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ABSTRACT 
The paper presents an algorithm which is able to gener­

ate interpolation tables with optimized data density 
- for the required interpolation accuracy (absolute or rela­

tive) 
- for the required thennodynamic functions, including 

backward functions, and 
- for a given interpolation method (linear interpolation, 

spline interpolation - with or without coordinate trans­
fonnations). 
The generated tables may be used for the interpolation 

of thennodynamic properties in process modeling. The 
optimization of the data density is realized by a flexible 
strategy of condensing the data grid. Ranges of state where 
the required interpolation accuracy is already fulfilled are 
sorted out step by step. Furthennore, the data density is 
decreased by transfonning the properties concemed in the 
interpolation. The transfonnations differ in the liquid and 
vapor regions and, also, for linear and spline interpo­
lations. 

The fmdings show that the number of data points neces­
sary for accurate interpolations is considerably fewer than 
expected. 

INTRODUCTION 
The interpolation of thennodynamic properties in proc­

ess modeling is becoming more and more attractive due to 
the availability of computers with large memories and 
modem spline algorithms. The advantages of interpolation 
are: 

• Simple mathematical operations requiring very brief 
computing times. 

• Fast application	 of the calculations to other fluids, 
other functions, or other ranges of state, by merely 
replacing the interpolation data tables. 

• Interpolation	 of both forward and backward thenno­
dynamic functions, such as h=f(T,p) and T=f(h,p), 
with the extremely high numerical consistency 
required in process modeling. 

A very important issue in all interpolations is the density of 
the data tables. As is weIl known, the data density depends 
on: 

- the demanded interpolation accuracy 
- the interpolation method used. 

However, the data density may be decreased, provided the 
variables upon which the interpolation is based are first 
mathematically transfonned. 
This investigation advances the authors' earlier works 
(Kretzschmar, 1990) and (NabeI, 1991) and describes the 
present state of research. 

INTERPOLATION METHODS AND DATA TABLE 
STRUCTURE 

In the work presented here, linear and spline interpo­
lations have been applied. The procedure for generating 
the corresponding, optimized data tables can also be used 
for other interpolation methods. 

As shown in Fig. I, the data tables for supercooled 
liquid and superheated vapour are divided by the saturation 
line Ps =f(T) and by the critical isothenn Tcr =const above 
the critical pressure and have an isobaric structure. 
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for each isobar Pi, and for T between Tj,j and Tj+1,i' For 

calculation of the polynomial coefficients aj,j.. A,j, the 

derivatives (dzldT)p at both ends of the isobar Pi are 
determined numerically from the base equation (Späth, 
1978). 
If an isobar has only two data points, linear interpolation is 
used. If only three data points are present, quadratic 
Lagrange interpolation (Engeln-Müllges, 1993) is used. 
Cubic spline interpolation requires at least four data points. 
Linear interpolation takes place between the polynomials 

The data points along the isobars correspond to different 
temperatures and include the saturation temperature in the 
case that the saturation line is part of the required range of 
state. This means that the data tables do not have an iso­

therm structure. For every property z (z = v, h, s, cp ' Cis, A 
or Tl, etc.) to be interpolated in process modeling, a data 

table consisting of data point (Pi, Tj,i' Zj) is stored. There­
fore, points on adjacent isobars display a trapezoidal 
geometry (see Fig. 1). This data structure has the advan­
tage that thermodynamic variables arbitrarily close to the 
saturation line need not be interpolated as special cases. 

The spline interpolation is here achieved by using one­
dimensional, cubic spline polynomials of the form 

FUNCTIONAL DEPENDENCIES FOR 
INTERPOLATION 

In Fig. 2, the functional dependencies to be interpolated 
in calculations of thermodynamic properties are summa­
rized. 

One-dimensional interpolations z = f(x) are sufficient 
for calculating properties for the saturation states 

(x, z = p, T, v, h, S, cp' Cis, A or Tl, etc.). The backward 
function x = f(z) can be interpolated with exact numerical 
consistency with the respect to the related forward function 

z = f(x) using the same data points (Xj, Yj)' When using 
cubic spline polynomials for z = f(x), the backward func­
tion may by calculated by the analytic solution algorithm 
for cubic equations (Bronstein and Semendjajev, 1984) 
with, however, an increase in calculation time because of 
the transcendent functions that have to be computed. 

Two-dimensional interpolations are necessary for calcu­
lating properties in the single phase regions. In the fIrst 

instance, shown in Fig.2, one property z (z = v, h, s, cp ' 

as ' A or Tl, etc.) is linked to the grid variables pressure and 
temperature. Both the forward function z = f(T,p) and 
backward functions T = f(z,p), p = f(z,T) can be interpo­

lated using the same data points (Pi, Tj,j, Zj,i)' For example, 
the functions h = f(T,p) and T = f(h,p), both very important 
in process modeling, are interpolated in this way. The 
numerical consistency between the forward and backward 
functions obtained is extremely high. 
In the second instance, two properties z and w 

(z, w = v, h, s, cp ' Cis, A or Tl, etc.), both of which provide 
interpolation data tables over the p,T-grid, have to be 
handled. Here, besides z and w, only one grid variable is 
involved: either p or T. The functions p = f(s,h) and 
h = f(s,p) required in process modeling are frequently seen 
in two-property interpolations. Again, the related forward 
functions h = f(T,p), s = f(T,p) are interpolated over the 

same (Pi, Tj,i> hj,i) and (pj, Tj,j, Sj) data tables. 

along the adjacent isobars. While this procedure allows 
arbitrary trapezoidal data sets to be handled, a certain loss 
of accuracy in comparison with direct, two-dimensional 
spline interpolation does have to be accepted. 
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One-dimensional 

Z = f(x) 

x = f (z) 

z= f(T,p) 

T =f(z,p) 

p=f(z, T) 

P= f(z, w) 

T=f(z,w)	 

zInterpolation Data Zj' Xj 

Examples:	 Ps=f(T)
 

Ts = f(p)
 

x 

Two-dimensional 

1. Interpolation Data 

Zji in Pj' Tj,rGrid
 

Examples: h = f(T,p)
 TAT = f(h,p) 

2. '0,."",1."" D.ta ~ 
z· . in p' T ·-Grid),1 )'	 ),1 

Wj,i in Pj' Tj,i-Grid 
T p 

z=f(w,p) 
Examples:	 p = f(s,h) 

Z=f(T, w) 
h = f(s,p) 

FIGURE 2. Functional Dependencies ofThennodynamic 
Properties to be Interpolated in Process Modeling 

TRANSFORMATION OF COORDINATES 
The accuracy of every interpolation can be increased by 

transfonning the properties concemed in the interpolation 
(transfonnation of coordinates). The following two exam­
pies show the increase in accuracy obtained by using suit­
able transfonnations. In the upper part of Table 1, values 
of vapour pressure Ps and calculated va1ues for saturation 
temperature Ts and the saturated vapour volume v" of 
water are 1isted (using the IFC 67 Fonnulation (Grigull, 
1989 and Meyer, 1967). 

Starting from the middle temperature Ts = 457.217 K, 
the related value of vapour pressure is fIrst calculated 
using linear interpolation and the two adjacent data points. 
The result is shown in the middle part of Table 1. Linear 
interpolation without coordinate transfonnation yie1ds a 
deviation of 0.3%. Using linear interpolation with the 
coordinate transfonnation In(p), lIT, the absolute va1ue of 
the error decreases to 0.008%, for an overall increase in 
interpolation accuracy of more than one order of magni­
tude. 

TABLE 1. Interpolation of Vapour Pressure and Saturated 
Vapour Volume ofWater With and Without Transfor­

mation of Coordinates 

IFC 1967 Fonnulation for Water 

v" 
3 

TsPs 

m /kg kPa K 

453.0341000.00 0.194293 

1100.00 ~ 457.217 ~ 0.177384 

1200.00 461.111 0.163200 

Linear Interpolation Relative devia­
tionps= f(Ts=457.217K) 

Without trans­
fonnation: Ps = 1103.58 kPa 0.3 % 

With transfor­
mation 

1 Ps = 1099.91 kPa -0.008 % 
In (Ps)'	 - :
 

Ts
 

Linear Interpolation Relative devia-
V" = f(Ts=457.217K) tion 

Without trans- v" = 0.178190 0.5% 
fonnation: m3/kg 

With transfor­
mation v" =0.177514 0.07% 

m3/kgIn (v"), Ts : 

With transfor­
mation v" = 0.177378 -0.003% 

1 m3/kg
In (v"),	 - :
 

Ts
 

The reason for this can be seen in Figure 3. While the 
vapour pressure function is exponential in the ordinary 
p,T-plane, i.e. in the general z,x-plane, in the transfonned 
Z,X-plane, where Z = In(p), X = lIT, it is almost a straight 
line. Therefore, a linear interpolation in the transfonned 
plane, given by 

x-x· 
Z=Zj+ J (Zj+l-Zj), (2) 

x j+l - Xj 

where j and j+1 are data points, 
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z~pmust be considerably more precise. Note, the interpolated Z~ln(p) t 
result Z has to be retransformed into Z using the inverse 
transformation function. 

For fast interpolations, the data points (Xj,Zj) and 

(Xj+1,Zj+1) should be stored in the data table already trans­

formed as (Xj>Zj) and (Xj+l,Zj+l)' In this way, only the 
given value x has to be transformed and the interpolated 
value Z retransformed. The computing time compared to 
interpolation without transformation, will admittedly in­
crease particulary, when using the logarithm as the trans­
formation function, as was done for pressure. But 
investigations have shown, that the logarithm may be 
replaced by the fourth root, which may then be computed 
by the fast square root function, without considerable loss 
of accuracy (Kretzschmar et al., 1995). 

Similar results are obtained when interpolating 

v" = f(Ts). The bottom part of Table I demonstrates the 

accuracies achieved by using linear interpolation without 
and with two different coordinate transformations. Here, 
the accuracy is increased from 0.5% without transfor­

mation to 0.003% with the transformation In(v"), 1fTS' 

Table 2 shows the transformations used for linear and 
spline interpolations of important properties in the super­
cooledlsaturated liquid region and superheatedlsaturated 
vapour regions. These transformations may be also used 
for interpolating thermodynamic tables by hand. When the 
range of state to be interpolated is situated far from the 

saturation states, other transformations are to be preferred. 
They result from the thermodynamic dependencies in the 
ideal gas and ideal (incompressible) liquid regions, 
respectively. 

To sum up, transformation of coordinates increases in­
terpolation accuracy and as discussed below, reduces the 
number of data points required for a given level of accu­
racy. Using coordinate transformations, the loads of data 
necessary in the methods of Pfleger (1988) and van der 
Looij (1986) could be reduced considerably. However, 
computing time does increase when transcendent trans­

formation functions are used. 

FIGURE 3. Vapour Pressure Curve ofWater in the p,T­

and in the 1n(p),lfT-Planes
 

TABLE 2. Transformations ofCoordinates Used for
 
Linear and Spline Interpolations
 

Transformation Functions Used 

Pro­
perty 

Supercooled and 
saturated liquid 

Superheated and 
saturated vapour 

Linear 
Inter­

polation 

Spline 
Inter­

polation 

Linear 
Inter­

polation 

Spline 
Inter­

polation 

p In (P) 

I 

In (P) In (P) 

1 

In (P) 

T -
T 

T -
T 

T 

v v 

1 

v In (v) In (v) 

h -
h 

h h h 

s In (s) 

1 

s 

1 

s 

I 

s 

I cp -
c p 

-
c p 

-
c p 

-
c p 

w w w w 

1 

w 

1 
I.. In (I..) I.. -

I.. 

I 

-
I.. 

1'] In (1']) 

l 

1'] 

I 

-
1'] 

1'] 

r r 

I 

r 

I 
crs crs crs 

I Saturation state 
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V2•3'. . . 
I Step 1 I 

In consideration of this basic situation, an algorithm has 
been developed which is able to generate interpolation 
tables with optimized data density for the interpolation 
method used either with or without transformation of the 
coordinates, and for the interpolation accuracy required in 
the respective process modeling. 

In the following, the principle of this algorithm will be 
explained briefly by means of an example. A data table, 
using the transformations ln(v), In(p) and Irr, is to be 
generated for linear interpolation ofthe fi.mction v = f(T,p) 

in the steam region from 5 MPa (Ts .. , 573 K) up to 

10 MPa (Ts ... 623 K), shown by the shaded area in Fig. 4. 
(The right boundary of the range of state, i.e. the curve 
connecting the points (2,1) and (2,2), is straight line in the 
In(p),l/T-plane.) The interpolation accuracy to be met is 
t:..v/v = 0.2%. The basis ofthe interpolation data table is the 
IFC 1967 Formulation for steam. 

p 

MPa 
10 

7.07 

V2•2 

I Step 0 I 

Required 
Range of 
State 

p 

MPa 
10 

5-l­ v e""I""'fifiH"'if:1ii"\i' 

5, 
v1,1· • 

1,1 2,t~ • .2,1(~ 
V = 3.49% = 2.27 

max max 
-­

537 573 584 T 623K 537 573584 T 623K 

IStep 21 1Step 31 

MPa v2,4 MPal V1.4_ _v2,410 10 -
P P 

7.94 7.94 

6.30 6.30 

5 v1,1 

51 v'': 
r1' 

="(~L= 1.18 
2,1 ( 

~ = 1.75% 
max 

[ I 

537 573584 T 623K 537 573584 T 623K 

FIGURE4. Generation of Interpolation Tables with Optimization for v = f(T,p) of Steam 

GENERATION OF THE INTERPOLATION DATA 
TABLES 

From the foregoing, it is clear that the accuracy of an 
interpolation can be increased by 
I. More complicated interpolation methods 

• Enhancement ofthe complexity ofthe algorithm by 
incorporating more data points (Parabolic or rational 
interpolations) 

• Using more complicated fimctions between data 
points (Spline interpolations) 

and by 
2. Suitable transformations ofthe coordinates. 
Furthermore, the accuracy of every interpolation increases 
with 
3. Increasing density ofthe data tables. 



FIGURE 5. Test Grid with Test Points for the First Cell 
of Step 0 in Fig. 4 

TABLE 3, Narrowing Steps to Optimize the Data Grid 
for v = f(T,p) ofSteam (Required Accuracy !!.v/v = 0.2 %) 

623 KT573 584537 

Values 

(
'!!,.VI in % 
~max 

5 

8 

6 

7 

9 

p 

Step Number Narrowed Obtained Accuracy I~vl 
Property 

0 - 3.49 % 

I P 2.27% 

2 P 1.75 % 

3 T 1.18% 

4 P 0.87% 

5 P 0.73 % 

6 T 0.55 % 

7 P 0.46 % 

8 P 0.41 % 

9 T 0.34 % 

10 P 0.29% 

11 P 0.26% 

12 T 0.23% 

13 P 0.196 % 

MPa 

10 

7 

Starting with the cell 1/1 comprising the four corner 
points and equal to the required range of state (Fig. 4, 
Step 0), the algorithm tests whether the interpolation with 
these data points leads to values of v which do not deviate 
more than 0.2% from the simultaneously calculated IFC 67 
values. In order to check this, a test grid of isobars 
(logarithmic division) and temperatures along each isobar 
(hyperbolic division) is generated in every cello Since the 
number of test points has a considerable influence on the 
computing time needed for the generation of the 
interpolation tables the number of isobars and the number 
oftemperatures can be set by the user. 
For example, Figure 5 shows the test grid for the fIrst cel!. 
It consists of 25 (5x5) test points. As may be seen, the 
maximum resulting relative error !!.v/v is 3.49 %, that is, 
the four data points are not enough to interpolate v within 
the required accuracy. Therefore the cell size has to be 
decreased. (The test point at which the maximum error 
occurs depends on the topology of the property's surface, 
In Fig. 5, the central point coincidentally has the greatest 
error.) 

First, the algorithm inserts an isobar (logarithmic middle 
value) and checks the obtained interpolation accuracy in 
the resulting upper and lower cells by using test grids in 
every cell (Fig. 4, Step I). The maximum deviation is 
stored. After that, instead of this test isobar, a temperature 
(hyperbolic middle value) is inserted on every original 
isobar (dashed line). The resulting left and right cells are 
tested for the interpolation accuracy thus obtained. Now, 
the maximum deviation is compared with that of the 
previous isobar narrowing. Only the narrowing yielding 
the greatest increase of interpolation accuracy is retained. 
In the example, the insertion of an isobar lead to a more 
accurate interpolation. The deviation 2.27 %, however, 
was once again too high, and so the narrowing procedure 
had to be repeated. The insertion of two isobars again 
increased the interpolation accuracy more than the 
temperature narrowing had, but the required accuracy still 
was not obtained (Fig. 4, Step 2). Temperature narrowing 
was fIrst realized in the next step (Fig, 4, Step 3). In fact, 
all the narrowings given in Table 3 are necessary to obtain 
the required accuracy of !!.v/v = 0.2 %. 

In order to show the effectiveness of this simple optimi­
zation, Table 4 contains both the sequence of narrowings 
with optimization and the sequence without optimization. 



TABLE 4. Comparison ofNarrowings With and Without Optimizations 

Without Optimization With Optimization 

Step 
Number 

Number 

I~vl 
Number 

I~vl 
p T Data p T Data 

points points 

0 2 2 4 3.49% 2 2 4 3.49 % 
1 2 3 6 3.49 % 3 2 6 2.27% 
2 3 3 9 2.04% 4 2 8 1.75 % 
3 3 4 12 1.96 % 4 3 12 1.18% 
4 4 4 16 1.16 % 5 3 15 0.87% 
5 4 5 20 1.12% 6 3 18 0.74% 

12 10 6 60 0.23% 
13 11 6 66 0.196 % 

15 9 10 90 0.24% 
16 10 10 100 0.198 % 

Without optimization means that the narrowings of tem­

perature and pressure occur alternately and independent of 
the change in accuracy. Whereas the procedure without 

optimization leads to 100 data points, the procedure with 

optimization leads to 66 data points and likewise fulfills 

the same interpolation accuracy. A further improvement of 
the optimization procedure results from exempting cells 

that already fulfill the required interpolation accuracy from 
subsequent narrowings. However, for simplicity's sale, the 

sequence of narrowings in Table 4 was perfonned by the 

algorithm without, exempting cells that already fulfilled 

the accuracy criterion. Had such cells been exempted, the 

number of required data points would have been reduced 

still further. 

EXAMPLES OF GENERATED INTERPOLATION 
DATA TABLES 

Data Table for Specific Volume v = f(T.p) of Steam 
with Experimental Uncertainty 

For calcu1ating high and middle pressure steam turbine 
stages, the function v = f(T,p) was to be interpolated. Ta­

ble 5 shows, in the upper part, the range of state required. 
As in the previous example, the curves connecting between 

the corner points are straight 1ines in the In(p), l/T-plane. 

The required accuracy corresponds to the current experi­
mental uncertainty /j.v/v = 0.02 %, with respect to the IFC 

1967 Fonnulation. Whereas 270 data points are necessary 

to achieve the accuracy without optimization of the grid 

narrowing, just 68 points ( = 25 %) are required when us­
ing the optimization algorithm with optimization of the 

grid narrowing including the exemption of cells. In both 

cases, the transfonnations of Table 2 were used. Similar 
results have been achieved when generating data tables for 

h = f(T,p) and s = f(T,p). 
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TABLE 5. Interpolation Tables for v = f(T,p) Generated 

With and Without Optimization of Grid Narrowing in the 
Range of State Required in Calculations ofHigh and 

Middle Pressure Steam Turbine Stages 

tr 

v = f(T,p) of Steam With Experimental Vncertainty 

68 (=25 %) 

With 
optimization 

270 

Without 
optimization 

T 

from 0.5 MPa (425 573 K) 

up to 16.5 MPa (723 823 K) 

Range of 
validity 

Linear Inter­
polation with 
coordinate 
transformation 
(Table 2) 

Basic equation: IFC 1967 Formulation 

p 

Interpolation accuracy: ßV =0.2 % 
v 

Generated data points 

Data Tables for Vapour Pressure p! =f(Tl of Water 
with Experimental Vncertainty 

Table 6 shows the results for generated interpolation 

data points for the vapour pressure function Ps = f(T) of 

water. An accuracy ofßPs/Ps = 0.025 % is required by The 
International Association ofWater and Steam (IAPWS) for 
the development ofthe forthcoming new Industrial Formu­
lation (Wagner and Rukes 1995). 

TABLE 6. Generated Data Tables for Ps = f(T) ofWater 

for Linear and Spline Interpolation With and Without 
Coordinate Transformation 

Ps = f(T) of Water With Experimental Vncertainty 

Range ofvalidity: from tripie point to critical point 

. ßp
InterpolatIOn accuracy: __S =0.025 % 

Ps 

Basic equation: IFC 1967 Formulation 

Generated data points 

Without 
transformation 

With 
transformation 

(Table 2) 

Linear 
interpolation 

220 39(=18%) 

Spline 
interpolation 

26 13 (= 50 %) 

For linear interpolation with transformation, just 39 data 
points are necessary to achieve this high accuracy, or 18 % 
of the number of points required without transformation. 
As expected, spline interpolation with transformation re­
quired far fewer data points, namely 13. Here, the trans­
formation lead to a decrease of 50 % in the number of the 
required data points. 

A Set of Data Tables for Important Properties of Steam 
Required in Process Modeling 

Table 7 summarizes the results of generated interpo­
lation tables for properties required in calculations of 
steam turbine high-pressure stages. The range of validity is 
bordered by two isobars and the curves between the corner 
temperatures (straight lines in the In(p),I/T-plane). The 
accuracies shown result from requirements of the process 
model and were set by the user. 
The date tables were generated for linear and spline inter­
polations with transformation of coordinates given in 
Table 2. 
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TABLE 7. A Set ofGenerated Interpolation Tables for
 
Properties Necessary in Calculations of Steam Turbine
 

High Pressure Stages
 

pr 

T 

Generated Interpolation Data 
Tables 

-
Linear Inter- Spline Inter­
polation With polation With 

Transformation Transformation 
(Table 2) (Table 2) 

Function I Required Number Number 
DataAccuracy p I T I Data p T 

points points 

v=f(T,p) 0,2% 4 4 16 4 4 12 

h=f(T,p) 0.2 % 4 2 8 4 41 8 
T=f(b,p) 

s=f(T,p) I 0.2 % 13121 6 13 13 1 6 
T=f(s,p) 

cp=f(T,p) 0.2 % 6 6 36 6 61 

A=f(T,p) 3% 2 2 4 2 2 

ll=f(T,p) 2% 2 2 4 2 2 

18 

4 

4 

Note that, in some cases, the number of data points is not 
equal to the product of the number of isobars, p, and the 
number of temperatures, T, because each isobar can have a 
different number of temperatures. This results from the 
exemption of cells in the data density optimization a1go­

rithm. In the columns for T in Tab1e 7, only the maximum 
number of temperatures is given. 

The interpolations of the backward functions T = f(b,p) 
and T = f(s,p) are realized using the same data tables as for 
the forward functions h = f(T,p) and s = f(T,p), respec­
tively. The numerical consistency between backward and 
forward functions calculated from the same data tables is 
high enough for process modeling. 

Because the grid generation algorithm has been devel­
oped with the princip1e goals of minimizing the number of 
interpolation data points and of obtaining a high flexibility 
with regard to such requirements of process modeling as 
functional dependency, range of state and interpolation 
method, minimization of computing time for applications 
of the algorithm was at fIrst not in the immediate fore­
ground ofthe investigation. 

INTERPOLATION ALGORITHM AND 
GENERATED DATA TABLES 

In Fig. 6, the entire procedure of generating optimized 
data tables and using them for interpolation of ther­
modynamic properties in process modeling is illustrated. 

Assumed are subprograms with defmite names and 
parameters, using specifIc interpolation algorithms and 
using interpolation data fIles with defmite names and data 
structures (left boxes in fIg. 6). Besides linear and spline 
interpolation, any other method, for example parabolic, 
rational, or interpolation-with-incorporation-of-deriva­
tives (Baehr, 1974), (van der Looij, 1986) and (Hill, 1994) 
can be handled. The subprograms used should be the same 
as later provided for use in process modeling. 
By using these subprograms, the interpolation tables are 
generated (central box in fIg. 6). The data density is opti­
mized for the interpolation accuracy required in the 
process modeling. In order to calculate the interpolation 
data, the basic equations of state and formulations for the 
actual working fluid are required. The interpolation tables 
with optimized data density resulting from the generation 
algorithm are stored for use in later interpolations or are 
output to terminal or printer. 
When applied to process modeling, the interpolation data 
are read from the fIle the fIrst time the respective subpro­
gram is called and stay in memory after that. 
This procedure allows the interpolation table generation 
and its application to be handled almost automatically. 
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Input:	 - Substance and Formulation 
- Interpolation Method 
- Functional Dependence 
- Range of State 
- Interpolation Accuracy 

... Linear Interpolation 
f- ­

I Subprograms 
I 

I Basic Equations Generation 
1- - -, f- ­ (Data Base) 

... Spline Interpolation 

'- of Interpolation Tables 

f- ­1­ Subprograms 
I 
I 
I 
I 

Optimized Interpolation Tables 

+ + 
Terminal 

Storage 
External 

Printer 

I 
____________________________ J 

I 

Usein
 
Process Modeling
 

FIGURE 6. Procedure for Generating Optimized Data Tables and Using Them in Interpolations ofThermodynamic
 
Properties in Process Modeling
 

CONCLUSIONS	 By using suitable transformations of the properties to be 
The algorithrn presented is able to generate interpolation interpolated, the number of data points can be further con­

tables with optimized data density siderably decreased. 
- for any required interpolation accuracy (absolute or rela­ Users who are interested in calculating thermodynamic 

tive) properties by interpolation can receive a sampie interpo­
- for any required thermodynamic function, including lation subprogram and associated data table for given 

backward functions such as T=f(h,p), T=f(s,p) and process modeling requirements from the authors for a 
- for a given interpolation method (linear interpolation, nominal fee on request. 

spline interpolation, or any other interpolation - with or The algorithrn can also be used for setting up the data grids 
without transformation of coordinates). for thermodynamic tables yet to be published, in order to 

The optimization of the data density is realized by means minimize their size.
 
of a flexible strategy of condensing the data grid. Ranges Presently, computing times are to be compared with
 
of state in which the required interpolation accuracy is several other interpolation algorithms, e. g. (Pfleger,
 
already fulfilled are exempted from further narrowing at 1988), (Caldwell and Spragg, 1977), as well as with other
 
each step ofthe process. The fmdings show, that the num­ methods for the calculation of thermodynamic properties,
 
ber of data points necessary for accurate interpolations is e. g. (McClintock and Silvestry, 1968), (Schiebener and
 
considerably fewer than might be expected. Straub, 1990).
 

Further investigations are underway to improve the 
algorithrn for optimizing the interpolation data grid. In 
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particular, the search for favourable coordinate transfor­
mations shall be integrated into the optimization pro­
cedure. 
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