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INTRODUCTION

The origin of the paper presented was the necessity of
applying the MAXWELL rule for water substance in connection
with the HGK-equation (IAPS 1984 Formulation [1-3]) in our
function type computer program package PROLIB [4-7].

VAPOUR-LIQUID EQUILIBRIUM AND MAXWELL RULE

In equations of state, temperature and volume are mainly used
as lndependent quantities. So does the IAPS formulation,
too. For these physical formulated equations of state, the
following relations are to be taken as the basis for
calculating of the phase equllibrium:

f=feos(T.v) p=peog T.v)
vV
Criterion s VoV =R, P _Vv‘T—=pZ"1)
boiling __[2feos _ ) _
water Ps = [ v U T=pl P, =Pegs! TV 20, -
saturated _ [ 9feos )
vapour s~ [_Bv (Tvy) TEDV P = pEos(T,vv)= [ (3)

On the left the MAXWELL rule is written for the canonical
equation of state, while the right hand s8lde shows these
relations as a transformation for a thermal equation of
state. The index EoS5 means equation of state.

The vapour pressure can &also be determined, by using the
equation of state for both the boiling ligquid and saturated
vapour. Therefore equations (2) and (3) must also be valid.
Equations (1), (2) and (3) can be used for the calculation

of three unknown variables p_, Vis V-

DISCUSSION OF KNOWN METHODS AND CONCLUSIONS
In order to determine the saturation pressure pg at a given
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temperature T, the right or left equation system (1), (2),
(3) is to be solved. All methods to calculate the MAXWELL
rule departing from physical formulated equations of state
are variations of the solution of this task.

The following algorithms are used 1in computer codes of

different authors: For a given temperature T, at first the

starting value for the saturation pressure p; is formed. Then
the corresponding volumes v, and vy, are determined with the
equation of state (relations (2) and (3)). By using equation

(1), these volumes allow to calculate an improved saturation

pressure p;. It is used again in the next step to determine

new saturation volumes. The iteration process 1is repeated
until the saturation pressure cannot be improved
considerably. In further variations of the above-mentioned
method of substitution, the three equatlions are calculated in
another sequence. Other authors apply onedimensional
iteration methods (for instance NEWTON, REGULA FALSI or half
of difference) to determine the pressure correction. It is

also the case with the algorithm used by HAAR et al. [1].

From the preceding considerations, the following aspects can

be outlined for the development of a new method:

1. By using the equation of state, the volumes are

determined within the pressure 1iteration in all the
methode mentioned. This is always an iterative procedure
apart from the cubic equation of state. That means, two
further jterations are interlocked in the external
iteration cycle. Therefore a method which excludes
these volume calculations should be looked for.
The functioning of the described methods is dependend on
the accuracy of the starting value for the saturation
pressure. A very exact starting value is required, when
the critical setate 1is approached. In any case an
initial pressure with three real volume solutions based
on the equation of state is required. An algorithm
independent of errors in the starting values would bring
about considerable ease for practical use.

PRESENTATION OF THE NEW METHOD

In the developed algorithm [8-10], the improved saturation
volumes of both phases are directly determined 1in each
iteration step. So neither the laborious internal iterations
nor the internal cubic solutions are not required.

Next the equations for the volume corrections Avy and Av,
in the (k+1) iteration step

Vllk+1) - Vl(k) + Avl(kd) (1)

(ke1) _ | Kk} ke1)
v, v, o+ Avv

(5)

will be derived. The algorithm of these corrections is the
main result of the work presented here.

For this purpose, the thermal equation of state is replaced
by separate approximations on and close to the boiling liquid
curve and to the saturated vapour curve. Here the tangents to
the given isotherme in the saturated volumes of the k-th step
are being used:




saturated liquid:

(k)
pk(TV) 20 (T s lv-v)) where o) = l:—,am (Tv ):l (6)
:

saturated vapour:

? {k)
p“"”(Tv)- (Tv“")mc“"[v v“") where o= [ pEos(T ]] .0

v T
Before we can 1incorporate these replacement functions into
the transformed MAXWELL rule v\(’kﬂ)

. [pEOS(T,v) dv,
(km) (T %) (kel)y _ v
= WV ; (TV A

Peos' T ~Peos Y Peos kel _ ko) (8)

v §

the 1integral of the second equation has to be decomposed, as

seen in the equation
(k#1) (k) (lm) (lu-ﬂ

V v
= (9)
f Peos TV) dv; J Peos [ TV) dv, - [ Peo{TV) v +I PepelTV)ay, ¢
The equation Bysten
p:k)+ O(_llk),(vl[kd) _Vl(k) ] = plvk) + Oc(:().(v\(lkﬂ)_ V\‘/k) )
ooy ) T v =) - o a0

_ 1 KD (ke 1) KD (k) (ke1) Uk, L AAK] [ Ake1) | fk)
>0 v, Vi ep v vy )+2°‘1v (V-
ie obtained finally. By eliminating the saturation vapour
volume and thus traneforming system (10), one obtains the
quadratic equation (11) for the correction of +the bolling
liquid volume with the coefficiente A, B and C:

A-(aviM)? LB (avit) ¢
12 "’(oa“" Oclk))
B=orfplk! - plk) _ otk ylk) -yl ))

C=Oflvk]'(V|(k’-V\',k’)'[p[:\)-D‘[-k]) 1 (p[k) p(\l:))Z.
The final solution formula for the cOrrection of the boiling
liquid volume, which 168 to be used 1in the (k+1) iteration
etep, 16 represented by equation

Ao B ign o) getk)
o]

where A=
(11)

l 2A (12)
The correct sign of the golution results from the fact, that
the difference of the vapour volume and liquid volume muet be
poeitive. Using relation (12), one also obtaine the result
for the correction of the saturation vapour volume

(ke1) pi*)- plk) 4 ocfkl gy ko1
v o= LY _ (13)

\4

Av
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The ascents of the auxiliary tangents are approximately
calculated by using the known values from the k-th and (k-1)
iteration step. Thus, equations

(k)_ p(k) p(k -1) 0) )
l Wi)— where Vl :0,999'vl
k) {k-1) (14)
P P
oMy TP ywhere 221,001 v"
V(k)_ V(k-ﬂ v v
\' v R {1) m

with: v, v " = starting values of iteration

are obtained. In +the first iteration step, the written
formal corrections have proved true. The volumes marked with
pointer (1) represent the iteration starting values. Now we
can test the new volumes by calculating the pressures p_, p|
and py with the equations (1), (2) and (3). The MAXWELL rule
ise fulfilled, if the +three pressures correspond to each
other. In practice the iteration is interrupted, when the
relative change of the middle pressure pp, i small enough
between two lteration steps.

In fig. 1 the algorithm is 1llustrated.

P Mp Eos(T:c:onst ]

ng” {T=const,v)

PRI
P [T=const,v}

Posl T=const.v)

Vi)

gl
Av\fk !

i
T

(ko) .

v, v v,

FIGURE 1. Grafical illustration of the new method
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The upper p,v-diagram shows, that 1in the k-th iteration
step the values of P Py and Py, calculated on the saturated
volumes v; and v,, are not corresponding. Now the isotherm T
is substituted by the tangents Pia and pPyp at the boiling
liquid curve and at the saturated vapour curve, as shown in
the middle diagram. In the lower diagram the resulting volume
corrections Av; and Av, of the (k+1) iteration step have been
marked. Now the values of the three pressures p,,, p, and p,
based on the new volumes correspond more accuraggly to each
other.

ITERATION STARTING VALUES

The ranges of the 1initial volumes v“) and vg) , required
for the new method, are shown in the p,v-diagram of fig. 2.
In principle, these volumes must be situated in the ranges
marked with stripes out of the spinodals of the equation of
state. Starting values are required for the saturated volumes
only. The range marked with points 1is required for the
starting pressure needed in other methods.

In order to apply the method to different substances or
equations of state, simple laws are used for the
determination of starting volumes. Such laws are the models
of the ideal fluid state and of the ideal gas state (tab. 1).
For the vapour pressure needed in the ideal gas equation, the
AUGUST-equation can be used.

These approximations guarantee the convergence of the method
for the whole range of phase equilibrium.

For cubic equations of state a speclial and simpler algorithm
is presented in [8,9].

- range of starting values of known
.‘.—‘, methods

o o i

3 vz range of starting values of the new
0 method
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FIGURE 2. Ranges of starting values
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TABLE 1. Iteration starting values

relotion of . .
starting values mode! taken as o basis according to [4,5]
1) 1 1
(T AUGUST- |T-T— . 2
AT egusotion T T - Inp-inpyy " Perit
’1‘ - ! In ps-‘n p!rip
T T crit
with T,,=64727K 0 ~ approximation
T,.=27316 K s <L
i ~»
Perit™ 22,15 M Pa trip
Py 6,110 M Po | 1
for water T T
H]_ . . -
v, =v(T) ideal liquid | v, “Virip® K(T-Tmp) T L approximation
with K=4.8-107 m'ikgk) | [ o crp xt
for water T [
p=const
1
trip+
Vl v
vev,lp,.T) |ideal R tog P— }
AL eal gos | pv,=RT Pert | I n \ (approximation
cri N
. p v, S \
l
’\ °9 Perit +log Verit %
RT ) BRI
=log Q
pcrﬂvcrit ,’}
with R=0,462 kJ/lkgK) S
for water v ,;'X:
L-__ _ v ‘W crit

APPLICATION TO THE EQUATION OF STATE IAPS 84

In order to test the efficiency of the developed method,
direct comparison calculations were carried out with the
numerical algorithm used by HAAR et al. [1]. We made a
comparison calculating the saturation pressure by using the
equation of state IAPS 84 for water. We found, that by using
our method at least 30 ¥ of calculation time had been saved.
Approaching the triple temperature even 60 % of CPU time was
saved.

Tab. 2 shows a numerical example calculated for the reduced
temperature T=0.9 and an iteration precision of 0.000 001.
The different times when the reduced pressure P; achieved the
prescribed iteration accuracy are of interest. 1In the
algorithm used by HAAR et al. three steps are calculated in
the P -iteration. But in every step the reduced volumes Vl
and Vy are to be iterated. Therefore 24 computations of the
equation of state P=P(T,V) are carried out.

In the new algorithm seven iteration steps are reguired. But
here in every step the equation of state 1is calculated two
times for boiling liquid and saturation vapour only. So total
14 computations are necessary to achieve the same accuracy.

329




TABLE 2.

Comparison of the

means of a numerical example

calculation

alternatives

Algorithm by HAAR at.al. {1]

Algorithm of this work

P Vi v, Fs = Pm v v
[by equ.(1)] L v
0.64215618'") | 0.3623366¢'") [8.7369745'"" | 0.52537718 | 0.36325555'"! |g. 058174
0404715 14 |64034507 | 043731835 | 040467612  |8.1523327
043571581  |5.9549705 | 043735856 | 043629888 |7.3370994
0.45264698 |5.894 9055 |044056818 |0.453 86217  |6.6033695
045805025 |5.889 0387 ]0.44218201 | 0458 67603  |5.9430505
045689729 |58885014 |0.04219338 | 0458 98855 |5 887 3345
045898265 |58884525 [0.44219338] | 0458 989 78  |5.887 58 7
0.458 99050 |5.8884481
0.45699121  [5.8884477
0.45899128
044219342 |0.458 99128V |5, 8884477
0.45898093  |5.8876297
0.458089 81  |5.887555 2
045698980 |5.8875485
0.642 193 38 5887547 8

24 computations of
the equation of state P(T,V)

14 computations of _ _
the equation of state P(T.V)

reduced properties: P=p/22.115 MPa; T=T/647.27K , V= vi0.003147 m®/kg

(1) iteration starting value

Because

example.

noticeable

the computation of the equation of
most CPU time we can estimate,
60 % of the calculation time.

state needs the
that the new method requireds
Indeed, it is the case in this
The strong convergence of the new method especially

at high demands of accuracy should be underlined.

The last two values for P, demonstrate this fact.

The application of the new method to cubic equations of state

and an additional example can be found in [8,9].

CONCLUSIONS

The direct comparison with other methods showed a decrease in
50 % for

the calculation time on an
implicit in volume.

decrease
Both the
equation

to 70 %.

internal iterations and the
of state are not necessary.

For cubic equations of state we reached a

average

to

cubic solutions of the
For this method only a

single iteration cycle has to be calculated.

The

algorithm guarantees

stability of the iteration up to

0.999
This

convergence [8,9].

modification consists in a
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some convergence

by

equations

and numerical
reduced temperatures
and with a modification even up to the critical point.
controlled slow-down of the



The method presented here 1is relatively independent of
inaccurate starting values for the saturation volumes. An
initial value for the saturation pressure is not needed.
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