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ABSTRACT: The algorithm has been designed for setting up simplified, fast equations for use 
in energetic process modellings. Simplified numerically consistent equations h=h(T,p), derived 
from an equation g=g(T,p), and T=T(p,h) for use in power cycle calculations were set up for 
demonstration purposes. 

The a1gorithm finds numerically consistent equations with a minimized total number of terms 
automatically and with hardly any subjective influences. Only the corresponding banks of terms 
have to be established by the equation maker. The algorithm connects the structure optimization 
method of SetzmCDln and Wagner with the simultaneous steady approximation method of 
Zschunke. So the disadvantages of one method can be compensal:ed by the advantages of the 
other one. Subalgorithms for optimizing the distribution of the input data calculated from a very 
precise equation of state and for optimizing their weightings have been developed in order to get 
good equations automatically. 

The algorithm can be used for setting up the numerically consistent equation pairs T=T(p,h) and 
h=h(T,p) as weil as T=T(p,s) and s=s(T,p) needed for the IAPWS-project "New Industrial 
Formulation", too. 

INTRODUCTION 

Even though the performance of computers is always improving there is still need to develop 
faster a1gorithms for energetic process modelling. This applies mainly to nonstationary processes 
and real-time modelling. Because the main part of the calculation time of energetic process 
modellings is taken by the determination of thermodynamic properties this has to be speeded up. 
One way to do this is to develop simplified equations of state. 
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The different possibilities for simplification are dependent on the demands of each specific 
process modelling. Therefore specific equations for each process have to be set up in order to 
make full use of the possibilities for simplification. Because there are lots of different processes 
with different demands referring to the equations lots of equations are needed. The algorithm [1] 
presented in this paper was developed to do this with small manual expenditure. 

Because the equations needed for the "New Industrial Formulation" actually also are simplified 
equations, the algorithm can be used for setting them up, too [2]. 

SIMPLIFIED EQUATIONS OF STATE 

Five simplifications are possibJe compared with the complicated, very precise, wide range 
equations of state such as the IAPS 84 [3] is and the "New Scientific Formulation" will be: 
Reducing the range of validity, reducing the accuracy, altering the independent variables (T and 
p instead of T and v), setting up auxiliary "backward" equations and making separate equations 
for each thermodynamic property. 

The IAPS 84 FormuJation is valid up to 1500 MPa and 1273.15 K. Obviously such a wide range 
is not necessary for normal energetic process modellings. For conventional turbine expansions a 
range up to 873.15 K in temperature and between 6.1 kJ/kg K and 8.7 kJ/kg K in entropy should 
be wide enought. 

It is clear, that the result of process modelling must not be influenced by inaccurate 
thermodynamic equations of state. However, it is very difficult to determine the influence of the 
equation's accuracy on process modellings. Therefore mostly equations are made as accurate as 
possible, i.e. the mean values of measurements are represented by the equations within tolerances 
equal to the mean deviation of the measurements. Consequently, simplification of equations by 
reduction of their accuracy is only possible if it is known that the results of the process 
modellings will not be affected. 

Most substances only have (T,v) as independent variables in their equations of state. This makes 
industrial calculations become very large-scale, because here usually v, h and s as a function of 
(T,p) are needed and so iterations are necessary. In order to avoid these iterations, equations with 
(T,p) as independent variables are set up, especially for the commonly used substance water. 

Besides (T,p) also (h,p), (s,p), (h,s), (T,s) as weil as (h,v) have great importance as independent 
variables in industrial calculations. Therefore so called "backward" equations with just these 
independent variables are set up in addition to the (T,p)-equations. In order to avoid 
unpredictable results in process modellings such backward equations have to be numerically 
consistent to their corresponding "forward"-(T,p)-equations, i.e. the deviation between forward 
and backward equations is forced to be 1 or 2 orders of magnitude smaller than the deviation 
between forward equations and the mean values of measurements. 

Canonical equations are often preferred when setting up simplified equations of state. They offer 
the opportunity of deriving all thermodynamic properties from one equation. On the other hand 
equations of state derived from a canonical equation are more complicated than equations fitted 
only for a single property. This has two reasons: First, the mathematical derivations require 
additional operations and second, each derived equation includes the thermodynamic 
"information" for all other properties and is complicated accordingly. Because for process 
modellings there is no need of having all properties derived from one canonical equation, 
calculation time can be saved by setting up separate equations for each property needed. The 
algorithm presented is able to set up separate equations as weil as equations derived from a 
canonical equation. 
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APPROXIMATION METHODS 

Strocture Optimization 

Short equations of state with little need for computing time can be set up by so called structure 
optimization methods only. The aim of these methods is to select that combination of terms 
(equation structure), from a bank of terms, which is able to fulfil the accuracy requirements with 
a minimized number of terms. The bank of terms should contain all mathematical functions, 
which can be considered to be significant for the approximation of the thermophysical 
dependencies concemed. 

At present there are 3 efficient structure optimization methods: the stepwise regression analysis 
of Wagner [4], the evolutionary optimization method of Ewers and Wagner [5] and the structure 
optimization method of Setzmann and Wagner [6). They have been developed for setting up 
empirical equations of state from experimanta[ data and can be applied for approximation of sim­
plified equations from data calculated using apreeise equation of state, too. The optimization me­
thod of Setzmann and Wagner is the best with respect to user-friendliness and to the quality of 
the established equations. Therefore it is preferred for application in the newly developed 
algorithm. 

The structure optimization methods mentioned are based on the least-squares prineiple. Therefore 
the regression data have to be weighted in most cases in order to achieve a satisfactorily small 
maximum deviation and a nearly steady approximation respectively. Because these structure 
optimization methods are discreet approximation methods as weil, distribution of regression data 
has influence on the quality of the approximated equation. The equation may begin to oscillate 
between two regression data points, if there are not enough data points. To avoid this, so calJed 
"artificial data" are added when using experimental data and supplementary data must be added 
when approximating data received from a precise equation of state. Such a supplement of the 
regression data will be called "change of data distribution" within this paper. 

Both, the weighting of data and the change of data distribution require much experience by the 
equation maker. Now, however, the new algorithm incIudes two sub-algorithms for improvement 
of the weighting and distribution of the regression data. 

Simultaneous Steady Approximation 

The maximum deviation between a base equation or base data and the approximated equation ean 
be controlled directly by the steady approximation method, in contrast to the least square 
methods. On the other hand there is no structure optimization avaitable for the steady 
approximation method. Therefore steady approximation only can be used to finally improve the 
free parameters (coefficients) of equations set up by structure optimization. 

Simultaneous approximation of forward and backward equations generally is a non-linear 
problem. On the other hand the steady approximation is an iterative method, able to fit non-linear 
parameters. This offers the possibility of extending the steady approximation for simultaneously 
fitting several equations, which have a relationship to each other. 

Zschunke has developed an algorithm for simultaneous approximation of forward and backward 
equations with two independent variables [7). The deviations between the precise equation of 
state and the approximated forward equation(s) as weil as the deviations between approximated 
forward and backward equations of one or more equation pairs can be controlled simultaneously. 
The deviations mentioned will be calJed "state error" and "numerical consistency error" 
respectively within this work. 
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Even if the structure optimization is done with optimized regression data weighting, maximum 
state error and maximum numerical consistency error can be reduced by about 20% with 
simultaneous approximation. Therefore, simultaneous steady approximation is necessary in order 
to find all equation structures able to fulfill the required accuracy. From these equation structures 
the fastest (shortest) can be chosen later. 

THE NEW ALGORlTHM 

OvelView 

The algorithm is designed for automatically setting up sets of numerically consistent forward and 
backward equations from given banks of terms with a minimized total number of terms. 

Since the Jength of a backward equation required to fulfil the demanded numerical consistency 
depends on the structure of the forward equation belonging to it, many different forward 
equations have to be tested in order to minimize the total number of terms. The structure 
optimization method of Setzmann and Wagner is used in connection with newly deveJoped sub­
algorithms for changing the weighting and the distribution of the regression data calculated from 
a precise equation of state for setting up the forward equations. The state error of equations found 
by structure optimization can be decreased with steady approximation by as much as 40% 
according to the weighting and distribution of the regression data. Therefore all equations found 
by structure optimization having astate error less than 1.67 times the allowed maximum 
deviation are submitted to a steady approximation. Those equations, which reach the demanded 
accuracy after steady approximation, are used to search for the backward equation(s). 

In order to set up backward equation(s) for one forward equation, at first new regression data are 
calculated from the forward equation. Now structure optimization and simultaneous steady 
approximation are used for finding the wanted backward equations. Because the numerical 

, consistency error can be reduced with simultaneous approximation by as much as 45%, backward 
equations need not fulfil the demanded accuracy after structure optimization. The sub-algorithms 
for changing the weighting and the distribution of the regression data are used here only to find 
the best equation structure and not to find a lot of equations. 

After backward equations for all forward equations meeting the demanded accuracy are set up, 
those equation sets with the minimum total number of terms can be selected. It's now the task of 
a programmer to select the equation set with a minimum need of computing time. 

Getting a Variety of Forward Equations 

A variety of different forward equation structures can be found by changing the bank of terms, 
increasing the equation length, changing the weighting or the distribution of the regression data 
or by forcing the structure optimization to find not only the best, but also other good equation 
structures. 

Changing the bank of terms for setting up the forward equation often is not possible, because one 
has only one bank of terms leading to good results. If there are more good banks of terms, the 
new algorithm should be used with each of them. 

For a given bank of terms there is a minimum equation length required to fulfil the demanded 
accuracy. For this minimum equation length at least one, but at most a few, different equation 
structure(s) can be found. Increasing the equation length results in more different equation 
structures able to fulfil the demanded accuracy. The minimum equation length is found by 
increasing the equation length step by step, beginning with an estimated starting value, until the 
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required accuracy is reached. 

It is the task of the developed sub-algorithms for changing the weighting and the distribution of 
the regression data to find as many equations as possible with a given length fulflIling the 
demanded accuracy with the help of structure optimization. This task is supported by forcing the 
structure optimization to keep all equations, it has ever found during the optimization process, 
and selecting the best ones after it has finished. 

The Subalgorithms 

Correction of the Weighting. NormaIly, the weighted sum of squares "I:, to be minimized by 
the structure optimization, is calculated from 

x2 =	 EI:[y"(xn)-Yn i! (I) 
n=1 1=1 On 

where N stands for the number of measured points, In for the number of measurements at point 
n, Y* for the approximated equation, x for the vector of the independent variables, Y i for the n n 
measured values and on for the total variance of the experimental data at point n. In the case of 
data being calculated from apreeise equation of state there is no variance. However, it is 
replaced by a weighting factor Wn=l/on. Equation (I) now reads: 

N In 
2

X =	 L LW~'~"(Xn)-Yn j)2 (la) 
n=l i=l 

Furthermore, there are only In=2 values at each point n: Yn 1= Yn+ Y3~y and Yn 2= Yn- Y3~y. So the 
sum of squares is ealeulated now by: 

X2 2 ~Yn 2 ~Yn	 (2)N [ ! [ ]2= LW. y"(x )-y -- + W . y"{x )-y +­
n=1 n n n 3 n n n 3 

where Wn ean be set to the reeiprocal of the allowed tolerance ~Yn at point n. 

Using (I) and (2) respeetively results in the deviation between regression data and approximated 
equation becoming too big in regions with only a few regression data. This ean be compensated 
by changing the distribution or the weighting of the regression data. The weighting is ehanged in 
the new algorithm stepwise in the following way: 

In the initial step (k=O) the weighting factor at point n is set to the reciprocal of the allowed 
tolerance Wn O=I/~Yn. In aIl further steps (k~O), this value is muItiplied by the mean value ofthe 
deviations of all preeeding steps, divided by the allowed tolerance: 

W _ 1 ~ \yt(xn)-Yn l	 (3) 
n k+1 - ~ ~ A

LlYn	 i=l kOLlYn 

Previous calculations have shown that a maximum of 5 steps is necessary to achieve a nearly 
steady approximation and a small maximum deviation respectively. 

Changing the Distribution of Regression Data. As described in the section "Structure optimi­
zation" there may be oscillations between the regression data points. Within the new algorithm 
a "sharp oscillation" is defined as a point, whose deviation is more than 15% [arger than the 
deviation of the surrounding regression data points. Such sharp oscillations can hardly be 
compensated by changing the weighting of the regression data or by steady approximation. 
Therefore the regression data have to be supplemented at places where sharp oscillations are 
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appearing, in order to give the structure optimization information about where the approximated 
equation is to go between the points surrounding the sharp oscillation. The supplemention is 
carried out in the following way: 

Each of the 3 best equations (with respect to their sums of squares), found by the structure 
optimization, is investigated with respect to whether its iteratively calculated actual maximum 
deviation is more than 25% greater than the maximum deviation at the regression data points. If 
an equation does have such a significantly greater actual error maximum, its local error maxima 
will be determined iteratively. Then, these local error maxima are investigated as to which of 
them are sharp oscillations. At the positions of these sharp oscillations supplementary data points 
are added to the regression data that produce the sharp oscillations. 

With the supplemented regression data a new structure optimization is done, and again the 3 best 
equations are investigated as to whether further supplementation is necessary. This cycle is 
repeated until no further supplementation is necessary. Now the iterative change of data 
weighting starts. There additional supplementations may prove to be necessary. Because 
supplementation of data points causes a change of data distribution, and combined with that a 
change of weighting, the iterative change of data weighting has to be started over after each 
supplementation. The two interlocked cycles for changing data weighting and distribution 
continue until 5 iteration steps for data weighting are done in a row without supplementation of 
regression data. 

Changing the weighting and the distribution of the regression data as described enables the 
structure optimization to provide a nearly steady approximation and approximate equations with 
small maximum deviation from the basis data respectively. However, the data weighting and 
distribution optimized for one equation length are not the same for another equation length. 
Therefore the sub-algorithms for changing the data weighting and distribution have to be run 
again for each tested equation length. 

Estimation of Minimum Equation Length. There is a peculiarity when using structure optimi­
zation methods for approximation of data calculated from a precise equation of state: 
Experimental data usually have a nearly normal distributed deviation from the thermophysical 
truth. In that case, the equation length can be estimated by the statistical Fisher- and Student­
tests, included in the structure optimization. Because data calculated from a precise equation of 
state have no deviation from the precise equation, looked upon as the thermophysical truth, 
statistical tests will fail. For that reason and in order to avoid numerical problems during the 
structure optimization (sum of squares becomes negative and coefficients get wrong values), the 
calculated data now are superimposed with an artificial deviation of Y3 of the allowed tolerance 
at each point, i.e. each position is represented by two points with a deviation of ±Y3 from the 
calculated point. 

The superimposion offers the possibility of predicting the minimum possible sum of squares for 
the structure optimization. If ~Yn stands for the allowed tolerance at a point n and N for the 
number of points, the minimum weighted sum of squares "I:min is determined by: 

2. '"' 2. ~ w2[~Ynr (4)
X mrn LJ n 3 

n~l 

Experiences have shown: If an equation, fitted with use of the algorithm developed, ought to 
keep the allowed tolerance, the weighted sum of squares of an equation of the same length, but 
fitted without the algorithm, has to be less than 3 times "1.. 

2min. A modified version of the stepwise 
regression analysis of Wagner is used in order to determine the equation length belonging to a 
sum of squares 3 times greater than "1.. 

2min. The equation length, found in this way, is used as the 
estimated minimum equation length for the new algorithm. 
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EXAMPLE 

The algorithm was applied for setting up simplified equations v=v(T,p), h=h(T,p) and T=T(p,h) 
for superheated steam in the region between T=273.16 K··873.15 K and s=6.2···8.7 kJ/kg K. The 
equations for v and h are derived from a canonical equation g=g(T,p). The allowed tolerance of 
v and h referring to the equation of state of Saul and Wagner [8], converted into ITS 90, 
corresponds to the toleances of the International Skeleton Tables IST 85 [9] and the maximum 
numerical consistency error between h=h(T,p) and T=T(p,h) is less than 0.075 K. With a total 
number of 22 terms the following is the best equation pair: 

An equation g=g(T,p) with 10 terms: 

~; a l - ~Pr I [~- 0.45J + a3Pr(Tr- T;Pin + 0.015)[~- 0.45]3 + a4Pr[~- 0.45J 
RT (T-Tspm+0015)Tr Tr Trr r . 

+ a5Pr [ln(Pr) - I] [ ;r - 0.45r+ a6Pr+ ~ln(Pr) + ag[; r - 0.45] + a9ln(Tr) + a lOTr 

with R; 0.46152 kJ/kg K, Pr; p , T ; __Tr22.064 MPa 647.096 K 

and Tspin ; 1 
r 1- In(Pr)[0.173 - 0.011 In(Pr) - 0.02Pr] 

and an equation T=T(p,h) with 12 terms: 

5 I1 
~ kmlm ~ kmlh,.

Tr; .l..J bmPr hr +.l..J bmPr e 
m 

+ b12hr 
m= I m=6 

with h ; h 
r 2085.1246 kJ/kg 

Trspin is an approximation for the reduced gas spinodal temperature. The parameters are: 

m 11m bm km Im 

I 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

-5.3661720201833 
0.0077061074769843 

1.2789155292727 
-1.1548773444235 
0.10873781792311 

-0.016687806471207 
1.0002364850457 
6.7787851623073 

·3.6181905375738 
-0.41039970809357 

-1.1496248071964 
22 776278053539 

-29.233929240872 
73.357895871987 
10553.501096865 
13.384605319034 

-20.807725012156 
1583836.5752764 
24.99774959016 

-13274327902303 
0.12785100320748E+35 

1.1222439584626 

0 
I 
2 

2.5 
2.5 
0 

0.75 
0.75 

I 
1.5 
2 

-I 
-12 
-12 
-16 
-32 
-5 
-4 

-12 
-3 

-14 
-60 
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SUMMARY 

The algorithm developed allows setting up simplified, fast equations of state for use in process 
modellings. Numerically consistent equations with a minimized total number of terms are found 
with small manual expenditure. The algorithm combines the advantages of structure optimization 
and simultaneous steady approximation. The banks of terms serving as basis for the approximated 
equations still have to be given by the equation maker. However, the weighting and the 
distribution of the regression data are optimized automatically. The number of terms needed to 
fulfill the accuracy requirements can be estimated before starting the algorithm and is determined 
exactly within the algorithm. A way was found to overcome numerical problems when 
approximating data calculated from a precise equation of state. 

The application of the algorithm has shown, that the numerical consistency error can be made 
about one order of magnitude smaller than the state error, without making the backward equation 
significantly longer than the forward equation. 
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