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ABSTRACT 

A new Industrial Formulation for the thermody­
namic properties of water is to replace the IFC 67 
formulation currently in use. It is expected to be more 
precise and at least 3 times faster when used in 
process modeling. 

The paper presents equations for the so called 
backward functions T=T(p,h) and T=T(p,s). The 
equations fit the corresponding forward equations 
h=h(T,p) and s=s(T,p) developed previously within the 
international task group "New Industrial Formulation" 
extremely weil. Their maximum deviation from the 
corresponding forward equations is less than 
dT=0.025 K. Calculating backward functions using 
these equations requires 5 to 14 times less computing 
time than iterating them from the IFC 67 forward 
equations. 

In order to set up the equations with minimal 
manual expenditure, a special algorithm was 
developed. The algorithm connects sophisticated meth­
ods for optimizing the structure of thermodynamic 
correlation equations with a method for simultaneous 
steady approximation. 

The accuracy of the backward equations can be 
improved by an iteration procedure developed for this 
purpose. 

NOMENCLATURE 

llj coefficients 
as speed of sound 
c p specific isobaric heat capacity 
C specific isochoric heat capacity v 
f specific free energy 
g specific free enthalpy 
h specific enthalpy 
I,J integer exponents 

p pressure 
R ideal gas constant of water 
s specific entropy 
T Temperature 
v ·specific volume 
d difference 
1t reduced pressure (1t=p/pcr) 
• reduced temperature (.=Telf) 

SUBSCRIPTS 

cr critical 
m mean value 
n normalization factor (divisor) 

reduced 
s saturated, saturation 
tr tripIe 

SUPERSCRIPTS 

con consistency 
it iterated 

CONSTANTS 

hcr = 2085.1246 kJ/kg 
hn = 2000 kJ/kg 
Pcr = 22.064 MPa 
Pn = 22 MPa 
R = 0.46152 kJ/kg K 
scr = 4.4237 kJ/kg K 
sn = 4.41 kJ/kg K 

= 647.096 K Tcr 
T = I K n 

INTRODUCTION 

Currently, the International Association for the 
Properties of Water and Steam (IAPWS) is working on 
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a new Industrial Formulation for calculating the 
thermodynamic properties of water and steam. For that 
purpose, an international task group termed the "Task 
Group New Industrial Formulation" was founded. The 
project is described in detail by Wagner and Rukes in 
[1]. 

The new Industrial Formulation is to have an 
accuracy commensurable with the current state of 
measurement technology and a considerably reduced 
computing time compared to the existing IFC 67 
formulation when used in process modeling. In order 
to achieve such a fast equation package, explicit 
equations for the most important backward functions 
T=T(p,h), T=T(p,s) and Ts=Ts(p), calculated iteratively 
until now, will be set up. The backward equations 
have to fit the corresponding forward equations 
h=h(T,p), s=s(T,p) and ps=ps(T) extremely weH, i.e. 
they have to be numerically consistent. If they are not, 
process modeling may fail. 

IAPWS asked many turbine manufacturers to test 
their algorithms for calculating power cycles, to deter­
mine the least acceptable level of numerical 
consistency. The results of these investigations were 
then included in the specifications for the new 
Industrial Formulation, as set forth by the IAPWS 
Subcommitee on Industrial Calculations (SIe). 

This paper presents equations T=T(p,h) and 
T=T(p,s) for both liquid and vapour states. 

For the case in which the consistency criterion 
set by IAPWS and to be held by the equations does 
not meet the requirements of a particular process 
modeling, an iteration algorithm, here further refined 
from its original version [2], was developed. With this 
algorithm, the numerical consistency can be improved 
by two orders of magnitude with one iteration step. 

THE NEW INDUSTRIAL FORMULATION 

Range of validity and functions 
The new Industrial Formulation will be valid in 

the pressure range 0.6112 kPa to 100 MPa and in the 
temperature range 273.15 K to 1073.15 K (see Fig. 1). 
The liquid range (1) corresponds to Region 1 of 
IFC 67 and covers temperatures up to 623.15 K. The 
vapour range (2) coincides with Region 2 of IFC 67; 
the new Industrial Formulation will use the same 
quadratic boundary equation pdT) as IFC 67. For 
both, liquid and vapour ranges, the equations for the 
specific free enthalpy g=g(T,p) and for the backward 
functions T=T(p,h) as weil as T=T(p,s) are to be set 
up. The critical range (3) is equivalent to Region 3 and 
4 of IFC 67. In this region only one equation f=f(T,v) 
will be established. Also equations Ps=Ps(T) and 
Ts=TS<p) for the saturation line will be included in the 
new Industrial Formulation. 

The accuracy required of the equations must 

Fig.l	 Functions of the new Industrial Formulation 
and their ranges of validity 

satisfY two important criteria: First, the equations must 
represent physical truth within definite tolerances. 
Second, they have to be numerically consistent. 

Accuracy 
Data Base and Permissible To1erances, T h e 

forthcoming new Scientific Formulation will be used as 
the data base for establishing the new Industrial Formu­
lation, thus enabling it to more c10sely represent physi­
cal truth. The new Scientific Formulation is expected to 
become the best available representation of the thermo­
dynamic properties of water. 

The permissible deviation from the new Scientific 
Formulation is defined as folIows: From the g=g(T,p) 
and f=f(T,v) equations all other thermodynamic proper­
ties such as v, h, s, c ' C and as must be derivable, such p v 
that the tolerance of v and h shall not exceed their 
respective tolerances in the International Skeleton Table, 
IST 85, in the Caller's 1994 revised form [3]. The devia­
tions of cF. and as have to be generally less than 0.5%, 
and in difficult regions less than 1.0%. 

Essentially, the Skeleton Tables IST 85 represent 
the current status of measurement technology. Therefore, 
the new Industrial Formulation will hold to the toleran­
ces of measured data. 

Numerical Consistencv, Numerical consistency is 
defined by the maximum distance between the state 
surfaces described by two different equations with the 
same three variables. The difference between the values 
obtained from the two equations is the numerical consis 
tency error. For instance, the numerical consistency error 
6'f'l°n between h=h(T,p) and T=T(p,h) is equal to the 
maximum difference between T calculated directly from 
T=T(p,h) and Tit calculated iteratively from h=h(T,p). 
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,ncon = MAX(IT _ Titl) (I) 

Investigations of the SIC (see above) have 
proved that the following conditions are to be met in 
order to ensure numerical consistency for the forward 
and backward equations and to avoid failures in 
process modeling: The difference between h=h(T,p) 
and T=T(p,h) as weil as between s=s(T,p) and 
T=T(p,s) must not exceed 

Cl.Tcon = 0.025K for s~5.85 kJ/kg K 
and (2) 

Cl.Tcon = O.OIOK for s>5.85 kJ/kg K. 

The dashed line in Fig. 1 represents constant s, equal 
to 5.85kJ/kg K. 

NUMERICALLY CONSISTENT EQUATIONS 

Liquid Range 
The equations presented in this section have been 

fitted to the higher accurate equation f=f(T,v) of Saul 
and Wagner [4] with 58 coefficients. They are the 
results of a search for efficient equation structures able 
to fulfill the IAPWS demands. It is expected that such 
or similar equation structures will be numerically 
consistent with respect to the forward equation 
gl =gl(T,p) of the new Industrial Formulation, as weIl. 

The numerical consistency criterion 
Cl.Tcon~0.025K with respect to the Saul-Wagner­
equation can be met with equation structures as 
folIows: 

20 I. J. 
(3)T1(P,h) = TnI::ajp/hr' 

j=1 

where Pr=p/Pn' hr=h/hn+0.1, Ij=-2 ... 5 and J j =-5 ... 27 

and 

19 I J
i j (4)T](p,s) =Tn·I>jPrSr 

j=1 

where pr=p/Pn, sr=s/sn+0.1, I j=-4 .. .4 and J j=-5 ...31 

Equations (3) and (4) are about 14 times faster than 
the functions iterated from the IFC 67 equations. 

Vapour Range 
The equations for region 2 have been fitted to 

data calculated from the equation g2=g2(T,p) by Kruse 
and Wagner [5]. This is a very fast equation with 
simple polynomials, and it is to be expected that a 
similar equation structure will be part of the new 
Industrial Formulation. Therefore, using this equation 
as the forward equation is a good basis in searching 

for equation structures for the backward equations. 
In region 2, there has been no success in meeting 

the criteria of numerical consistency while using only 
one equation for each backward function. This region 
has therefore been split into subregions. Subregion 2C is 
for entropies less than 5.85 kJ/kg K (see Fig. I), subre­
gions 2B and 2A are for higher entropies. The border 
between subregions 2B and 2A is defined by a constant 
pressure of 6.5 MPa (dotted line in Fig. I). Subregion 
2B is for higher pressures; subregion 2A for lower. 

As of the date of preparation of this paper the 
demands on numerical consistency (Cl.Tcon~0.025 K and 
Cl.Tcon~O.OlO K respectively) have best been met by the 
following equation structures in subregions 2A, 2B and 
2C respectively: 

. 30 I. J. 
T2A(P,h) = Tcr' !>jPr' hr' (5) 

j=1 

where P =(P/P )I/4, h =h/h -2.5, I j=0 .. .44, Jj=0...52r cr r cr

3S I. J. 
T2B(P,h) = Tcr' L ajpr'hr' (6) 

j=1 

where Pr=p/pcr+ I, h =h/hcr-2.2, I j=-24 ... 16, Jj =0...60r

3S I. J. 
T2C(p,h) = Tcr' L ajp/h ' (7)r 

j=1 

where Pr=P/Pcr+I, hr=h/hcr-2.2, It=-24... 16, J j=0...60 

40 
_ "" I i Ji (8)T2A(P,s) - Tcr In(Pr)' 4J ajPr sr 

j=1 

where Pr=p/pcr' sr=s/scr' Ij=0.. ,16, Jj=-56 ...64 

38 I. J. 

T2B(P,s) = Tcr' L a;, p/ sr' (9) 
j=1 

where Pr=P/Pcr+I, sr=s/scr-2.3, Ij=-32...4, J j=0.. .44 

38 
_ "" I; J j (10)T2C(P,s) - Tcr' 4J aj Pr Sr . 

j=l 

where Pr=P/Pcr+I, sr=s/scr-2.3, Ij=-12...24, J j=0...64 

Use of equations (5) through (10), including the neces­
sary algorithms for switching between subregions, is 
from 5 to 6 times faster than iterating the corresponding 
functions from the equations of IFC 67. 

APPROXIMATlON PROCEDURE 

For setting up a1l of the above equations an 
a1gorithm developed by Willkommen [6,7] was used. The 
algorithm finds numerically consistent equations with a 
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minimized total number of terms automatically and 
with hardly any subjective influence. It connects the 
structure optimization method of Setzmann and 
Wagner [8] with the simultaneous steady 
approximation method of Zschunke [9]. The 
disadvantages of the one method are thus compensated 
by the advantages of the other. 

The structure optimization method is aleast 
squares method for setting up regression equations. 
With respect to the sum of the squares, it selects the 
best combination of only a few terms from a large 
number of possible mathematical terms. That is, the 
root-mean-square is minimized. In order to minimize 
the maximum error the simultaneous steady 
approximation method is used. With it, the maximum 
error of several independent equations, such as the 
forward and backward equations, can be minimized. 
The structure of these equations is determined 
previously by structure optimization methods. 

Sub-algorithms for optimizing the distribution of 
the regression input data and for optimizing their 
weightings have been developed in order to obtain 
good equations automatically. Optimization of data 
distribution and weighting is important, because it 
influences not only the coefficients, but the selection 
of terms, too. 

IMPROVED ITERAnON PROCEDURE 

Via the following procedure, the numerical 
consistency of equations h=h(T,p) and T=T(p,h) can be 
improved by about two orders of magnitude with one 
iteration step (i.e. two calls of the forward equation). 

First, the starting value T, is calculated for given 
p and h: 

T1=T(p,h) (11 ) 

Then 
h,=h(T1,p) (12) 

is determined. The temperature T2 is estimated from an 
average cp,rn adjusted separately for region 1 as weil as 
for subregions 2A, 2B and 2C: 

T2=T,+(h-h 1)/cp,rn (13) 

After that 

h2=h(T2,p) (14) 

is calculated. The iterated temperature Tit is computed 
now according to: 

Tit=T, +(h-h,)(T2-T,)/(h2-h,) (15) 
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A similar procedure can be used for improving the 
numerical consistency of equations s=s(T,p) and 
T=T(p,s). In this case Eq. (13) must be written: 

T2=T,+T, (s-s,)/cp,m (16 

CONCLUSION 

Equation structures for the backward functions 
T=T(p,h) and T=T(p,s) capable of meeting the demand­
ing requirements of numerical consistency for process 
modeling are presented. The backward equations 
consume much less computing time than the iteration of 
these functions from corresponding forward equations 
h=h(T,p) and s=s(T,p). 

Furthermore, an effective iteration procedure for 
process modeling WIder the most extreme requirements 
of numerical consistency is presented. 
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