

M. Kunick, H.-J. Kretzschmar, U. Gampe

Fast and Accurate Calculation of Thermodynamic Properties in Process Simulations Using a Spline-Based Table Look-Up Method

Project of the International Association for the Properties of Water and Steam (IAPWS) -Task Group "CFD Steam Property Formulation"

Agenda:

- Requirements for the Calculation of Thermodynamic Properties in Process Simulations
- Fundamentals of a Spline-Based Table Look-Up Method
- Property Calculations for Water and Steam in CFD-Simulations
- FluidSplines a Tool to Generate Spline-Based Property Functions
- Summary and Outlook

Symposium on Thermophysical Properties of Fluids, Zittau 2012

Requirements for Property Calculations in Process Simulations

Extensive Process Simulations:

- Heat Cycle Calculations (HCC):
 - calculation of non-stationary processes
 - heat cycle optimizations
- Computational Fluid Dynamics (CFD) :
 - 3D-flow analysis
 - consideration of real fluid behavior

Objectives/Conditions of Process Simulations	Requirements for Property Calculations
accurate results	high accuracy
small time steps, small volume elements (cells)	high numerical consistency (e.g., $u(p,v)$ must be numerically consistent to $p(u,v)$ in CFD-calculations)
application of numerical solvers	continuous functions and first derivatives
property functions are called frequently (millions of calls)	high computing speed

Requirements for Property Calculations in Process Simulations

Equations of State cannot meet the requirement for high computing speed because:

- independent variables of Helmholtz-equations are temperature T and specific volume v,
 - Heat Cycle Calculations: calculation from pressure p and specific enthalpy h
 - CFD: calculation from internal energy u and specific volume v
 - > iterative calculation of properties required
- equations of state contain numerous terms,
- complexity of terms (rational exponents, logarithms, ...).

Computing times must be reduced by factors >100...1000 to meet the requirements.

It is advantageous for extensive process simulations to apply a spline-based table look-up method to existing equations of state because:

- results of the equation of state can be reproduced with high accuracy and high computing speed,
- spline-functions represent property functions continuously,
- backward functions can be calculated with complete numerical consistency.

Fundamentals of a Spline-Based Table Look-Up Method

Generation of a spline-function $z^{SPL}(x_1,x_2)$ from an existing equation of state $z^{EOS}(x_1,x_2)$:

- Generation of a grid of nodes, optimized for:
 - required accuracy
 - maximal computing speed
 - minimal amount of data
- Calculation of node-values from equation of state
- Calculation of all splinecoefficients for all cells

$$Z_{ij}^{\text{SPL}}\left(\mathbf{X}_{1}, \mathbf{X}_{2}\right) = \sum_{k=1}^{3} \sum_{l=1}^{3} \mathbf{a}_{ijkl} \left(\mathbf{X}_{1} - \mathbf{X}_{1i}\right)^{k-1} \left(\mathbf{X}_{2} - \mathbf{X}_{2j}\right)^{l-1}$$

To provide spline-based functions for property calculations:

- save grid of nodes and spline-coefficients
- generate optimized source-code for the property function $z^{SPL}(x_1,x_2)$

Application of spline-functions in CFD and other extensive simulations

Fundamentals of a Spline-Based Table Look-Up Method

Calculation of inverse spline-functions (Example: bi-quadratic polynomial):

$$\boldsymbol{Z}_{ij}^{\text{SPL}}\left(\boldsymbol{X}_{1}, \boldsymbol{X}_{2}\right) = \sum_{k=1}^{3} \sum_{l=1}^{3} \boldsymbol{a}_{ijkl} \left(\boldsymbol{X}_{1} - \boldsymbol{X}_{1i}\right)^{k-1} \left(\boldsymbol{X}_{2} - \boldsymbol{X}_{2j}\right)^{l-1}$$

$$\mathbf{X}_{\mathrm{l},ij}^{\mathrm{INV}}\left(\mathbf{Z},\mathbf{X}_{2}\right) = \frac{\left(-\mathbf{B} \pm \sqrt{\mathbf{B}^{2} - 4\mathbf{AC}}\right)}{2\mathbf{A}} + \mathbf{X}_{\mathrm{l}i}$$

in which
$$A = a_{ij31} + \Delta x_{2j} \left(a_{ij32} + a_{ij33} \Delta x_{2j} \right)$$

 $B = a_{ij21} + \Delta x_{2j} \left(a_{ij22} + a_{ij23} \Delta x_{2j} \right)$
 $C = a_{ij11} + \Delta x_{2j} \left(a_{ij12} + a_{ij13} \Delta x_{2j} \right) - z$

and
$$\Delta \mathbf{x}_{2j} = (\mathbf{x}_2 - \mathbf{x}_{2j})$$

The inverse spline-function $x_{\mathrm{l},ij}^{\mathrm{INV}}(z,x_2)$ is numerically consistent to the spline-function $Z_{ij}^{SPL}(X_1,X_2)$.

Property Calculations for Water and Steam in CFD-Simulations

Application of inverse spline-functions (independent variables: u,v):

spline-functions with the variables u and v:

 $p^{SPL}(u,v)$

 $T^{\rm SPL}(u,v)$ $s^{\rm SPL}(u,v)$

 $\eta^{\text{SPL}}(u,v)$ $\lambda^{SPL}(u,v)$

calculation from other pairs of variables using the spline-functions above:

 $T,v,s,\eta = f(p,u)$

 $p,T,v,\eta = f(u,s)$

inverse spline functions:

 $T,s,u,\eta = f(p,v)$

 $u = u^{\text{INV}}(p, v)$ $v = v^{\text{INV}}(p, u)$

- $T = T^{SPL}(u,v)$ $s = s^{SPL}(u,v)$
 - $T = T^{SPL}(u,v)$ $s=s^{\rm SPL}(u,v)$
- $p = p^{SPL}(u,v)$ $T = T^{SPL}(u, v)$

- $\eta = \eta^{SPL}(u,v)$
- $\eta = \eta^{SPL}(u,v)$
- $\eta = \eta^{SPL}(u,v)$

- All thermodynamic properties, including backward-functions, can be calculated without iterations.
- Spline-functions can be calculated with complete numerical consistency.

• extensive heat-cycle calculations (optimization of heat cycles)

calculation of non-stationary processes

other applications

Summary and Outlook

Summary:

- Spline-based table look-up methods provide high accuracy and high computing speed at the same time
 - (CTR=100...>1000 in comparison to equations of state)
- Complete numerical consistency of forward and backward functions is possible
- Requirements of Computational Fluid Dynamics and the calculation of non-stationary processes can be fulfilled (numerical consistency, continuity)
- Spline-functions can be fitted to existing equations of state of any fluid

Outlook:

- Further development of spline-algorithms and tools
- Test-calculations in CFD-Programs (TRACE, developed by DLR)
- Test-calculations in heat-cycle simulations (EBSILON, developed by STEAG Energy Services)
- Test-calculations with non-stationary simulation tools (Vattenfall Power Consult VPC)
- This method will be presented at the IAPWS-meeting in October, 1st-5th (Boulder, CO)

Thank you for your attention.