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I NTRODUCTI ON 

The origin of the paper pre8ented wa8 the nece88ity of 
applying the MAXWELL rule for water 8ub8tance in connection 
with the HGK-equation (IAPS 1984 Formulation [1-3]) in our 
function type computer program package PROLIB [4-7]. 

VAPOUR-LIQUID EQUILIBRIUM AND MAXWELL RULE 

In equation8 of 8tate, temperature and volume are mainly u8ed 
a8 independent quantitie8. So doe8 the IAPS formulation, 
too. For the8e phY8ical formulated equation8 of 8tate, the 
following relation8 are to be taken a8 the ba8i8 for 
calculating of the pha8e equilibrium: 

f=fEOS(T,v) P=PEO~T.V) 
(y" 

MAXWELL __ fEOS(T.vy )-fEOS(T,vl) = _ ylJ PEOS(T,v 1dVT _ 
Ps - V - V - Pm Ps- V _V = PmCriterion 

y 1 y I (1) 

boiling P =_[dfEOS(T.V)] :p p=p (Tv)=p 
water S Cl V I T I s EOS • I I (2) 

saturated = _ [OfEOS ] _ _ = (3) 
vapour Ps Clv (T,vy) T=Py P - PEos(T.v) - Py • s 

On the left the MAXWELL rule i8 written for the canonical 
equation of 8tate, while the right hand 8ide 8hoW8 the8e 
relation8 a8 a tran8formation for athermal equation of 
8tate. The index EoS mean8 equation of 8tate. 
The vapour pre88ure can a180 be determined, by u8ing the 
equation of 8tate for both the boiling liquid and 8aturated 
vapour. Therefore equation8 (2) and (3) mU8t a180 be valid. 
Equation8 (1), (2) and (3) can be u8ed for the calculation 
of three unknown variable8 Ps' vI' vy ' 

DISCUSSION OF KNOWN METHODS AND CONCLUSIONS 

In order to determine the 8aturation pre88ure Ps at a given 
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temperature T, the right or left equation system (1), (2), 
(3) is to be solved. All methods to calculate the MAXWELL 
rule departing from physical formulated equations of state 
are variations of the solution of this task. 
The following algorithms are used in computer codes of 
different authors= For a given temperature T, at first the 
starting value for the saturation pressure Ps is formed. Then 
the corresponding volumes vI and Vv are determined with the 
equation of state (relations (2) and (3». By using equation 
(1), these volumes allow to calculate an improved saturation 
pressure PS' It is used again in the next step to determine 
new saturation volumes. The iteration process is repeated 
until the saturation pressure cannot be improved 
considerably. In further variations of the above-mentioned 
method of substitution, the three equations are calculated in 
another sequence. Other authors apply onedimensional 
iteration methods (for instance NEWTON, REGULA FALSI or half 
of difference) to determine the pressure correction. It is 
also the case with the algorithm used by HAAR et al. [1]. 
From the preceding considerations, the following aspects can 
be outlined for the development of a new method: 
1.	 By using the equation of state, the volumes are 

determined within the pressure iteration in all the 
methods mentioned. This is always an iterative procedure 
apart from the cubic equation of state. That means, two 
further iterations are interlocked in the external 
iteration cycle. Therefore a method which excludes 
these volume calculations should be looked for. 

2.	 The functioning of the described methods is dependend on 
the accuracy of the starting value for the saturation 
pressure. A very exact starting value is required, when 
the critical state is approached. In any case an 
initial pressure with three real volume solutions based 
on the equation of state is required. An algorithm 
independent of errors in the starting values would bring 
about considerable ease for practical use. 

PRESENTATION OF THE NEW METHOD 

In the developed algorithm [8-10], the improved saturation 
volumes of both phases are directly determined in each 
iteration step. So neither the laborious interna1 iterations 
nor the internal cubic solutions are not required. 
Next the equations for the volume corrections ~v\ and ~vv 

in the (k+1) iteration step 

V\k+1 l = vlkl + lWl k+1 )	 (4) 

V 1k+1) = V1kl + 6v 1k+1) 
v v	 (5)v 

will be derived. The algorithm of these corrections is the 
main result of the work presented here. 
For this purpose, the thermal equation of state is replaced 
by separate approximations on and close to the boiling liquid 
curve and to the saturated vapour curve. Here the tangents to 
the given isotherme in the saturated volumes of the k-th step 
are beins used= 
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saturated liquid:
 

plk.1) (lv) =R (TJ,k))+<X'k)(v_V1kt) where a:lk) =[~ (Tv )Jlkl (6)
16 ' EOS' 1 1 I I ()v ' I 
T 

saturated vapour: 

plk.1)!T,V) =P. (T,vlk))+Cilkllv_vlk)) where ecIkl=[dPEOS(Tv. )]lk). (7)
vA EOS v v v v Cl V ' v 

T 
Before we can incorporate theae replacement functiona into 
the tranaformed MAXWELL rule fV~k+ll 

P (T,v)dv
Ik.1J Ik+U Ik.1) vt') EOS T

PEOS(T,v )=PeOS(T,vv') ; PEOS(T,vl )= -L- _1 V1k.1) _V 1k•1) (8) 
v 1 

the integral of the aecond equation haa to be decompoaed, aa 
aeen in the equation

V(k+ll lk) (k+1) (k+1) 

Y JvY [VI Jv
vlk.efPEos(T.v) dVT=o< PEos(T,v)dvT- PEo~T,V)dvT+ 

y 

PEos(T,v)dv.{9) 
I vI y(kl y(k) T 

The equation ayatem I y 

p 1k )+ cx.lk).(vlk.1) _V1k ) 1 = pIk) + oclk).(vlk.1)_ v1k )) 
I I I I v v v v 

[plk)+Otlkl (vlk.1) _v.lk ) )]'(V1k•1)_ Vlk+1)) _,Jk)(vlk)_vlkn plk)(v.(k.1Lvlk))_{lO)
I I' I 1 v I -lJm' v 1 '/ - I' 1 I 

_1.C(lk).( Vi k.1) _V1k)) + pIk). (V1k+1L V1k ))+ 1~kl,(vlk.1)_ Jk)) 
21 I 1 v v v 2v v V 

ia obtained finally. By eliminating the aaturation vapour 
volume and thua tranaforming ayatem (lO), one obtaina the 
quadratic equation (ll) for the correction of the boiling 
liquid volume with the coefficienta A, Band C: 

A·(ßV~k.1))2 + B·(ßV~k.1)) + C = 0 

where A =1·OC 1kl. (alk) _ oe lk) )
2 I I v (u) 

B = o:lkl.[plk) _ plkl _oc1kl.( v 1k ) - v lk ) )] 
I I v v I v 

C=o:lvkl'(Vllkl_v~k)Hd~)-P(rk))+ 1 (pIk) _pl~))2. 
The final aolution formula for the c6:rrection of the boiling 
liquid volume, which ia to be uaed in the (k+l) iteration 
atep, ia repreaented by equation 

Ik.1) B . { CX\kl_Ot~kl} -V 8' C' 
!1v l =-2'A +slgn CX~kl . 4'A2 - A (l2) 

The correct aign 0 the aolution reaulta from the fact, that 
the difference of the vapour volume and liquid volume muat be 
poaitive. Uaing relation (12), one alao obtaina the reault 
for the correction of the aaturation vapour volume 

lk)_ plkl + OC1kl AV Ik.11 
I k. 1) P I v 1'0 I 

f:!"v v = lk) (l3) 
01: v 
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FIGURE 1. Grafical illustration of the new method 

(14) 

VIOI =0 999. v(1)
I ' I

where 

v_ 

v -_ 

p~~l1 (T=const ,v) 

plk+1J(T=const v)--~~I; . 
, 

t 
p 

•I 
P 

The ascents of the auxiliary tangents are approximately 
calculated by using the known values from the k-th and (k-1) 
iteration step. Thus, equations 

PIk) p(k-1) 
CC1k!:: I - I 

I Vlk)_Vlk-1) 
I I 

"""vlkl= p v 
1kl 

- p v 
1k 

-
1 

) (0) (1) 
u. w her e v =1,001 . v 

vlk) _ v (k-1) v v 

v v with: v:1l • V~') - storting va lues: of iteration 

are obtained. In the first iteration step, the written 
formal corrections have proved true. The volumes marked with 
pointer (1) represent the iteration starting values. Now we 
can test the new volumes by calculating the pressures Pm' PI 
and Pv with the equations (1), (2) and (3). The MAXWELL rule 
is fulfilled, if the three pressures correspond to each 
other. In practice the iteration is interrupted, when the 
relative change of the middle pressure Pm i6 emaIl enough 
between two iteration step6. 
In fig. 1 the algorithm is illustrated. 



The upper p,v-diagram ahowa, that in the k-th iteration 
atep the valuea of Pm' PI and Pv' calculated on the aaturated 
volumea vI and vv' are not correaponding. Now the iaotherm T 
ia aubatituted by the tangenta PI~ and Pv~ at the boiling 
liquid curve and at the aaturated vapour curve, aa ahown in 
the middle diagram. In the lower diagram the reaulting volume 
correctiona ÄVh and ÄVv of the (k+1) iteration atep have been 
marked. Now t e valuea of the three preaaurea PM' PI and Pv 
baaed on the new volumea correspond more accurately to each 
other. 

ITERATION STARTING VALUES 

(1) (1)
The rangea of the initial volumea vI and Vv ' required 
for the new method, are ahown in the p,v-diagram of fig. 2. 
In principle, theae volumea muat be aituated in the rangea 
marked with atripea out of the apinodala of the equation of 
atate. Starting valuea are required for the aaturated volumea 
only. The range marked with pointa ia required for the 
atarting preaaure needed in other methoda. 
In order to apply the method to different aubatancea or 
equationa of atate, aimple lawa are uaed for the 
determination of atarting volumea. Such lawa are the modela 
of the ideal fluid atate and of the ideal gaa atate (tab. 1). 
For the vapour preaaure needed in the ideal gaa equation, the 
AUGUST-equation can be uaed. 
Theae approximationa guarantee the convergence of the method 
for the whole range of phaae equilibrium. 
For cubic equationa of atate a apecial and aimpler algorithm 
ia preaented in [8,9]. 

t 
p 

: :~I 

Ij,~ PsIT)+---------"I--~/-f----

[:;:',;,,"":".j ronge of storting yolues of known 
..... .... methods 

~ range of storting va lues of the new 
method 

crlt 

~'7 

vylTl v__ 
7////////#////~/~ 

FIGURE 2. Rangea of starting values 
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V 

crH 
, approximation

'1........". ........ 
trip 

l- approximation,
, ",:n crit x=1 

/ 

~_-----;;;-I__._ 1.. 
T T 

T 

In L 
Pcrit 

n~v p=const 

triP~ 

log 1'_ 
Perit 

with Ter ;,: 647,27 K 

T'r;p =273,16 K 
Per;': 22.1 1S M Pa 
P'r;p: 6,1.10 4 M Pa 

tor water 

VI - v'rlp: K(T - T'r;p) 

with K:4,B·1Q,7 m)/lkg.KI 

tor woter 

1 1 
AUGUS T - 1" ­ ~;-; • In p. -In PerU 
equation 1 1 

- - ­ In p. -In P'r;p
T T'r;p 

ideal liquid 

p'Vv : R·T 

. P V 

1\ log PC'1t +log Ve~;' 

: log -B.l.. ) ~ I~o .­

l 
Pcr;,vcrlt ~ 

with R:O.462 kJ/(kg·K) 

.._.__._~_. ILf_or_w_a_te_r Y_v__I~og;:.,.Vf:...,;;.;;,r;,;,"...L 

APPLICATION TO THE EQUATION OF STATE IAPS 84 

~r~~::~~ ~~IU" model taken as a basis according to 14,51 
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In order to test the efficiency of the developed method, 
direct comparison calculations were carried out with the 
numerical algorithm used by HAAR et al. [1]. He made a 
comparison calculating the saturation pressure by using the 
equation of state IAPS 84 for water. He found, that by using 
our method at least 30 % of calculation time had been saved. 
Approaching the tripIe temperature even 60 % of CPU time was 
saved. 
Tab. 2 shows a numerical example calculated for the reduced 
temperature T=0.9 and an iteration precision of 0.000 001. 
The different times when the reduced pressure Ps achieved the 
prescribed iteration accuracy are of interest. In the 
algorithm used by HAAR et al. three steps are calculated in 
the ~ -iteration. But in every step the reduced volumes VI 
and Vy are to be iterated. Therefore 24 computations of the 
equation of state P=P(T,V) are carried out. 
In the new algorithm Beyen iteration steps are required. But 
here in every step the equation of state is calculated two 
times for boiling liquid and saturation vapour only. So total 
14 computations are necessary to achieve the same accuracy. 

TABLE 1. Iteration starting values 



--- ------ ----

TABLE 2. Comparison of the calculation alternatives by 
means of a numerical example 

Algorithm of this work 

Ps = Pm 

Aigor itt1.1l1 ~y HAAR at. al. [11 

VPs VI Vv VI v 

111 

[by eQu. (l1J 
1110.36233664 (11 9.05& 1474(1) 

0.404715 14 
0.44215619 111 &.7369745 0.525377 1& 0.36325555 

6.4034507 0.43731& 35 0.40467612 &.1523327 
0.4357.591 0.43735& 5& 0.43629& && 7.3370994 

0.45264699 

5.9549705 

5.&949055 0.44056& 19 0.453 &6217 ,6.603 Ja9 5 
0.45& 050 25 0.442 1&2015.&&9 OJa 7 0.45& 67603 15.9430505 

0.4421933& 0.45& 988 55 5.&&7 3945 

0.45& 9&265 

0.45& &97 29 5.&&& 501 4 

5.&&& 452 5 0.45& 9&9 7& 15.&&754& 7 
0.45& 99050 

10.442 19fID 
5.&&& 44& 1
 

0.45& 991 21
 5.&&&4477 

0.45&9912&
 

0.442.9342
 0.45& 91112&111 5.&&&4477 (11 

0.45&9&993 5.&&76297 
0.45&9&9 &1 5.&&75552 I 
0.45&9&9 &0 5.&&754& 5 

~O.442 193 3& 1 5.&&7547 & 

24 computations of 14 computations of ___ 
the equation of state P(T,V) the equation of state PlT ,V) 

-- _._- _.... ­

reduced properties·. P: p/22.115 MPa; T :T/647.27 K, v: v/0.003147 mJ/kg 

.. ------­

_._----~-

11 I iteration storting volue 

Because the computation of the equation of state needs the 
most CPU time we can estimate, that the new method requireds 
60 % of the calculation time. Indeed, it is the case in this 
example. The strong convergence of the new method especially 
noticeable at high demands of accuracy should be underlined. 
The last two values for Pm demonstrate this fact. 
The application of the new method to cubic equations of state 
and an additional example can be found in [8,9]. 

CONCLUSIONS 

The direct comparison with other methods showed a decrease in 
the calculation time on an average to 50 % for equations 
implicit in volume. For cubic equations of state we reached a 
decrease to 70 %. 
Both the internal iterations and the cubic solutions of the 
equation of state are not necessary. For this method only a 
single iteration cycle has to be calculated. 
The algorithm guarantees some convergence and numerical 
stability of the iteration up to reduced temperatures of 
0.999 and with a modification even up to the critical point. 
This modification consists in a controlled slow-down of the 
convergence [8,9]. 
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The method presented here is relatively independent of 
inaccurate starting values for the saturation volumes. An 
initial value for the saturation pressure is not needed. 
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