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ABSTRACT: The paper presents improved equation structures for g=f(T,p), T=f(p,h) and T=f(p,s) 
in the steam region, equation structures for T=f(p,h) and T=f(p,s) in the liquid region and various 
equation pairs Ps=f(T) and Ts=f(p) on the saturation curve which are the subject of the current 
IAPWS project "New Industrial Formulation". 
The established equations fall within the uncertainty limits set by the IAPWS 1985 Skeleton Tables 
when compared to the SaullWagner equation converted to the new Temperature Scale ITS 90. The 
numerical consistency ofthe backwardequations meets the demands ofprocess modeling which were 
set by the IAPWS Subcommittee on Industrial Calculations. Using these equations in process 
modeling eliminates the otherwise necessary iterations in calculating backward functions. 
The structures of the equations have been optimized with the Algorithm of Setzmann and Wagner. 
After that equations have been made numerically consistent with the simultaneous approximation 
method developed by Zschunke and advanced by Willkommen. 

INTRODUCTION 

At present equations of state for the New Industrial Formulation (NIF) are being developed in the 
IAPWS Task Group, New Industrial Formulation. This new equation set is expected to replace the 
IFC 1967 Formulation for Industrial Use in 1997. 
The requirements for the new formulation were fonnulated by the IAPWS Subcommittee on 
Industrial Calculations (SIC) in 1991 [I] and corrected in 1992 [2] and 1993 [3]. The most important 
requirements are: 
- The range ofstate and the functional dependencies ofthe equations to be set up in the subregions 

CD, 0, CD and on saturation line are shown in Fig. I. 
- The accuracy ofthe equations will be given by the New Scientific Formulation. It has to be within 

the tolerances ofthe IAPWS Skeleton Tables 1985 (Revision 1994) [4] with the exception ofsome 
corrections in the liquid region. 
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forward equations h=t{T,p), s=t{T,p), both derived from g=t{T,p) and Ps=t{T) follows from process 
calculations. It will be explained later. 

- The main requirement of the industry is that, the new formulation must be 3 times faster than the 
IFC 1967 Formulation in energy process modeling 

P 
100 

MPa 

(2b)
91 (T,p) ® '1:--­

...,!~IIT1(p,h) I f3(T, v)	 .Je .QJ I 
..... IIT1(p,s) I co' I 

;:::­
~ ...... CI) 

11 

!
I 

CD	 
M Q. 

-.J
 

C\I
 
(0 

er (35I 

~:I i~:~/ @!
 
0.00061 t_t_r+-

I
__~+-__--+I --+I_:~ 

273 647 863 K 1073 T 

Figure 1. Range of State, Subregions and Functions ofthe New Industrial Formulation 

In this work equation structures far the framed functional dependencies in Figure 1 are presented. 
They have been developed using the structure optimization methods of Wagner [5,6], the 
simultaneous steady approximation method of Zschunke [7] and the new algarithm to improve the 
numerical consistency of Willkommen [8,9]. Because the New Scientific Formulation is not issued yet 
the Sau/lWagner Equation [10] was the basis far the approximations. Therefore the following 
equations are preliminary and their coefficients are not added. In case there is an interest one can 
receive the coefficients from the authors. 

VARIOUS EQUATION STRUCTURES FOR Ps=f(T) AND Ts=f(p) 

Three equation pairs Ps=t{T) and Ts=t{p) could be found each with its pros and cons. They are shown
 
in Table 1.
 

Convertible Equation f(Ts,Ps)=O
 

The first equation pair Ps=t{T) and Ts=t{p) which fulfills all requirements results from an
 

approximated implicit equation t{Prs,Trs)=O.
 
It has the following form:
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Table I. Equation Pairs Ps=f(T) and Ts=f(p) 

Convertible Equation Pair 

Ps = f (T) Ts = f(p) 

fA-~A2 -B-C) 
Ts = Ter · JE 

2Ps=Per- exP l B 
D+E- D -D-F 

D=-~(al +a4'Pr+a6'P;) 

2 

A = -~(a4 -Tr +a5 .Ti -I) 
B = a2 + a6 . Tr + a7 . Ti- E = a3 + a5 - Pr + a7 - Pr 

2 2
C = al . Tr + a3 . Tr F=a2'Pr-Pr 

Ter
with Tr =r-I with Pr =1 (~) 

'Per 
7 Coefficients al ... a7 

Polvnomial Equation Pair 
11 

Ps = Pn - Iam · Trkm 
m=1 

with T = T - Tlr 
r Tn 

11 Coefficients al ... all 

m I km 

I 
2 
3 
4 
5 
6 
7 
8 
9 

10 
I1 

o 
1 
2 
3 
4 
5 
6 
7 
8 
9 

15 

9 ~ 
Ts = Tn' Ibm -Pr 4 

m=1 
- h Pwlt Pr =-

Pn 
9 Coefficients b1 .. b9 

m Im 

1 
2 
3 
4 
5 
6 
7 
8 
9 

- 8 
-4 
- 3 
- 2 
- I 
o 
I 
3 

12 

Short Equation Pair 

5 km)
Ps = Per' exp Iam . Tr2 

m=11
 
- h TerWlt Tr =--1 

T 

5 Coefficients a1 ... a5 

m 

I 
2 
3 
4 
5 

km 
2 
3 
4 
7 

10 

1 4 1 lm 

Ts = Ter l1- m~~m'Pr2J 

with Pr = 1- - -(P I 
1-0.1361n ) 

Per 
4 Coefficients b1 ... b4 

m Im 
I 2 
2 3 
3 5 
4 9 

Ter = 647.096K , Per = 22.064 MPa , Ttr = 273.16K , Tn = 1K , Pn = 1 MPa 
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Table I contains the solutions of this equation for Ps and Ts in the upper part. Both equations have 
the same 7 coefficients al ...a7. 

Polynomial Equations Ps=f(T) and Ts=f(p) 

The next equation pair consists offast polynomials Ps=f(T) and Ts=f(p). The middle part ofTable I 
shows the equation structures with altogether 20 coefficients. 

Short Equations Ps=f(T) and Ts=f(p) 

The last equation pair Ps=f(T) and Ts=f(p) consists of short equations with more complicated 
structures and just 9 coefficients altogether. It is shown in the lower part ofTable I. 

Discussion ofthe 3 Equation Pairs Ps=f(T) and Ts=f(p) 

The convertible equation pair, the polynomial equations and the short equations meet the 
Sau/lWagner Equation within the corrected skeleton table pressure tolerance of 0.025% between 
tripie point and critical point. Table 2 contains weighted state errors in % relating to the Skeleton 
Table Tolerances. The short equation pair is most accurate. 
All equations also meet the requirements on numerical consistency. Table 2 shows weighted 
numerical consistency errors in % relating to the value 0.003% given by SIe. Of course the 
convertible equation has a consistency error of zero. The polynomial equation pair comes up to 83%, 
i.e. it almost exhausts the required numerical consistency. 

Table 2. Results ofthe Equation Pairs Ps=f(T) and Ts=f(p) 

Convertible 
Equations 

Polynomial 
Equations 

Short 
Equations 

Weighted state error 
relating to 0.025 % 68% 84% 44% 

Weighted numerical consistency error 
relating to 0.003 % 0 83 % 17 % 

Factor of computing time improve­
ment in comparison with IFC 67 

(IAPWS Program NIFBENCH) 

Ps (T) 1.0 3.1 1.1 

1 s (p) 6.3 8.3 7.1 

Factor of computing time improvement 
of a complete NIF with equation pair 
Ps=f(T) and Ts=f(p) 

(other functions estimated) 

3.3 3.5 3.3 
\ 
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A very important criterion for choosing the final equation pair is the necessary computing time. The 
IAPWS Program, NIFBENCH was used to measure it. The next rows of Table 2 show factors of 
computing time improvements of Ps=f{T) and Ts=f{p) in comparison with IFC 67. The computing 
times ofthe convertible and the short equation Ps=f{T) are almost similar to IFC 67. The polynomial 
equation Ps=f{T) is 3. I times faster. 
The equations Ts=f{p) are between 6.3 and 8.3 times faster than with IFC 67. The reason is, the 
saturation temperature has to be iterated using the IFC 67 Formulation whereas explicit equations 
Ts=f{p) are available now. Again the polynomial equation is faster than the other 2 equations The 
differences between the three saturation temperature equations are not so great because of their 
nearly similar structure and the much higher computing time ofIFC 67. 
In order to judge the influence on the whole package it is necessary to do a forecasting of the 
computing time of a complete New Industrial Formulation (NIF) with these saturation equation pairs. 
The last row in Table 2 contains the results. A NIF with the convertible equation pair would be 3.3 
times faster than IFC 67, a NIF with the polynomial equation pair 3.5 times faster and a NIF with the 
short equation pair again 3.3 times faster. So the factor of computing time improvement using the 
polynomial equations would just increase by 0.2 in comparison with the other equation pairs. 
Since the difference of the influence of the 3 equation pairs on the computing time of the complete 
formulation is small the advantage of the convertible equation pair to have an exact numerical 
consistency overweighs. Therefore the convertible equation pair is recommended as part of the New 
Industrial Formulation. 

A SHORT EQUATION STRUCTURE g2=f(T,p) FOR STEAM 

In order to set up backward equations T2=f{p,h), T2=f{p,s) in the steam region @ (Figure 1) it was 
necessary to establish also the related forward equation g2=f{T,p). The reason was, the SaullWagner 

Equation converted to ITS 90 could not be used because of the sharp extreme value at 903.15 K in 
the conversion algorithm. 
Furthermore from our experience the precondition for approximating short backward equations is a 
short forward equation with only a few terms. That was reached by application of the relatively 
complicated "spinodal-terms" developed by Willkommen [9]. These terms permit an expansion of 
the range of validity up to 633.15 K on the saturation line. The corresponding boundary is described 
by a polynomial of second degree through 3 points (Table 3) similar to the L-function of IFC 67. 
The developed fundamental equation g2=f{T,p), with just 20 terms, is shown in Table 4. It can be 
seen it has 3 terms with an approximation of the spinodal for reduced temperature as a function of 
reduced pressure. 
Table 5 contains the main features of the derived equations h2=f{T,p), v2=f{T,p) and s2=f{T,p). The 
equations h2=f{T,p) and v2=f{T,p) meet the Skeleton Table Tolerances. The uncertainty of s2=f{T,p) 
amounts 0.2% when compared to the SaullWagner Equation. 
Whereas the equation h2=f{p,T) is 3.4 times faster than IFC 67 the test of v2=f{p,T) shows just a 

doubling of speed. The reasons are the complicated derivation of "spinodal terms" and the fast 
equation structure ofIFC equation v2=f{p,T). 

Table 3. Boundary Function for Expanded Subregion 2 up to 633.15 K 

In( P J=al(I_633.l5K)+a2(1_633.l5Kf 
Ps(633.15K) T T 

fitted to points 1 2 3 
P inMPa 18.665 55.0 100.0 
TinK 633.15 773.15 853.15 

206
 



Table 4. Equation Structure g2=f\:p,T) 

g2 = f(T,p) 

g2 = R· T{'L a m . Pr km. (1- - 0.45t + L12 a m . Pr.
T spm Im=1 r m=lO Im·(Tr-Tr +0.015)m 

2 
+ aB + a14' Pr + a15' Pr + al6 ·ln(Pr)+ al7' Pr [ln(Pr) -I]. (;r - 0.45) 

+ alS' Tr + al9 ·ln(Tr )+ a20( ;r - 0.45)} 

'th T spin _ 1
WI r ­

1-ln(P r)' [0.173 - O.üllln(Pr)- 0.02· Pr] 

20 Coefficients al ... a20 

m Im 

T 

km 

I 2I- PPr-- , Tr =­ I 32
Per Ter 43 1 

4 2 8 
5 3 6

Ter = 647.096 K 6 4 6 
6 87Per = 22.064 MPa 8 208 

12 129 
R =0.46152~ 310

kg·K 211 
I12 

Table 5. Uncertainties and Computing Times ofEquations Derived from g2=f\:p,T) 

h2 = f\:T,p) V2 = f\:T,p) S2 = f\:T,p) 
State Error 
(relating to Sauf/Wagner Equation 
converted into ITS 90) 

within Tolerances ofthe IAPWS 
Skeleton Tables 1985 

(Revision 1994) 
<0.2% 

Factor of computing time improve­
ment in comparison with IFC 67 

I(IAPWS Program NIFBENCH) 
3.4 2.1 2.2 

EQUAnON STRUCTURES T2=f(p,h) AND T2=f(p,s) FOR STEAM 

The initial aim to set up one equation for T2=f\:p,h) and for T2=f\:p,s) in the steam region (3) which 

would fulfill the demanded numerical consistency in the whole region could not be achieved even 
with equation structures of considerable length and computing time. 
So region (3) had to be split into 2 subregions. For the boundary the isentrope 
s=6.1 kJ/kgK was chosen. It divides the steam region into a subregion @ and subregion 
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@ (Fig. 1). The splitting by an isentrope simplifies not only the fitting of equations but also the 
handling ofthe equation package in process modeling. Turbine expansion Rrocesses usually start from 
entropies above 6.1 kJ/kgK, so most calculations take 1'1ace in subregion (2;y . 
Furthermore it was possible to expand the range of validity of subregion ® up to 633.15 K on the 
saturation line. 
In order to achieve computing speeds at least 3 times faster than those ofthe IFC 67 Formulation the 
use of terms with large co~uting times were avoided as far as possible. The structures of equations 
developed for subregions ~ and @ are shown in Table 6. 

Table 6. Equation Structures T2=f(p,h) and T2=f(p,s) for Steam 

T2a = f(p,h) T2b = f(p,h) 

{ 

19 

T2• = Tn • ?; am • p,k m 
• h,lm 

{ 
23 k I 

T2b =Tn · L bm 'Pr m·h r 
m 

m=l 
24 

+ L a m • p,k m .(h, -Irm 

m=20 

26 k I 
+ L bm'Pr m.(hr-I) m 

28 m=24 

+ Lam[O.lkm-(I', +O.lr
m
].h/m 

m=25 
33 [ k] I 

+ L b m 1+(Pr+l) m ·h r 
m 

m=27 
31 }

+ m~9am[0Ikm -(1', +O.1)km].(h, -Ir
m 

35 [ k ] I }+ m~4 b m 1+(Pr + I) m .(h r -1) m 

31 Coefficients al ... a3 I 35 Coefficients bl ... b35 

T2a = f(p,s) T2b = f(p,s) 

{ 

19 k I 
T2a =Tn · LCm'Prm'Sr m 

m=l 
{ 

13 

T2b = Tn • ?; dm • 1'> 'S,l
m 

27 
+ L Cm ' Prkm . (sr _1)lm 

30 

+L dm·p,km'(S,-lr" 
m=14 

m=20 35 

40 k I }
+ L cm'(Pr+l) m.(sr-I) m 

m=28 
~ }+ lt6dm . (1', + Ir

m 
. (S, -Ir

m 

+ Ldm'(1', +I)km·s,'m 
m=31 

40 Coefficients CI ... c40 40 Coefficients d I ... d40 

I' s h kJ kJ 
Pr = -; sr = -; h r = -h ; Tn = I K; Pn = 22.064 MPa, hn = 2085.12 -k ; sn = 4.42 -k--

Pn sn n g g. K 

Equation Structures T2=f(p,h) for Steam 

The manifold but still simple polynomial structures ofboth equations (upper part ofTable 6) provide 
a numerical consistency higher than demanded and a high computing speed. The equations have just 
31 and 35 coefficients. The exponents are divided by 2 or 4 partially and run from -14 up to 12.5 for 
reduced pressure and from -70 up to 20 for reduced enthalpy (Table 7, left columns). 
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The structures of these combined polynomials proved to be particularly effective in subregion @ . 
In this region, which is important for turbine expansion processes, the numerical consistency error 
could be reduced down to 10 mK (Table 8). 

Table 7. Exponents ofEquations T2=f(p,h), T2=f(P,s) for Steam 

m 

T2a = f(p,h) T2b = f(p,h) 

m 

T2a = f(p,s) T2b = f (p,s) 

km Im km Im km Im km Im 

1 0 0 0 0 1 0 2 0 - 16 
2 0 1 0 20 2 0 8 0 - 12 
3 0 4 0 - 1 3 1/4 3 1/8 0 
4 0 - 1 0 - 3 4 1/4 8 1/8 16 
5 0 - 3 0 -6 5 1/4 12 1/2 4 
6 0 -6 0 -8 6 1/2 1 1 6 
7 1/2 - 1 0 -10 7 3/4 1 5/4 - 1 
8 3/4 0 0 - 12 8 3/4 12 3/2 -4 
9 1 0 1/4 0 9 1 20 2 16 

10 1 - 1 1/4 -4 10 3/2 10 5/2 16 

11 1 - 24 1/2 -8 11 5/2 20 3 - 48 
12 2 -2 3/4 - 3 12 5/2 48 5 - 40 
13 2 -4 1 -4 13 3 56 9 - 40 
14 2 - 36 1 - 14 14 4 32 0 - 1 
15 5/2 - 10 2 - 3 15 0 - 16 0 8 
16 5/2 - 24 2 -4 16 4 - 16 1/8 6 
17 7/2 - 20 2 -8 17 0 - 28 3/4 2 
18 7/2 - 60 2 - 32 18 0 - 36 5/4 - 1 
19 8 0 5/2 - 16 19 3/2 - 36 5/4 8 
20 1 -4 5/2 - 50 20 1/2 3 3/2 20 

21 1 - 5 3 - 24 21 1/2 8 3/2 32 
22 2 - 5 4 - 12 22 3/2 12 2 32 
23 8 - 36 25/2 -10 23 1 2 5/2 8 
24 25/2 -70 2 - 1 24 1 6 5/2 24 
25 - 1 - 24 8 - 28 25 3/2 3 3 12 
26 - 1 - 50 25/2 - 28 26 5/2 32 3 16 
27 -2 - 12 -2 - 3 27 3 24 4 2 
28 - 5 -6 -3 0 28 - 12 8 5 - 24 
29 - 1 - 5 - 8 0 29 - 24 4 5 -2 
30 -2 -4 -8 - 16 30 - 32 2 7 20 

31 - 12 -8 - 12 - 1 31 - 1 - 1 -2 -10 
32 - 12 - 50 32 -2 -3 -4 - 2 
33 - 14 - 50 33 -6 - 3 -6 - 32 
34 - 3 -4 34 -6 - 32 - 12 - 48 
35 - 5 -6 35 - 8 -2 - 24 - 40 
36 36 - 16 -2 -4 - 32 
37 37 - 16 - 16 - 8 - 16 
38 38 - 24 - 1 - 8 -6 
39 39 - 24 - 32 - 12 - 12 
40 40 - 32 -8 - 24 - 16 
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For determination of the relative computing time both equations were programmed into one 
subroutine including a switching function hZab=f{p) to handle the subregions. This equation set is 5.5 
times faster than IFC 67 (Table 8). Exhausting the current allowable consistency error of 25 mK, 
from 2 up to 5 terms could be saved for further increasing of computing speed. 

Table 8. Numerical Consistencies and Computing Times ofBackward Equations for Steam 

Tz = f{p,h) Tz = f{p,s) vz=f{p,h) sz=f{p,h) hz=f{p,s) 

Weighted numerical 

consistency error relating 2a 39% 74% 
I 

to 25 mK 

2b 67% 100% 

Factor of computing time 

improvement in comparison 5.5 4.8 3.8 3.7 4.4 

with IFC 67 

Equation Structures T2=f(p,s) for Steam 

The polynomial structures ofbackward equations TZa=f{p,s) and TZb=f{P,s) shown in the lower part
 
ofTable 6 are similar to the structures used for TZa=f{p,h) and TZb=f{p,h). However, in order to meet
 
the required numerical consistency the lengths ofboth equations was to be increased up to 40 terms.
 
In subregion @ the exponents run from -32 up to 3 for reduced pressure and from -32 up to 56 for
 
reduced entropy and are partly divided by 2 or 4.
 
The structures for subregion ® are more complicated. The exponents run from -24 up to 7 for
 
reduced pressure and are partly divided not only by 2 and 4 but also by 8. The exponents for reduced
 
entropy in subregion @ run from -48 up to 32.
 
Table 8 shows the weighted numerical consistency errors relating to 25 mK. The value 100 % for
 
TZb=f{P,s) points out that a relative1y short equation could be achieved only by full exhausting the
 
allowable numerical consistency error. Test calculations have shown that even by adding further
 
terms and using much more complicated terms like the exponential function, a significant increase of
 
accuracy, i.e. doubling or tripling, is not possible. In case of increasing the requirements on numerical
 
consistency a splitting into more subregions would be inevitable.
 
The computing speed was determined in the same way as for Tz=(f{p,h). Because of the isentropic
 
boundary between the subregions the switching needs no special functions. As a result the presented
 
equations Tza=f{p,s) and TZb=f{P,S) together are 4.8 times faster than IFC 67 (Table 8).
 
In addition Table 8 contains computing time improvement factors of the other benchmark functions
 
of region 0. With regard to frequencies of call the presented set of forward and backward
 
equations for the steam region is 3.5 times faster than the IFC 67 Formulation.
 

EQUATION STRUCTURES Tl=f(p,h) AND Tl=f(p,s) FOR WATER 

The backward equations T l=f{p,h) and T l=f{P,s) developed for liquid water (Subregion CD in 
Fig. 1) are shown in Table 9. Both equations are simple polynomials with integer exponents between 
-5 and +6 for reduced pressure and between -7 and +39 for reduced enthalpy and reduced entropy 
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respectively. Higher and lower exponents were not chosen by the structure optimization algorithm.
 
The T l=ftp,h) equation has 28 coefficients and T l=ftP,S) 30 coefficients.
 

At first exponents divided by 2, 3 and 4 were tried, but the results were not satisfying. Obviously the
 
high exponents are more important.
 

Table 9. Equation Structures T l=ftp,h) and T l=ftp,s) for Liquid Water 

Tl = r(p,h) Tl = r(p,s) 

28 k J 
Tl = Tn · La m 0 Pr mohr m 

m=l 

with 
p h 

Pr=­ , h r = h+ O. 
Pn n 

Tn =lK , Pn = 22MPa , 

30 k I 
Tl = Tn 0 Lb m · Pr m 0 sr m 

m=l 

Pr=l 
S 

with , sr = -+0.1 
P n sn 

kJ kJ 
h =2000­ , s =441-­

n kg n . kgoK 

28 Coefficients al ... a28 30 Coefficients b1 ,.. b30 

m km Im m km Im 

I 
2 
3 
4 
5 
6 
7 
8 
9 

10 

-4 
-2 
- 1 
- 1 
- 1 
- 1 

0 
0 
0 
0 

39 
17 
10 
13 
15 
39 
- 1 

0 
I 
2 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

-5 
- 3 
-2 
-2 
- I 

0 
0 
0 
0 
0 

39 
29 
25 
33 
21 
- 2 

0 
I 
2 
3 

II 
12 
13 
14 
15 
16 
17 
18 
19 
20 

0 
0 
0 
1 
1 
1 
1 
1 
1 
1 

3 
4 

19 
-7 
-6 
-4 
- 3 
-2 
- 1 

4 

II 
12 
13 
14 
15 
16 
17 
18 
19 
20 

0 
0 
1 
I 
1 
I 
1 
1 
1 
I 

7 
26 
-6 
- 3 
-2 

1 
2 
5 

10 
32 

21 
22 
23 
24 
25 
26 
27 
28 

1 
1 
2 
2 
2 
3 
4 
5 

5 
28 

1 
5 

39 
0 
5 
5 

21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

2 
2 
2 
2 
2 
3 
3 
4 
5 
6 

- I 
0 
2 
5 

12 
-2 
15 
4 
2 
3 
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Table 10 contains the weighted numerical consistency errors in comparison with the required errors 
for both equations. The values 56 % for Tl=f(p,h) and 46 % for T1=f(P,S) point out the possibility of 

saving terms in the equations. Because up until now the numerical consistency errors to be met were 
not finally defined the search for shorter equation structures was not necessary. First calculations 
have shown, from 2 up to 4 terms could be saved exhausting the current errors. 
The factors of computing time improvement in comparison with IFC 67 are shown in the last row of 
Table 10. The equation Tl=f(p,h) is 11.0 times faster than IFC 67. The reason is this function has to 

be iterated from h1=f(T,p) when calculating the IFC 67 package. 
The direct comparison of the computing time of function T1=f(P,s) is not usefuJ because of its 
insignificant frequency of call in process modeling. The more important function hl=f(p,s) has the 
same variables p and s. So this function should be tested. That means after T1=f(P,S) the function 
hl=f(T,p) has to be calculated. Because there is not a final equation hl=f(T,p) for the New Industrial 
Formulation its computing time was estimated as up to 2 times faster than IFe 67. Together with that 
the comparison of hl=f(p,s) comes to a factor of 5.6. 

TablelO. Numerical Consistencies and Computing Times ofthe Equations T I=f(p,h) and T1=f(P,S) 

TI = f(p,h) Tl = r(p,s) h l = f(p,s) 

Weighted numerical 
consistency error 
relating to required 
value 

56% 

[ .1h = 0.08 kJ) 

required 
kg 

46% 

[.1S = 0.0001 ~~)
kg·K 

required 

Relative computing 
time to IFC 67 
(IAPWS Program 
NIFBENCH) 

11.0 5.6 
withh1=f(T,p)\ 

2 times faster J 
than IFC 67 

SUMMARY 

The presented equation structures Ps=f(T), Ts=f(p) for the saturation curve, g2=f(T,p), T2=f(p,h),
 
T2=f(p,s) for the steam region and TI=f(p,h), TI=f(p,s) for the liquid water region are proposals on
 
how to develop the New Industrial Formulation.
 
In particular the convertible equation pair Ps=f(T) and Ts=f(p) is recommended because of its exact
 
numerical consistency.
 
The equation g2=f(T,p) for steam has a relatively complicated structure but just 20 terms. The range
 
of validity can be expanded up to 633.15 K on the saturation line without adding further terms.
 
In order to achieve the required numerical consistency of the backward equations T2=f(p,h),
 

TZ=f(p,s), the steam region had to be divided into 2 subregions. The minimal entropy from which
 

turbine expansion processes usually start was used as the boundary. A significant improvement of the
 
numerical consistency ofthe subregion equations TZa=f(p,s) and T2b=f(P,s) is not possible. In case of
 
an increase in the requirements for the numerical consistency the steam region would have to be split
 
into more subregions.
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The backward equations T1=f{p,h), T1=f{p,s) for the liquid water region are simple polynomials. An 

improvement in their numerical consistency without splitting in subregions is possible up to 40 % of 
the currently required va)ues. Doing this would not increase the computing time considerably. 

REFERENCES 

[1]	 Minutes ofthe Meetings ofthe Executive Committee ofthe IAPWS in Tokyo 1991. 
Ed. by B.Dooley, Palo Aho (1991) 

[2]	 Minutes ofthe Meetings ofthe Executive Committee ofthe IAPWS in St.Petersburg 1992. 
Ed. by B.Dooley, Palo Aho (1992) 

[3]	 Minutes of the Meetings ofthe Executive Committee of the IAPWS in Milan 1993. 
Ed. by B.Dooley, Palo Alto (1993) 

[4]	 IAPWS Release on the Skeleton Tables 1985 for the Thermodynamic Properties of Ordinary 
Water Substance (September 1994). Issued By IAPWS (1994) 

[5]	 W.Wagner: Eine mathematisch statistische Methode zum Aufstellen thermodynamischer 
Gleichungen - gezeigt am Beispiel der Dampfdruckkurve reiner fluider Stoffe. VDI­
FortschrittsbeT. Reihe 3 (1974) Nr. 39 

[6]	 U.Setzmann; W.Wagner: A New Method for Optimizing the Structure ofThermodynamic 
Correlation Equations. Int. J. Thermophys. 10 (1989) NT. 6, P. 1103-1126 

[7]	 ADittmann; T.Zschunke; J.Klinger; H.-J.Kretzschmar: Computer Code for the Generation of 
Optimized Algorithms to Calculate Thermophysical Properties ofWater and Steam. In: 
Properties ofWater and Steam. Hem. Publ. Corp. New York (1990) 

[8]	 Th.Willkommen: Ein Algorithmus zur Aufstellung numerisch konsistenter Gleichungen fur die 
in Prozeßmodellierungen benötigten thermodynamischen Umkehrfunktionen. 
VDI-Fortschrittsberichte, Reihe 6 (1994) - In Preparation 

[9]	 Th.Willkommen, H.-J.Kretzschmar, ADittmann: An Algorithm for Setting up Numerically 
Consistent Forward and Backward Equations for Process Modeling. In: Minutes ofthe 12th 
ICPWS ofIAPWS in Orlando 

[10]	 ASaul; W.Wagner: A Fundamental Equation for Water Covering the Range from the Melting 
Line to 1273 K at Pressures up to 25 000 MPa. J.Phys.Chem.RefData 18(1989) NT. 4, 
P. 1537-1563 

213 


