (group license)	03/2000
Thinius Engineering, Erkrath	04/2000
SaarEnergie, Saarbruecken	05/2000, 08/2000
DVO Data Processing Service, Oberhausen	05/2000
RWTH Aachen University	06/2000
VAUP Process Automation, Landau	08/2000
Knuerr-Lommatec, Lommatzsch	09/2000
AVACON, Helmstedt	10/2000
Compania Electrica, Bogota, Colombia	10/2000
G.U.N.T. Geraetebau, Barsbuettel	11/2000
(general license for training test benches)	10/0000
Steinhaus Informationssysteme, Datteln	12/2000
(general license for process data software)	
1999	
Bayernwerk, Munich	01/1999
DREWAG, Dresden (company license)	02/1999
KEMA IEV, Dresden	03/1999
Regensburg University of Applied Sciences	04/1999
Fichtner Consulting & IT, Stuttgart	07/1999
(company licenses and distribution)	
Technical University of Cottbus, Chair in Power Plant Engineering	07/1999
Technical University of Graz, Department of Thermal Engineering, A	
Ostendorf Engineering, Gummersbach	12/1999

Technical University of Cottbus, Chair in Power Plant Engineering	05/1998
Fichtner Consulting & IT (CADIS information systems) Stuttgart	05/1998
(general KPRO program license)	
M&M Turbine Technology Bielefeld	06/1998
B+H Software Engineering Stuttgart	08/1998
Alfa Engineering, Switzerland	09/1998
VEAG Berlin (group license)	09/1998
NUTEC Engineering, Bisikon, Switzerland	10/1998
SCA Hygiene Products, Munich	10/1998
RWE Energie, Neurath	10/1998
Wilhelmshaven University of Applied Sciences	10/1998
BASF, Ludwigshafen (group license)	11/1998
Energieversorgung, Offenbach	11/1998

Gerb, Dresden	06/1997
Siemens Power Generation, Goerlitz	07/1997