The International Association for the Properties of Water and Steam

Moscow, Russia June 2014

Revised Supplementary Release on Backward Equations for Specific Volume as a Function of Pressure and Temperature v(p,T)for Region 3 of the IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam

© 2014 International Association for the Properties of Water and Steam Publication in whole or in part is allowed in all countries provided that attribution is given to the International Association for the Properties of Water and Steam

> President: Professor Tamara Petrova Moscow Power Engineering Institute Moscow, Russia

Executive Secretary: Dr. R. B. Dooley Structural Integrity Associates Southport, Merseyside, UK Email: bdooley@structint.com

This supplementary release replaces the corresponding supplementary release of 2005, and contains 35 pages, including this cover page.

This revised supplementary release has been authorized by the International Association for the Properties of Water and Steam (IAPWS) at its meeting in Moscow, Russia, 22-27 June, 2014, for issue by its Secretariat. The members of IAPWS are: Britain and Ireland, Canada, the Czech Republic, Germany, Japan, Russia, Scandinavia (Denmark, Finland, Norway, Sweden), and the United States, and associate members Argentina & Brazil, Australia, France, Greece, Italy, New Zealand, and Switzerland.

The backward equations v(p,T) for Region 3 provided in this release are recommended as a supplement to "The IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam" (IAPWS-IF97) [1, 2]. Further details concerning the equations of this revised supplementary release can be found in the corresponding article by H.-J. Kretzschmar *et al.* [3].

This revision consists of edits to clarify descriptions of how to determine the region or subregion; the property calculations are unchanged.

Further information concerning this supplementary release, other releases, supplementary releases, guidelines, technical guidance documents, and advisory notes issued by IAPWS can be obtained from the Executive Secretary of IAPWS or from http://www.iapws.org.

Contents

1 Nomenclature	3					
2 Background	4					
3 Numerical Consistency Requirements	5					
4 Structure of the Equation Set	5					
5 Backward Equations $v(p,T)$ for the Subregions 3a to 3t	6					
5.1 Subregions	6					
5.2 Backward Equations $v(p,T)$ for the Subregions 3a to 3t	12					
5.3 Calculation of Thermodynamic Properties with the $v(p,T)$ Backward Equations						
5.4 Numerical Consistency	14					
6 Auxiliary Equations $v(p,T)$ for the Region very close to the Critical Point	17					
6.1 Subregions	17					
6.2 Auxiliary Equations $v(p,T)$ for the Subregions 3u to 3z	19					
6.3 Numerical Consistency	20					
7 Computing Time in Relation to IAPWS-IF97	21					
8 Application of the Backward and Auxiliary Equations $v(p,T)$	22					
9 References	22					
Appendix	24					

Thermodynamic quantities:

- c_p Specific isobaric heat capacity
- f Specific Helmholtz free energy
- h Specific enthalpy
- p Pressure
- s Specific entropy
- T Absolute temperature ^a
- v Specific volume
- w Speed of sound
- θ Reduced temperature $\theta = T/T^*$
- π Reduced pressure, $\pi = p/p^*$
- ω Reduced volume, $\omega = v/v^*$
- Δ Difference in any quantity

Subscripts:

15	Region 15
3a3z	Subregion 3a3z
3ab	Boundary between subregions 3a, 3d and 3b, 3e
3cd	Boundary between subregions 3c and 3d, 3g, 3l, 3q, 3s
3ef	Boundary between subregions 3e, 3h, 3n and 3f, 3i, 3o
3gh	Boundary between subregions 3g, 3l and 3h, 3m
3ij	Boundary between subregions 3i, 3p and 3j
3jk	Boundary between subregions 3j, 3r and 3k
3mn	Boundary between subregions 3m and 3n
3op	Boundary between subregions 30 and 3p
3qu	Boundary between of subregion 3q and 3u
3rx	Boundary between of subregion 3r and 3x
3uv	Boundary between subregions 3u and 3v
3wx	Boundary between subregions 3w and 3x
B23	Boundary between regions 2 and 3
c	Critical point
it	Iterated quantity
max	Maximum value of a quantity
RMS	Root-mean-square value of a quantity
sat	Saturation state
tol	Tolerated value of a quantity

Root-mean-square value:

$$\Delta x_{\rm RMS} = \sqrt{\frac{1}{N} \sum_{n=1}^{N} (\Delta x_n)^2}$$

where Δx_n can be either absolute or percentage difference between the corresponding quantities *x*; *N* is the number of Δx_n values (10 million points uniformly distributed over the range of validity in the *p*-*T* plane).

Superscripts:

- 97 Quantity or equation of IAPWS-IF97
- 01 Equation of IAPWS-IF97-S01
- 03 Equation of IAPWS-IF97-S03rev
- 04 Equation of IAPWS-IF97-S04
- * Reducing quantity
- ' Saturated liquid state
- " Saturated vapor state

^a Note: *T* denotes absolute temperature on the International Temperature Scale of 1990 (ITS-90).

2 Background

The IAPWS Industrial Formulation 1997 for the thermodynamic properties of water and steam (IAPWS-IF97) [1, 2] contains basic equations, saturation equations and equations for the frequently used backward functions T(p,h) and T(p,s) valid in the liquid region 1 and the vapor region 2; see Figure 1. IAPWS-IF97 was supplemented by "Supplementary Release on Backward Equations for Pressure as a Function of Enthalpy and Entropy p(h,s) to the IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam" [4, 5], which will be referred to as IAPWS-IF97-S01. These equations are valid in region 1 and region 2. An additional "Supplementary Release on Backward Equations for the Functions T(p,h), v(p,h) and T(p,s), v(p,s) for Region 3 of the IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam" [6, 7], which will be referred to as IAPWS-IF97-S03rev, was adopted by IAPWS in 2003 and revised in 2004. In 2004, IAPWS-IF97 was supplemented by "Supplementary Release on Backward Equations p(h,s) for Region 3, Equations as a Function of h and s for the Region Boundaries, and an Equation $T_{\text{sat}}(h,s)$ for Region 4 of the IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam" (referred to here as IAPWS-IF97-S04) [8, 9].

Figure 1. Regions and equations of IAPWS-IF97, IAPWS-IF97-S01, IAPWS-IF97-S03rev, IAPWS-IF97-S04, and the equations $v_3(p,T)$ of this release

IAPWS-IF97 region 3 is covered by a basic equation for the Helmholtz free energy f(v,T). All thermodynamic properties can be derived from the basic equation as a function of specific volume v and temperature T. However, in modeling some steam power cycles, thermodynamic properties as functions of the variables (p,T) are required in region 3. It is cumbersome to perform these calculations with IAPWS-IF97, because they require iterations of v from p and T using the function p(v,T) derived from the IAPWS-IF97 basic equation f(v,T).

In order to avoid such iterations, this release provides equations $v_3(p,T)$; see Figure 1. With specific volume v calculated from the equations $v_3(p,T)$, the other properties in region 3 can be calculated using the IAPWS-IF97 basic equation f(v,T).

For process calculations, the numerical consistency requirements for the equations v(p,T) are very strict. Because the specific volume in the *p*-*T* plane has a complicated structure, including an infinite slope at the critical point, region 3 was divided into 26 subregions. The first 20 subregions and their associated backward equations, described in Section 5, cover almost all of region 3 and fully meet the consistency requirements. For a small area very near the critical point, it was not possible to meet the consistency requirements fully. This near-critical region is covered with reasonable consistency by six subregions with auxiliary equations, described in Section 6.

3 Numerical Consistency Requirements

The permissible value for the numerical consistency of the equations for specific volume with the IAPWS-IF97 fundamental equation was determined based on the required accuracy of the iteration otherwise used. The iteration accuracy depends on thermodynamic process calculations. To obtain specific enthalpy or entropy from pressure and temperature in region 3 with a maximum deviation of 0.001 % from IAPWS-IF97, and isobaric heat capacity or speed of sound with a maximum deviation of 0.01 %, a relative accuracy of $|\Delta v/v| = 0.001$ % is sufficient. Therefore, the permissible relative tolerance for the equations v(p,T) was set to $|\Delta v/v|_{tol} = 0.001$ %.

4 Structure of the Equation Set

The range of validity of the equations $v_3(p,T)$ is region 3 defined by: 623.15 K < $T \le 863.15$ K and $p_{B23}^{97}(T) MPa.$

The function $p_{B23}^{97}(T)$ represents the B23-equation of IAPWS-IF97.

It proved to be infeasible to achieve the numerical consistency requirement of 0.001 % for $v_3(p,T)$ using simple functional forms in the region

$$T_{3qu}(p) < T \le T_{3rx}(p)$$
 for $p_{sat}^{97}(643.15 \text{ K}) ; see Figure 2.$

This limitation is due to the infinite slope of the specific volume at the critical point. In order to cover region 3 completely, Section 6 contains auxiliary equations for this small region very close to the critical point.

Figure 2 shows the range of validity of the backward and auxiliary equations.

Figure 2. Range of validity of the backward and auxiliary equations. The area marked in gray is not true to scale but enlarged to make the small area better visible.

5 Backward Equations v(p,T) for the Subregions 3a to 3t

5.1 Subregions

Preliminary investigations showed that it was not possible to meet the numerical consistency requirement with only a few v(p,T) equations. Therefore, the main part of region 3 was divided into 20 subregions 3a to 3t; see Figures 3 and 4.

 \neg

Figure 4. Enlargement from Figure 3 for the subregions 3c to 3r for the backward equation v(p,T)

 ∞

The subregion boundary equations, except for $T_{3ab}(p)$, $T_{3ef}(p)$, and $T_{3op}(p)$, have the following dimensionless form:

$$\frac{T(p)}{T^*} = \theta(\pi) = \sum_{i=1}^N n_i \, \pi^{I_i} \,, \tag{1}$$

where $\theta = T/T^*$, $\pi = p/p^*$, with $T^* = 1$ K, $p^* = 1$ MPa.

The equations $T_{3ab}(p)$ and $T_{3op}(p)$ have the form:

$$\frac{T(p)}{T^*} = \theta(\pi) = \sum_{i=1}^N n_i \left(\ln \pi\right)^{I_i} , \qquad (2)$$

and $T_{3ef}(p)$ has the form:

$$\frac{T_{3\rm ef}(p)}{T^*} = \theta_{3\rm ef}(\pi) = \frac{\partial \theta_{\rm sat}}{\partial \pi} \bigg|_{\rm c} (\pi - 22.064) + 647.096 , \qquad (3)$$

where $\partial \theta_{\text{sat}} / \partial \pi |_{\text{c}} = 3.727\ 888\ 004$.

The coefficients n_i and the exponents I_i of the boundary equations are listed in Table 1.

Table 1.	Numerical values of the coefficients of the equations for subregion boundaries
	(except $T_{3ef}(p)$)

Equation	:	I	14	;	I	14
Equation	l	I_i	n _i	l	I_i	n _i
$T_{3ab}(p)$	1	0	$0.154~793~642~129~415 \times 10^4$	4	-1	$-0.191\ 887\ 498\ 864\ 292 imes 10^4$
	2	1	$-0.187\ 661\ 219\ 490\ 113 imes 10^3$	5	-2	$0.918\;419\;702\;359\;447\times10^3$
	3	2	$0.213\ 144\ 632\ 222\ 113\times 10^2$			
$T_{3cd}(p)$	1	0	$0.585\ 276\ 966\ 696\ 349 imes 10^3$	3	2	$-0.127\ 283\ 549\ 295\ 878 imes 10^{-1}$
	2	1	$0.278\ 233\ 532\ 206\ 915 imes 10^1$	4	3	$0.159\ 090\ 746\ 562\ 729 imes 10^{-3}$
$T_{3oh}(p)$	1	0	$-0.249\ 284\ 240\ 900\ 418\times 10^5$	4	3	$0.751\;608\;051\;114\;157 imes 10^1$
	2	1	$0.428\ 143\ 584\ 791\ 546\times 10^4$	5	4	$-0.787\ 105\ 249\ 910\ 383 imes 10^{-1}$
	3	2	$-0.269\ 029\ 173\ 140\ 130 \times 10^3$			
$T_{3ii}(p)$	1	0	$0.584\ 814\ 781\ 649\ 163 imes 10^3$	4	3	$-0.587\ 071\ 076\ 864\ 459 \times 10^{-2}$
5.9(-)	2	1	-0.616 179 320 924 617	5	4	$0.515\;308\;185\;433\;082\times10^{-4}$
	3	2	0.260 763 050 899 562			
$T_{3ik}(p)$	1	0	$0.617\ 229\ 772\ 068\ 439 \times 10^3$	4	3	$-0.157 \ 391 \ 839 \ 848 \ 015 \times 10^{-1}$
5jk (1)	2	1	$-0.770\ 600\ 270\ 141\ 675 imes 10^1$	5	4	$0.137\ 897\ 492\ 684\ 194 imes 10^{-3}$
	3	2	0.697 072 596 851 896			
$T_{3mn}(p)$	1	0	$0.535\ 339\ 483\ 742\ 384 \times 10^3$	3	2	-0.158 365 725 441 648
5mm (1)	2	1	$0.761~978~122~720~128 \times 10^{1}$	4	3	$0.192\ 871\ 054\ 508\ 108 imes 10^{-2}$
$T_{3on}(p)$	1	0	0.969 461 372 400 213 × 10 ³	4	-1	0.773 845 935 768 222 × 10 ³
50p (1)	2	1	$-0.332\ 500\ 170\ 441\ 278 \times 10^3$	5	-2	$-0.152\ 313\ 732\ 937\ 084 imes 10^4$
	3	2	$0.642~859~598~466~067 \times 10^2$			
$T_{2au}(p)$	1	0	0.565 603 648 239 126 × 10 ³	3	2	-0.102 020 639 611 016
3yu (*)	2	1	$0.529\ 062\ 258\ 221\ 222 imes 10^1$	4	3	$0.122\ 240\ 301\ 070\ 145 imes 10^{-2}$
$T_{2rr}(p)$	1	0	0.584 561 202 520 006 × 10 ³	3	2	0.243 293 362 700 452
JIX (T)	2	1	$-0.102\ 961\ 025\ 163\ 669 \times 10^{1}$	4	3	$-0.294\ 905\ 044\ 740\ 799 imes 10^{-2}$

The following description of the use of the subregion boundary equations is summarized in Table 2 and Figures 3 and 4.

Table 2. Pressure ranges and corresponding subregion boundary equations for determining the correct subregion, 3a to 3t, for the backward equations v(p,T)

Dragoura Danga	Sub	Eor	Sub	For
Flessure Kange	sub-	101	sub-	1'01
$40 \text{ MP}_2 < n \leq 100 \text{ MP}_2$		T < T (1)		$T \cdot T$ (a)
40 WH a	3a	$I \leq I_{3ab}(p)$	3b	$I > I_{3ab}(p)$
25 MPa	3c	$T \leq T_{3cd}(p)$	3e	$T_{3ab}(p) < T \le T_{3ef}(p)$
	3d	$T_{\rm 3cd}(p) < T \le T_{\rm 3ab}(p)$	3f	$T > T_{3ef}(p)$
23.5 MPa	3c	$T \leq T_{3cd}(p)$	3i	$T_{3\rm ef}(p) < T \le T_{3\rm ij}(p)$
	3g	$T_{3cd}(p) < T \le T_{3gh}(p)$	3j	$T_{3ij}(p) < T \leq T_{3jk}(p)$
	3h	$T_{3\rm gh}(p) < T \le T_{3\rm ef}(p)$	3k	$T > T_{3jk}(p)$
23 MPa	3c	$T \leq T_{3cd}(p)$	3i	$T_{3ef}(p) < T \le T_{3ij}(p)$
	31	$T_{3cd}(p) < T \le T_{3gh}(p)$	3ј	$T_{3ij}(p) < T \le T_{3jk}(p)$
	3h	$T_{3\text{gh}}(p) < T \le T_{3\text{ef}}(p)$	3k	$T > T_{3jk}(p)$
22.5 MPa $ MPa$	3c	$T \leq T_{3cd}(p)$	30	$T_{3\rm ef}(p) < T \le T_{3\rm op}(p)$
	31	$T_{\rm 3cd}(p) < T \le T_{\rm 3gh}(p)$	3р	$T_{3\mathrm{op}}(p) < T \leq T_{3\mathrm{ij}}(p)$
	3m	$T_{\rm 3gh}(p) < T \le T_{\rm 3mn}(p)$	3ј	$T_{3ij}(p) < T \leq T_{3jk}(p)$
	3n	$T_{3\mathrm{mn}}(p) < T \leq T_{3\mathrm{ef}}(p)$	3k	$T > T_{3jk}(p)$
$p_{\text{sat}}^{97}(643.15 \text{ K})$	3c	$T \leq T_{3cd}(p)$	3r	$T_{3\mathrm{rx}}(p) < T \le T_{3\mathrm{ik}}(p)$
	3q	$T_{3cd}(p) < T \le T_{3qu}(p)$	3k	$T > T_{3jk}(p)$
20.5 MPa $$	3c	$T \leq T_{3cd}(p)$	3r	$T_{\rm sat}^{97}(p) \le T \le T_{\rm 3jk}(p)$
	3s	$T_{\rm 3cd}(p) < T \le T_{\rm sat}^{97}(p)$	3k	$T > T_{3jk}(p)$
p_{3cd}^{b}	3c	$T \leq T_{3cd}(p)$	3t	$T \ge T_{\rm sat}^{97}(p)$
	3s	$T_{3cd}(p) < T \le T_{sat}^{97}(p)$		
$p_{\text{sat}}^{97}(623.15 \text{ K})$	3c	$T \leq T_{\rm sat}^{97}(p)$	3t	$T \ge T_{\text{sat}}^{97}(p)$

^b $p_{3cd} = 1.900\ 881\ 189\ 173\ 929 \times 10^1\ MPa$

The equation $T_{3ab}(p)$ approximates the critical isentrope from 25 MPa to 100 MPa and represents the boundary equation between subregion 3a and subregion 3d.

The equation $T_{3cd}(p)$ ranges from $p_{3cd} = 1.900\ 881\ 189\ 173\ 929 \times 10^1$ MPa to 40 MPa. The pressure of $p_{3cd} = 1.900\ 881\ 189\ 173\ 929 \times 10^1$ MPa is given as $T_{sat}^{97}(p) - T_{3cd}(p) = 0$. The equation $T_{3cd}(p)$ represents the boundary equation between subregions 3d, 3g, 3l, 3q or 3s, and subregion 3c.

The equation $T_{3gh}(p)$ ranges from 22.5 MPa to 25 MPa and represents the boundary equation between subregions 3h or 3m and subregions 3g or 3l.

The equation $T_{3ij}(p)$ approximates the isochore $v = 0.0041 \text{ m}^3 \text{ kg}^{-1}$ from 22.5 MPa to 25 MPa and represents the boundary equation between subregion 3j and subregions 3i or 3p.

The equation $T_{3jk}(p)$ approximates the isochore v = v''(20.5 MPa) from 20.5 MPa to 25 MPa and represents the boundary equation between subregion 3k and subregions 3j or 3r.

The equation $T_{3mn}(p)$ approximates the isochore $v = 0.0028 \text{ m}^3 \text{ kg}^{-1}$ from 22.5 MPa to 23 MPa and represents the boundary equation between subregion 3n and subregion 3m.

The equation $T_{3op}(p)$ approximates the isochore $v = 0.0034 \text{ m}^3 \text{ kg}^{-1}$ from 22.5 MPa to 23 MPa and represents the boundary equation between subregion 3p and subregion 3o.

The equation $T_{3qu}(p)$ approximates the isochore v = v'(643.15 K) from $p = p_{sat}^{97}(643.15 \text{ K})$, where $p_{sat}^{97}(643.15 \text{ K}) = 2.104336732 \times 10^1 \text{ MPa}$ to 22.5 MPa and represents the boundary equation between subregion 3q and subregion 3r (see Fig. 5).

The equation $T_{3rx}(p)$ approximates the isochore v = v''(643.15 K) from $p = p_{sat}^{97}(643.15 \text{ K})$, where $p_{sat}^{97}(643.15 \text{ K}) = 2.104336732 \times 10^1 \text{ MPa}$, to 22.5 MPa and represents the boundary equation between subregion 3r and subregion 3x (see Fig.5).

The subregion boundary equation $T_{3ef}(p)$ is a straight line from 22.064 MPa to 40 MPa having the slope of the saturation-temperature curve of IAPWS-IF97 at the critical point. It divides subregions 3f, 3i or 30 from subregions 3e, 3h or 3n.

Computer-program verification

To assist the user in computer-program verification of the equations for the subregion boundaries, Table 3 contains test values for calculated temperatures.

Equation	р	Т	Equation	р	Т
	MPa	Κ		MPa	Κ
$T_{3ab}(p)$	40	$6.930\;341\;408\times10^2$	$T_{3jk}(p)$	23	$6.558\;338\;344\times 10^2$
$T_{3cd}(p)$	25	$6.493\;659\;208\times10^2$	$T_{3mn}(p)$	22.8	$6.496\ 054\ 133\times 10^2$
$T_{3ef}(p)$	40	$7.139\ 593\ 992\times 10^2$	$T_{3 op}(p)$	22.8	$6.500\;106\;943\times10^2$
$T_{3gh}(p)$	23	$6.498\ 873\ 759\times 10^2$	$T_{3qu}(p)$	22	$6.456~355~027\times 10^2$
$T_{3ij}(p)$	23	$6.515\ 778\ 091 \times 10^2$	$T_{3rx}(p)$	22	$6.482\ 622\ 754\times 10^2$

Table 3. Selected temperature values calculated from the subregion boundary equations ^c

^c It is recommended that programmed functions be verified using 8 byte real values for all variables.

5.2 Backward Equations v(p,T) for the Subregions 3a to 3t

The backward equations v(p,T) for the subregions 3a to 3t, except for 3n, have the following dimensionless form:

$$\frac{v(p,T)}{v^*} = \omega(\pi,\theta) = \left[\sum_{i=1}^N n_i \left[(\pi-a)^c\right]^{I_i} \left[(\theta-b)^d\right]^{J_i}\right]^e.$$
(4)

The equation for subregion 3n has the form:

$$\frac{v_{3n}(p,T)}{v^*} = \omega_{3n}(\pi,\theta) = \exp\left\{\sum_{i=1}^N n_i (\pi-a)^{I_i} (\theta-b)^{J_i}\right\},$$
(5)

with $\omega = v/v^*$, $\pi = p/p^*$, and $\theta = T/T^*$. The reducing quantities v^* , p^* , and T^* , the number of coefficients *N*, the non-linear parameters *a* and *b*, and the exponents *c*, *d*, and *e* are listed in Table 4 for the equations of the subregions 3a to 3t. The coefficients n_i and exponents I_i and J_i of these equations are listed in Tables A1.1 to A1.20 of the Appendix.

Table 4. Reducing quantities v^* , p^* , and T^* , number of coefficients *N*, non-linear parameters *a* and *b*, and exponents *c*, *d*, and *e* for the v(p,T) equations of the subregions 3a to 3t

Subregion	<i>v</i> *	p^*	T^{*}	Ν	а	b	С	d	е
	$m^3 kg^{-1}$	MPa	Κ						
3a	0.0024	100	760	30	0.085	0.817	1	1	1
3b	0.0041	100	860	32	0.280	0.779	1	1	1
3c	0.0022	40	690	35	0.259	0.903	1	1	1
3d	0.0029	40	690	38	0.559	0.939	1	1	4
3e	0.0032	40	710	29	0.587	0.918	1	1	1
3f	0.0064	40	730	42	0.587	0.891	0.5	1	4
3g	0.0027	25	660	38	0.872	0.971	1	1	4
3h	0.0032	25	660	29	0.898	0.983	1	1	4
3i	0.0041	25	660	42	0.910	0.984	0.5	1	4
3j	0.0054	25	670	29	0.875	0.964	0.5	1	4
3k	0.0077	25	680	34	0.802	0.935	1	1	1
31	0.0026	24	650	43	0.908	0.989	1	1	4
3m	0.0028	23	650	40	1.00	0.997	1	0.25	1
3n	0.0031	23	650	39	0.976	0.997	-	-	-
30	0.0034	23	650	24	0.974	0.996	0.5	1	1
3p	0.0041	23	650	27	0.972	0.997	0.5	1	1
3q	0.0022	23	650	24	0.848	0.983	1	1	4
3r	0.0054	23	650	27	0.874	0.982	1	1	1
3s	0.0022	21	640	29	0.886	0.990	1	1	4
3t	0.0088	20	650	33	0.803	1.02	1	1	1

Computer-program verification

To assist the user in computer-program verification of the equations for the subregions 3a to 3t, Table 5 contains test values for calculated specific volumes.

Equation	р	Т	v	Equation	р	Т	v
	MPa	Κ	$m^3 kg^{-1}$		MPa	Κ	$m^3 kg^{-1}$
v (nT)	50	630	$1.470~853~100 \times 10^{-3}$	v (nT)	23	660	6.109 525 997 × 10 ⁻³
$v_{3a}(p, 1)$	80 670 1.503 831 359 \times 10 ⁻³	24	670	$6.427~325~645 \times 10^{-3}$			
v_{n} $(n T)$	50	710	$2.204\ 728\ 587 \times 10^{-3}$	$v_{n}(n,T)$	22.6	646	$2.117\ 860\ 851 \times 10^{-3}$
$v_{3b}(p, 1)$	80	750	$1.973~692~940 \times 10^{-3}$	$v_{31}(p, 1)$	23	646	$2.062\ 374\ 674 \times 10^{-3}$
v_{r} (nT)	20	630	$1.761~696~406 \times 10^{-3}$	v_{r} (nT)	22.6	648.6	2.533 063 780 × 10-3
$v_{3c}(p, 1)$	30	650	$1.819\ 560\ 617 imes 10^{-3}$	$v_{3m}(p, 1)$	22.8	649.3	2.572 971 781 × 10 ⁻³
v (nT)	26	656	$2.245\ 587\ 720 imes 10^{-3}$	v (nT)	22.6	649.0	$2.923\ 432\ 711 imes 10^{-3}$
$v_{3d}(p, 1)$	30	670	$2.506\ 897\ 702 imes 10^{-3}$	$v_{3n}(p, 1)$	22.8	649.7	$2.913\ 311\ 494 imes 10^{-3}$
v_{τ} $(n T)$	26	661	$2.970\ 225\ 962 imes 10^{-3}$	v_{τ} $(n T)$	22.6	649.1	$3.131\ 208\ 996 \times 10^{-3}$
$v_{3e}(p, 1)$	30	675	$3.004~627~086 \times 10^{-3}$	$v_{30}(p, 1)$	22.8	649.9	$3.221\ 160\ 278 imes 10^{-3}$
$v_{rr}(nT)$	26	671	$5.019\ 029\ 401 imes 10^{-3}$	v_{n} (nT)	22.6	649.4	$3.715\ 596\ 186 imes 10^{-3}$
$v_{3f}(p, \mathbf{I})$	30	690	$4.656\ 470\ 142 imes 10^{-3}$	$V_{3p}(P, 1)$	22.8	650.2	$3.664~754~790 \times 10^{-3}$
v_{n} $(n T)$	23.6	649	$2.163\ 198\ 378 imes 10^{-3}$	v_{n} (nT)	21.1	640	$1.970\ 999\ 272 imes 10^{-3}$
$v_{3g}(p, 1)$	24	650	$2.166\ 044\ 161 \times 10^{-3}$	$v_{3q}(p, r)$	21.8	643	$2.043\ 919\ 161 \times 10^{-3}$
$v_{m}(nT)$	23.6	652	$2.651\ 081\ 407 imes 10^{-3}$	v_{r} (nT)	21.1	644	$5.251\ 009\ 921 imes 10^{-3}$
$v_{3h}(p, 1)$	24	654	$2.967\ 802\ 335 imes 10^{-3}$	$v_{3r}(p, \mathbf{I})$	21.8	648	$5.256\ 844\ 741 imes 10^{-3}$
$v_{m}(n,T)$	23.6	653	$3.273\ 916\ 816 imes 10^{-3}$	v_{r} (nT)	19.1	635	$1.932\ 829\ 079 imes 10^{-3}$
$v_{3i}(p, 1)$	24	655	$3.550\ 329\ 864 imes 10^{-3}$	$v_{3s}(p, I)$	20	638	$1.985\ 387\ 227 \times 10^{-3}$
$v_{r}(\overline{n}T)$	23.5	655	$4.545\ 001\ 142 \times 10^{-3}$	v(nT)	17	626	8.483 262 001 × 10 ⁻³
^v 3j(<i>P</i> , ¹)	24	660	$5.100\ 267\ 704 imes 10^{-3}$	$r_{3t}(p, r)$	20	640	$6.227\ 528\ 101 \times 10^{-3}$

Table 5. Selected specific volume values calculated from the equations for the subregions 3a to 3t^d

^d It is recommended that programmed functions be verified using 8 byte real values for all variables.

5.3 Calculation of Thermodynamic Properties with the v(p,T) Backward Equations

The v(p,T) backward equations described in Section 5.2 together with IAPWS-IF97 basic equation f(v,T) make it possible to determine all thermodynamic properties, *e.g.*, enthalpy, entropy, isobaric heat capacity, speed of sound, from pressure *p* and temperature *T* in region 3 without iteration.

The following steps should be made:

- Identify the subregion (3a to 3t) for given pressure p and temperature T following the instructions of Section 5.1 in conjunction with Table 2 and Figures 3 and 4. Then, calculate the specific volume v for the subregion using the corresponding backward equation v(p,T).
- Calculate the desired thermodynamic property from the previously calculated specific volume v and the given temperature T using the derivatives of the IAPWS-IF97 basic equation f(v,T), where v = v(p,T); see Table 31 in [1].

5.4 Numerical Consistency

5.4.1 Numerical Consistency with the Basic Equation of IAPWS-IF97

The maximum relative deviations and root-mean-square relative deviations of specific volume, calculated from the backward equations v(p,T) for subregions 3a to 3t, from the IAPWS-IF97 basic equation f(v,T) in comparison with the permissible tolerances are listed in Table 6. The calculation of the root-mean-square values is described in Section 1.

Table 6 also contains the maximum relative deviations and root-mean-square relative deviations of specific enthalpy, specific entropy, specific isobaric heat capacity, and speed of sound, calculated as described in Section 5.3.

Table 6. Maximum relative deviations and root-mean-square relative deviations of the specific volume, calculated from the backward equations for subregions 3a to 3t, and maximum relative deviations of specific enthalpy, specific entropy, specific isobaric heat capacity and speed of sound, calculated as described in Section 5.3, from the IAPWS-IF97 basic equation f(v,T)

Subregion		v/v	Δh	h/h	$ \Delta s/s $		Δc_p	$ c_p $	$\Delta w/w$	
	(%	9	6	9	%		%		6
	max	RMS	max	RMS	max	RMS	max	RMS	max	RMS
3a	0.00061	0.00031	0.00018	0.00008	0.00026	0.00011	0.0016	0.0006	0.0015	0.0006
3b	0.00064	0.00035	0.00017	0.00008	0.00016	0.00008	0.0012	0.0003	0.0008	0.0003
3c	0.00080	0.00038	0.00026	0.00012	0.00025	0.00011	0.0059	0.0016	0.0023	0.0010
3d	0.00059	0.00025	0.00018	0.00008	0.00014	0.00006	0.0035	0.0010	0.0012	0.0004
3e	0.00072	0.00033	0.00018	0.00009	0.00014	0.00007	0.0017	0.0005	0.0006	0.0002
3f	0.00068	0.00020	0.00018	0.00005	0.00013	0.00004	0.0015	0.0003	0.0002	0.0001
3g	0.00047	0.00016	0.00014	0.00005	0.00011	0.00004	0.0032	0.0011	0.0010	0.0003
3h	0.00085	0.00044	0.00022	0.00012	0.00017	0.00009	0.0066	0.0018	0.0006	0.0002
3i	0.00067	0.00028	0.00018	0.00008	0.00013	0.00006	0.0019	0.0006	0.0002	0.0001
3ј	0.00034	0.00019	0.00009	0.00005	0.00007	0.00004	0.0020	0.0006	0.0002	0.0001
3k	0.00034	0.00012	0.00008	0.00003	0.00007	0.00002	0.0018	0.0003	0.0002	0.0001
31	0.00033	0.00019	0.00010	0.00006	0.00008	0.00005	0.0035	0.0015	0.0008	0.0004
3m	0.00057	0.00031	0.00015	0.00009	0.00011	0.00006	0.0062	0.0030	0.0006	0.0002
3n	0.00064	0.00029	0.00017	0.00008	0.00012	0.00006	0.0050	0.0013	0.0002	0.0001
30	0.00031	0.00015	0.00008	0.00004	0.00006	0.00003	0.0007	0.0002	0.0001	0.0001
3р	0.00044	0.00022	0.00012	0.00006	0.00009	0.00005	0.0026	0.0010	0.0002	0.0001
3q	0.00036	0.00018	0.00012	0.00006	0.00009	0.00005	0.0040	0.0016	0.0010	0.0005
3r	0.00037	0.00007	0.00010	0.00002	0.00008	0.00002	0.0030	0.0004	0.0002	0.0001
3s	0.00030	0.00016	0.00010	0.00005	0.00007	0.00004	0.0033	0.0015	0.0009	0.0005
3t	0.00095	0.00045	0.00022	0.00010	0.00018	0.00008	0.0046	0.0015	0.0004	0.0002
permissible tolerance	0.0	001	0.0	001	0.0	001	0.	01	0.	01

Table 6 shows that the deviations of the specific volume, specific enthalpy, and specific entropy from the IAPWS-IF97 basic equation are less than 0.001 % and the deviations of specific isobaric heat capacity and speed of sound are less than 0.01 %. Therefore, the values

of specific volume, specific enthalpy and specific entropy of IAPWS-IF97 are represented with 5 significant figures, and the values of specific isobaric heat capacity and speed of sound with 4 significant figures by using the backward equations v(p,T).

5.4.2 Consistency at Boundaries Between Subregions

The maximum relative differences of specific volume between the v(p,T) backward equations of adjacent subregions along the subregion boundary pressures are listed in the third column of Table 7. Table 8 contains these maximum relative differences along the subregion boundary equations.

Table 7. Maximum relative deviations of specific volume between the backward equations v(p,T) of adjacent subregions and maximum relative deviations of specific enthalpy, specific entropy, specific isobaric heat capacity, and speed of sound, calculated as described in Section 5.3, along the subregion boundary pressures

Subregion	Between	$\left \Delta v / v \right _{\text{max}}$	$\left \Delta h/h\right _{\max}$	$\left \Delta s/s\right _{\max}$	$\left \Delta c_p / c_p \right _{\max}$	$\left \Delta w/w\right _{\rm max}$
Boundary	Subregions	%	%	%	%	%
p = 40 MPa	3a, 3c	0.00074	0.00021	0.00028	0.0018	0.0019
	3a, 3d	0.00060	0.00017	0.00013	0.0013	0.0006
	3b, 3e	0.00062	0.00015	0.00012	0.0009	0.0004
	3b, 3f	0.00078	0.00018	0.00014	0.0004	0.0002
p = 25 MPa	3d, 3g	0.00056	0.00015	0.00011	0.0031	0.0010
	3d, 3h	0.00056	0.00015	0.00011	0.0021	0.0003
	3e, 3h	0.00063	0.00017	0.00013	0.0014	0.0002
	3f, 3i	0.00055	0.00014	0.00011	0.0011	0.0002
	3f, 3j	0.00060	0.00015	0.00011	0.0015	0.0002
	3f, 3k	0.00064	0.00013	0.00011	0.0011	0.0002
<i>p</i> = 23.5 MPa	3g, 31	0.00049	0.00015	0.00012	0.0033	0.0011
p = 23 MPa	3h, 3m	0.00084	0.00023	0.00017	0.0074	0.0007
	3h, 3n	0.00085	0.00022	0.00016	0.0047	0.0003
	3i, 3o	0.00047	0.00012	0.00009	0.0006	0.0002
	3i, 3p	0.00059	0.00015	0.00012	0.0020	0.0002
p = 22.5 MPa	31, 3q	0.00033	0.00010	0.00008	0.0025	0.0008
	3j, 3r	0.00035	0.00009	0.00007	0.0015	0.0002
$p = p_{\text{sat}}^{97} (643.15 \text{ K})$	3q, 3s	0.00033	0.00010	0.00008	0.0036	0.0008
p = 20.5 MPa	3k, 3t	0.00042	0.00009	0.00008	0.0019	0.0002
permissible tolerance		0.001	0.001	0.001	0.01	0.01

Table 8. Maximum relative deviations of specific volume between the backward equations v(p,T) of the adjacent subregions and maximum relative deviations of specific enthalpy, specific entropy, specific isobaric heat capacity, and speed of sound, calculated as described in Section 5.3, along the subregion boundary equations

Subregion Boundary	Between	$\left \Delta v / v \right _{\text{max}}$	$\left \Delta h/h\right _{\max}$	$\left \Delta s/s\right _{\max}$	$\left \Delta c_p / c_p\right _{\max}$	$\Delta w/w \Big _{\rm max}$
Equation	Subregions	%	%	%	%	%
$T_{3ab}(p)$	3a, 3b	0.00075	0.00020	0.00020	0.0012	0.0010
	3d, 3e	0.00061	0.00017	0.00013	0.0016	0.0005
$T_{3cd}(p)$	3c, 3d	0.00089	0.00027	0.00021	0.0040	0.0016
	3c, 3g	0.00029	0.00009	0.00007	0.0017	0.0007
	3c, 31	0.00059	0.00019	0.00014	0.0039	0.0015
	3c, 3q	0.00056	0.00018	0.00014	0.0040	0.0015
	3c, 3s	0.00039	0.00012	0.00010	0.0031	0.0011
$T_{3ef}(p)$	3e, 3f	0.00060	0.00016	0.00012	0.0005	0.0001
	3h, 3i	0.00061	0.00016	0.00012	0.0007	0.0001
	3n, 3o	0.00031	0.00008	0.00006	0.0004	0.0001
$T_{3\mathrm{gh}}(p)$	3g, 3h	0.00083	0.00022	0.00016	0.0058	0.0006
	31, 3h	0.00083	0.00022	0.00016	0.0064	0.0006
	31, 3m	0.00052	0.00014	0.00011	0.0058	0.0006
$T_{3ij}(p)$	3i, 3j	0.00034	0.00009	0.00007	0.0010	0.0002
	3p, 3j	0.00036	0.00009	0.00007	0.0020	0.0002
$T_{3jk}(p)$	3j, 3k	0.00030	0.00007	0.00006	0.0008	0.0001
-	3r, 3k	0.00029	0.00007	0.00006	0.0018	0.0002
$T_{3\mathrm{mn}}(p)$	3m, 3n	0.00090	0.00024	0.00017	0.0070	0.0003
$T_{3 op}(p)$	30, 3p	0.00041	0.00011	0.00008	0.0013	0.0002
permissible tolerance		0.001	0.001	0.001	0.01	0.01

For example, the maximum relative difference between the backward equation of subregion 3a and the backward equation of subregion 3b along the subregion boundary $T_{3ab}(p)$ was determined as follows:

$$\left|\frac{\Delta v}{v}\right|_{\max} = \left|\frac{v_{3a}(p, T_{3ab}(p)) - v_{3b}(p, T_{3ab}(p))}{v_{3b}(p, T_{3ab}(p))}\right|_{\max}$$

•

In addition, Tables 7 and 8 contain the maximum relative differences of specific enthalpy, specific entropy, specific isobaric heat capacity and speed of sound, calculated as described in Section 5.3, along the subregion boundaries of the v(p,T) backward equations. For example, the maximum relative difference of specific enthalpy along the subregion boundary $T_{3ab}(p)$ was determined as follows:

$$\left|\frac{\Delta h}{h}\right|_{\max} = \left|\frac{h_3^{97}(v_{3a}, T_{3ab}) - h_3^{97}(v_{3b}, T_{3ab})}{h_3^{97}(v_{3b}, T_{3ab})}\right|_{\max}$$

where $v_{3a} = v_{3a} (p, T_{3ab} (p))$ and $v_{3b} = v_{3b} (p, T_{3ab} (p))$.

Tables 7 and 8 show that the relative specific volume differences between the backward equations v(p,T) of the adjacent subregions and the maximum relative deviations of specific enthalpy, specific entropy, specific isobaric heat capacity, and speed of sound along the subregion boundary pressures and along the subregion boundary equations are smaller than the permissible numerical tolerances of these equations with the IAPWS-IF97 basic equation.

6 Auxiliary Equations *v*(*p*,*T*) for the Region very close to the Critical Point

6.1 Subregions

The auxiliary equations v(p,T) for the subregions 3u to 3z are valid from

Figure 5. Division of region 3 into subregions 3u to 3z for the auxiliary equations

The subregion boundary equation $T_{3uv}(p)$ has the form of Eq. (1) and $T_{3wx}(p)$ has the form of Eq. (2). The coefficients n_i and the exponents I_i of the boundary equations are listed in Table 9.

Equation	i	I_i	n _i	i	I_i	n _i
$T_{3uv}(p)$	1	0	$0.528\ 199\ 646\ 263\ 062\times 10^3$	3	2	-0.222 814 134 903 755
	2	1	$0.890\;579\;602\;135\;307\times10^{1}$	4	3	$0.286\ 791\ 682\ 263\ 697\times 10^{-2}$
$T_{3wx}(p)$	1	0	$0.728\ 052\ 609\ 145\ 380\times 10^{1}$	4	-1	$0.329\ 196\ 213\ 998\ 375\times 10^3$
	2	1	$0.973\;505\;869\;861\;952\times10^2$	5	-2	$0.873\;371\;668\;682\;417\times10^3$
	3	2	$0.147\ 370\ 491\ 183\ 191\times 10^2$			

Table 9. Numerical values of the coefficients of the equations $T_{3uv}(p)$ and $T_{3wx}(p)$ for subregion boundaries

The following description of the use of the subregion boundary equations is summarized in Table 10 and Figure 5.

Table 10. Pressure ranges and corresponding subregion boundary equations for determining the
correct subregion, 3u to 3z, for the auxiliary equations v(p,T)

Supercritical Pr	essure Reg	gion			
Pressure Range		Sub-	For	Sub-	For
		region		region	
22.11 MPa $$	2.5 MPa	3u	$T_{3qu}(p) < T \le T_{3uv}(p)$	3v	$T_{3\mathrm{uv}}(p) < T \leq T_{3\mathrm{ef}}(p)$
		3w	$T_{3\text{ef}}(p) < T \le T_{3\text{wx}}(p)$	3x	$T_{3wx}(p) < T \le T_{3rx}(p)$
22.064 MPa $$	22.11 MPa	3u	$T_{3qu}(p) < T \le T_{3uv}(p)$	3у	$T_{3\mathrm{uv}}(p) < T \leq T_{3\mathrm{ef}}(p)$
		3z	$T_{3\mathrm{ef}}(p) < T \leq T_{3\mathrm{wx}}(p)$	3x	$T_{3wx}(p) < T \le T_{3rx}(p)$
Subcritical Press	sure Regio	n			
Temperature	Pressure F	Range		Sub-	For
Range				region	
$T \leq T_{\rm sat}^{97}(p)$	$p_{\rm sat}^{97} (0.002$	$64 \text{ m}^3 \text{ kg}^{-1}$	$e^{-1} e^{-1} \le 22.064 \mathrm{MPa}$	3u	$T_{3qu}(p) < T \le T_{3uv}(p)$
				3у	$T_{3uv}(p) < T$
	$p_{\rm sat}^{97}$ (643.1	$5 \text{ K} \left($	$p_{\text{sat}}^{97} (0.00264 \text{ m}^3 \text{ kg}^{-1})^{\text{e}}$	3u	$T_{3qu}(p) < T$
$T \ge T_{\rm sat}^{97}(p)$	$p_{\rm sat}^{97} (0.003$	$85 \text{ m}^3 \text{ kg}^{-1}$	f	3z	$T \leq T_{3wx}(p)$
				3x	$T_{3wx}(p) < T \le T_{3rx}(p)$
	$p_{\rm sat}^{97}(643.1$	$5 \text{ K} \left($	$p_{\rm sat}^{97} (0.00385 {\rm m}^3 {\rm kg}^{-1})^{\rm f}$	3x	$T \leq T_{3rx}(p)$
p_{sat}^{97} (0.00264 m ³	kg^{-1} = 2.1	93 161 551	$\times 10^1$ MPa		

^f $p_{\text{sat}}^{97}(0.00385 \text{ m}^3 \text{ kg}^{-1}) = 2.190\ 096\ 265 \times 10^1 \text{ MPa}$

The equation $T_{3uv}(p)$ approximates the isochore $v = 0.00264 \text{ m}^3 \text{ kg}^{-1}$ from $p = p_{sat}^{97} (0.00264 \text{ m}^3 \text{ kg}^{-1})$, where $p_{sat}^{97} (0.00264 \text{ m}^3 \text{ kg}^{-1}) = 2.193161551 \times 10^1 \text{ MPa}$, to 22.5 MPa and represents the boundary equation between subregions 3v or 3y and subregion 3u.

The equation $T_{3wx}(p)$ approximates the isochore $v = 0.00385 \text{ m}^3 \text{ kg}^{-1}$ from $p = p_{sat}^{97} (0.00385 \text{ m}^3 \text{ kg}^{-1})$, where $p_{sat}^{97} (0.00385 \text{ m}^3 \text{ kg}^{-1}) = 2.190\,096\,265 \times 10^1 \text{ MPa}$, to 22.5 MPa and represents the boundary equation between subregion 3x and subregions 3w or 3z.

Computer-program verification

To assist the user in computer-program verification of the equations for the subregion boundaries, Table 11 contains test values for calculated temperatures.

Equation	p MPa	T K
$T_{3uv}(p)$ $T_{3wx}(p)$	22.3 22.3	6.477 996 121 × 10 ² 6.482 049 480 × 10 ²

Table 11. Selected temperature values calculated from the subregion boundary equations $T_{3uv}(p)$ and $T_{3wx}(p)$ ^g

It is recommended that programmed functions be verified using 8 byte real values for all variables.

6.2 Auxiliary Equations v(p,T) for the Subregions 3u to 3z

The auxiliary equations v(p,T) for the subregions 3u to 3z have the dimensionless form of Eq. (4). The reducing quantities v^* , p^* , and T^* , the number of coefficients N, the non-linear parameters a and b, and the exponents c, d, and e are listed in Table 12 for the auxiliary equations of the subregions 3u to 3z. The coefficients n_i and exponents I_i and J_i are listed in Tables A2.1 to A2.6 of the Appendix.

Table 12. Reducing quantities v^* , p^* , and T^* , number of coefficients *N*, non-linear parameters *a* and *b*, and exponents *c*, *d*, and *e* for the auxiliary equations v(p,T) of the subregions 3u to 3z

Subregion	v^*	p^*	T^{*}	Ν	а	b	С	d	е
	$\mathrm{m}^3~\mathrm{kg}^{-1}$	MPa	Κ						
3u	0.0026	23	650	38	0.902	0.988	1	1	1
3v	0.0031	23	650	39	0.960	0.995	1	1	1
3w	0.0039	23	650	35	0.959	0.995	1	1	4
3x	0.0049	23	650	36	0.910	0.988	1	1	1
3у	0.0031	22	650	20	0.996	0.994	1	1	4
3z	0.0038	22	650	23	0.993	0.994	1	1	4

Computer-program verification

To assist the user in computer-program verification of the auxiliary equations for the subregions 3u to 3z, Table 13 contains test values for calculated specific volumes.

Equation	р	Т	V	Equation	р	Т	ν
	MPa	Κ	$m^3 kg^{-1}$		MPa	Κ	$m^3 kg^{-1}$
$v_{2n}(p,T)$	21.5	644.6	$2.268\ 366\ 647 imes 10^{-3}$	$v_{2n}(p,T)$	22.11	648.0	$4.528\ 072\ 649\times 10^{-3}$
- 5u (F,)	22.0	646.1	$2.296\ 350\ 553 imes 10^{-3}$	- 5x (F ')	22.3	649.0	$4.556\ 905\ 799 imes 10^{-3}$
v_{r} (nT)	22.5	648.6	$2.832\ 373\ 260 \times 10^{-3}$	v_{n} $(n T)$	22.0	646.84	$2.698~354~719 imes 10^{-3}$
$v_{3v}(p, 1)$	22.3	647.9	$2.811\ 424\ 405 imes 10^{-3}$	$v_{3y}(p, 1)$	22.064	647.05	$2.717\ 655\ 648 imes 10^{-3}$
v_{-} (nT)	22.15	647.5	$3.694\ 032\ 281 imes 10^{-3}$	v_{r} (nT)	22.0	646.89	$3.798~732~962 \times 10^{-3}$
$v_{3w}(p, r)$	22.3	648.1	$3.622\ 226\ 305 \times 10^{-3}$	$v_{3z}(p, 1)$	22.064	647.15	$3.701\ 940\ 010 imes 10^{-3}$

Table 13. Selected specific volume values calculated from the auxiliary equations for thesubregions 3u to 3z h

^h It is recommended that programmed functions be verified using 8 byte real values for all variables.

6.3 Numerical Consistency

6.3.1 Numerical Consistency with the Basic Equation of IAPWS-IF97

The maximum relative differences and root-mean-square relative deviations of specific volume, calculated from the auxiliary equations v(p,T) for subregions 3u to 3z, to the IAPWS-IF97 basic equation $f_3^{97}(v,T)$ are listed in Table 14. For the calculation of the root-mean-square values, which is described in Section 1, one million points uniformly distributed over the range of validity in the *p*-*T* plane have been used.

Table 14 shows that the deviations of the specific volume from the IAPWS-IF97 basic equation are better than 0.1 %. Only in a small region for pressures less than 22.11 MPa (see Figure 5) do the deviations of the specific volume from the IAPWS-IF97 basic equation approach 2 %.

Table 14.Maximum relative deviations and root-mean-square relative
deviations of the specific volume, calculated from the auxiliary
equations for subregions 3u to 3z from the IAPWS-IF97 basic
equation

Subregion	Δι	v/v	Subregion	$ \Delta v/v $		
	9	6		%		
	max	RMS		max	RMS	
3u	0.097	0.058	3x	0.090	0.050	
3v	0.082	0.040	Зу	1.77	1.04	
3w	0.065	0.023	3z	1.80	0.921	

6.3.2 Consistency at Boundaries Between Subregions

The maximum relative differences of specific volume between the v(p,T) auxiliary equations of adjacent subregions along the subregion boundary pressures are listed in Table 15. Table 16 contains these maximum relative differences along the subregion boundary equations.

Subregion Boundary	Between Subregions	$\left \Delta v/v\right _{\max}$ %
<i>p</i> = 22.5 MPa	31, 3u	0.096
	3m, 3u	0.096
	3m, 3v	0.035
	3n, 3v	0.046
	30, 3w	0.019
	3p, 3w	0.021
	3p, 3x	0.042
	3j, 3x	0.043
p = 22.11 MPa	3v, 3y	1.7
	3w, 3z	1.7

Table 15. Maximum relative deviations of specific volume between the auxiliary equations v(p,T) of the adjacent subregions along the subregion boundary pressures

Table 16. Maximum relative deviations of specific volume between the auxiliary equations v(p,T) of the adjacent subregions along the subregion boundary equations

Subregion Boundary Equation	Between Subregions	$\left \Delta v/v\right _{\max}$ %
$T_{3qu}(p)$	3q, 3u	0.097
$T_{3\mathrm{rx}}(p)$	3x, 3r	0.045
$T_{3uv}(p)$	3u, 3v	0.14
	3u, 3y	1.8
$T_{3\mathrm{ef}}(p)$	3v, 3w	0.080
	3y, 3z	3.5
$T_{3\mathrm{wx}}(p)$	3w, 3x	0.049
	3z, 3x	1.8

7 Computing Time in Relation to IAPWS-IF97

A very important motivation for the development of the backward equations v(p,T) was reducing the computing time to obtain thermodynamic properties and differential quotients from given variables (p,T) in region 3. Using IAPWS-IF97, time-consuming iteration is required. Using the v(p,T) backward equations, iteration can be avoided. The calculation speed is about 17 times faster than iteration with IAPWS-IF97. If iteration is used, the time to reach convergence can be significantly reduced by using the backward equations v(p,T) to calculate very accurate starting values.

8 Application of the Backward and Auxiliary Equations v(p,T)

The numerical consistency of the specific volume v calculated from the main backward equations $v_3(p,T)$ described in Section 5 with the IAPWS-IF97 basic equation $f_3^{97}(v,T)$ is sufficient for most applications in process modeling. For many calculations, the numerical consistency of the auxiliary equations described in Section 6 is also satisfactory in the region very close to the critical point.

For applications where the demands on numerical consistency are extremely high, iteration using the IAPWS-IF97 basic equation f(v,T) may be necessary. In these cases, the backward and auxiliary equations v(p,T) can be used for calculating very accurate starting values.

The backward and auxiliary equations v(p,T) should only be used in their ranges of validity described in Section 4. They should not be used for determining any thermodynamic derivatives. They should also not be used together with the fundamental equation in iterative calculations of other backward functions such as T(p,h) or T(p,s). Iteration of backward functions can only be performed by using the fundamental equations.

In any case, depending on the application, a conscious decision is required whether to use the backward and auxiliary equations v(p,T) or to calculate the corresponding values by iteration from the basic equation of IAPWS-IF97.

9 References

- [1] IAPWS, Revised Release on the IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam (2007), available from: http://www.iapws.org.
- [2] Wagner, W., Cooper, J. R., Dittmann, A., Kijima, J., Kretzschmar, H.-J., Kruse, A., Mareš, R., Oguchi, K., Sato, H., Stöcker, I., Šifner, O., Tanishita, I., Trübenbach, J., and Willkommen, Th., The IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam, ASME J. Eng. Gas Turbines Power 122, 150-182 (2000).
- [3] Kretzschmar, H.-J., Harvey, A. H., Knobloch, K., Mareš, R., Miyagawa, K., Okita, N., Span, R., Stöcker, I., Wagner, W., and Weber, I., Supplementary Backward Equations v(p,T) for the Critical and Supercritical Regions (Region 3) of the IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam, ASME J. Eng. Gas Turbines Power 131, 043101 (2009).
- [4] IAPWS, Revised Supplementary Release on Backward Equations for Pressure as a Function of Enthalpy and Entropy p(h,s) for Regions 1 and 2 of the IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam (2014), available from http://www.iapws.org.

- [5] Kretzschmar, H.-J., Cooper, J. R., Dittmann, A., Friend, D. G., Gallagher, J. S., Knobloch, K., Mareš, R., Miyagawa, K., Stöcker, I., Trübenbach, J., Wagner, W., and Willkommen, Th., Supplementary Backward Equations for Pressure as a Function of Enthalpy and Entropy *p(h,s)* to the Industrial Formulation IAPWS-IF97 for Water and Steam, *ASME J. Eng. Gas Turbines Power* **128**, 702-713 (2006).
- [6] IAPWS, Revised Supplementary Release on Backward Equations for the Functions T(p,h), v(p,h) and T(p,s), v(p,s) for Region 3 of the IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam (2014), available from: http://www.iapws.org.
- [7] Kretzschmar, H.-J., Cooper, J. R., Dittmann, A., Friend, D. G., Gallagher, J. S., Harvey, A. H., Knobloch, K., Mareš, R., Miyagawa, K., Okita, N., Stöcker, I., Wagner, W., and Weber, I., Supplementary Backward Equations *T*(*p*,*h*), *v*(*p*,*h*), and *T*(*p*,*s*), *v*(*p*,*s*) for the Critical and Supercritical Regions (Region 3) of the Industrial Formulation IAPWS-IF97 for Water and Steam, *ASME J. Eng. Gas Turbines Power* **129**, 294-303 (2007).
- [8] IAPWS, Revised Supplementary Release on Backward Equations p(h,s) for Region 3, Equations as a Function of h and s for the Region Boundaries, and an Equation T_{sat}(h,s) for Region 4 of the IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam (2014), available from: http://www.iapws.org.
- [9] Kretzschmar, H.-J., Cooper, J. R., Dittmann, A., Friend, D. G., Gallagher, J. S., Harvey, A. H., Knobloch, K., Mareš, R., Miyagawa, K., Okita, N., Span, R., Stöcker, I., Wagner, W., and Weber, I., Supplementary Backward Equations *p(h, s)* for the Critical and Supercritical Regions (Region 3), and Equations for the Two-Phase Region and Region Boundaries of the IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam, *ASME J. Eng. Gas Turbines Power* **129**, 1125-1137 (2007).
- [10] IAPWS, Release on the Values of Temperature, Pressure and Density of Ordinary and Heavy Water Substances at their Respective Critical Points (1992), available from http://www.iapws.org.

Appendix

A1 Coefficients for Backward Equations

i	I_i	J_i	n _i	i	I_i	J_i	n _i
1	-12	5	$0.110\ 879\ 558\ 823\ 853\times 10^{-2}$	16	-3	1	$-0.122\;494\;831\;387\;441\times10^{-1}$
2	-12	10	$0.572\ 616\ 740\ 810\ 616 \times 10^3$	17	-3	3	$0.179\;357\;604\;019\;989 imes 10^1$
3	-12	12	$-0.767\ 051\ 948\ 380\ 852\times 10^5$	18	-3	6	$0.442\ 729\ 521\ 058\ 314\times 10^2$
4	-10	5	$-0.253\ 321\ 069\ 529\ 674 imes 10^{-1}$	19	-2	0	$-0.593\ 223\ 489\ 018\ 342\times 10^{-2}$
5	-10	10	$0.628\ 008\ 049\ 345\ 689\times 10^4$	20	-2	2	0.453 186 261 685 774
6	-10	12	$0.234\ 105\ 654\ 131\ 876 imes 10^6$	21	-2	3	$0.135\ 825\ 703\ 129\ 140 imes 10^1$
7	-8	5	0.216 867 826 045 856	22	-1	0	$0.408\ 748\ 415\ 856\ 745\times 10^{-1}$
8	-8	8	$-0.156\ 237\ 904\ 341\ 963 imes 10^3$	23	-1	1	0.474 686 397 863 312
9	-8	10	$-0.269\ 893\ 956\ 176\ 613 imes 10^5$	24	-1	2	$0.118\ 646\ 814\ 997\ 915 imes 10^1$
10	-6	1	$-0.180\ 407\ 100\ 085\ 505 imes 10^{-3}$	25	0	0	0.546 987 265 727 549
11	-5	1	$0.116\ 732\ 227\ 668\ 261\times 10^{-2}$	26	0	1	0.195 266 770 452 643
12	-5	5	$0.266\ 987\ 040\ 856\ 040 imes 10^2$	27	1	0	$-0.502\ 268\ 790\ 869\ 663 imes 10^{-1}$
13	-5	10	$0.282\ 776\ 617\ 243\ 286\times 10^5$	28	1	2	-0.369 645 308 193 377
14	-4	8	$-0.242\;431\;520\;029\;523\times10^4$	29	2	0	$0.633\;828\;037\;528\;420\times10^{-2}$
15	-3	0	$0.435\ 217\ 323\ 022\ 733 imes 10^{-3}$	30	2	2	$0.797\;441\;793\;901\;017 imes 10^{-1}$

Table A1.1. Coefficients and exponents of the backward equation $v_{3a}(p,T)$ for subregion 3a

Table A1.2. Coefficients and exponents of the backward equation $v_{3b}(p,T)$ for subregion 3b

i	I_i	J_i	n_i	i	I_i	J_i	n _i
1	-12	10	$-0.827\ 670\ 470\ 003\ 621\times 10^{-1}$	17	-3	2	$-0.416\ 375\ 290\ 166\ 236\times 10^{-1}$
2	-12	12	$0.416\ 887\ 126\ 010\ 565\times 10^2$	18	-3	3	$-0.413\ 754\ 957\ 011\ 042\times 10^2$
3	-10	8	$0.483\;651\;982\;197\;059\times 10^{-1}$	19	-3	5	$-0.506\ 673\ 295\ 721\ 637\times 10^2$
4	-10	14	$-0.291\ 032\ 084\ 950\ 276 imes 10^5$	20	-2	0	$-0.572\ 212\ 965\ 569\ 023 imes 10^{-3}$
5	-8	8	$-0.111\ 422\ 582\ 236\ 948 \times 10^3$	21	-2	2	$0.608\;817\;368\;401\;785\times10^{1}$
6	-6	5	$-0.202\;300\;083\;904\;014\times10^{-1}$	22	-2	5	$0.239\;600\;660\;256\;161\times 10^2$
7	-6	6	$0.294\ 002\ 509\ 338\ 515 \times 10^3$	23	-1	0	$0.122\ 261\ 479\ 925\ 384\times 10^{-1}$
8	-6	8	$0.140\ 244\ 997\ 609\ 658\times 10^3$	24	-1	2	$0.216\ 356\ 057\ 692\ 938\times 10^{1}$
9	-5	5	$-0.344\ 384\ 158\ 811\ 459 \times 10^3$	25	0	0	0.398 198 903 368 642
10	-5	8	$0.361\ 182\ 452\ 612\ 149 \times 10^3$	26	0	1	-0.116 892 827 834 085
11	-5	10	$-0.140\ 699\ 677\ 420\ 738\times 10^4$	27	1	0	-0.102 845 919 373 532
12	-4	2	$-0.202\ 023\ 902\ 676\ 481\times 10^{-2}$	28	1	2	-0.492 676 637 589 284
13	-4	4	$0.171\;346\;792\;457\;471\times10^3$	29	2	0	$0.655\ 540\ 456\ 406\ 790 imes 10^{-1}$
14	-4	5	$-0.425\ 597\ 804\ 058\ 632 imes 10^1$	30	3	2	-0.240 462 535 078 530
15	-3	0	$0.691\;346\;085\;000\;334\times10^{-5}$	31	4	0	$-0.269\ 798\ 180\ 310\ 075\times 10^{-1}$
16	-3	1	$0.151\ 140\ 509\ 678\ 925\times 10^{-2}$	32	4	1	0.128 369 435 967 012

i	I_i	J_i	n _i	i	I_i	J_i	n _i
1	-12	6	$0.311\ 967\ 788\ 763\ 030\times 10^1$	19	-2	4	$0.234\ 604\ 891\ 591\ 616 imes 10^3$
2	-12	8	$0.276\ 713\ 458\ 847\ 564 imes 10^5$	20	-2	5	$0.377\;515\;668\;966\;951\times10^4$
3	-12	10	$0.322\ 583\ 103\ 403\ 269 \times 10^8$	21	-1	0	$0.158\ 646\ 812\ 591\ 361 imes 10^{-1}$
4	-10	6	$-0.342\ 416\ 065\ 095\ 363 \times 10^3$	22	-1	1	0.707 906 336 241 843
5	-10	8	$-0.899732529907377 \times 10^{6}$	23	-1	2	$0.126\ 016\ 225\ 146\ 570\times 10^2$
6	-10	10	$-0.793\ 892\ 049\ 821\ 251 \times 10^8$	24	0	0	0.736 143 655 772 152
7	-8	5	$0.953\ 193\ 003\ 217\ 388\times 10^2$	25	0	1	0.676 544 268 999 101
8	-8	6	$0.229\ 784\ 742\ 345\ 072 imes 10^4$	26	0	2	$-0.178\ 100\ 588\ 189\ 137\times 10^2$
9	-8	7	$0.175\;336\;675\;322\;499\times10^{6}$	27	1	0	-0.156 531 975 531 713
10	-6	8	$0.791\ 214\ 365\ 222\ 792 imes 10^7$	28	1	2	$0.117\ 707\ 430\ 048\ 158\times 10^2$
11	-5	1	$0.319~933~345~844~209 \times 10^{-4}$	29	2	0	$0.840\;143\;653\;860\;447\times10^{-1}$
12	-5	4	$-0.659\ 508\ 863\ 555\ 767 imes 10^2$	30	2	1	-0.186 442 467 471 949
13	-5	7	$-0.833\ 426\ 563\ 212\ 851 imes 10^6$	31	2	3	$-0.440\ 170\ 203\ 949\ 645\times 10^2$
14	-4	2	$0.645\ 734\ 680\ 583\ 292 imes 10^{-1}$	32	2	7	$0.123\ 290\ 423\ 502\ 494\times 10^7$
15	-4	8	$-0.382\ 031\ 020\ 570\ 813 imes 10^7$	33	3	0	$-0.240\ 650\ 039\ 730\ 845 imes 10^{-1}$
16	-3	0	$0.406\;398\;848\;470\;079\times10^{-4}$	34	3	7	$-0.107\ 077\ 716\ 660\ 869 \times 10^7$
17	-3	3	$0.310\;327\;498\;492\;008\times10^2$	35	8	1	$0.438\;319\;858\;566\;475 imes 10^{-1}$
18	-2	0	$-0.892\ 996\ 718\ 483\ 724\times 10^{-3}$				

Table A1.3. Coefficients and exponents of the backward equation $v_{3c}(p,T)$ for subregion 3c

Table A1.4. Coefficients and exponents of the backward equation $v_{3d}(p,T)$ for subregion 3d

i	I_i	J_i	n _i	i	I_i	J_i	n _i
1	-12	4	$-0.452\ 484\ 847\ 171\ 645 imes 10^{-9}$	20	-5	1	$-0.436\ 701\ 347\ 922\ 356 \times 10^{-5}$
2	-12	6	$0.315\ 210\ 389\ 538\ 801\times 10^{-4}$	21	-5	2	$-0.404\ 213\ 852\ 833\ 996\times 10^{-3}$
3	-12	7	$-0.214\ 991\ 352\ 047\ 545 imes 10^{-2}$	22	-5	5	$-0.348\ 153\ 203\ 414\ 663 imes 10^3$
4	-12	10	$0.508\ 058\ 874\ 808\ 345\times 10^3$	23	-5	7	$-0.385\ 294\ 213\ 555\ 289\times 10^6$
5	-12	12	$-0.127\ 123\ 036\ 845\ 932\times 10^8$	24	-4	0	$0.135\ 203\ 700\ 099\ 403 imes 10^{-6}$
6	-12	16	$0.115\ 371\ 133\ 120\ 497\times 10^{13}$	25	-4	1	$0.134\;648\;383\;271\;089\times10^{-3}$
7	-10	0	$-0.197\ 805\ 728\ 776\ 273 imes 10^{-15}$	26	-4	7	$0.125\; 031\; 835\; 351\; 736\times 10^6$
8	-10	2	$0.241\ 554\ 806\ 033\ 972 imes 10^{-10}$	27	-3	2	$0.968\ 123\ 678\ 455\ 841\times 10^{-1}$
9	-10	4	$-0.156\ 481\ 703\ 640\ 525 imes 10^{-5}$	28	-3	4	$0.225\ 660\ 517\ 512\ 438 imes 10^3$
10	-10	6	$0.277\ 211\ 346\ 836\ 625 imes 10^{-2}$	29	-2	0	$-0.190\ 102\ 435\ 341\ 872 imes 10^{-3}$
11	-10	8	$-0.203\ 578\ 994\ 462\ 286 imes 10^2$	30	-2	1	$-0.299\ 628\ 410\ 819\ 229\times 10^{-1}$
12	-10	10	$0.144~369~489~909~053 \times 10^7$	31	-1	0	$0.500\;833\;915\;372\;121\times10^{-2}$
13	-10	14	$-0.411\ 254\ 217\ 946\ 539 imes 10^{11}$	32	-1	1	0.387 842 482 998 411
14	-8	3	$0.623\;449\;786\;243\;773\times10^{-5}$	33	-1	5	$-0.138\ 535\ 367\ 777\ 182\times 10^4$
15	-8	7	$-0.221\ 774\ 281\ 146\ 038\times 10^2$	34	0	0	0.870 745 245 971 773
16	-8	8	$-0.689\ 315\ 087\ 933\ 158 imes 10^5$	35	0	2	$0.171\ 946\ 252\ 068\ 742\times 10^1$
17	-8	10	$-0.195\ 419\ 525\ 060\ 713 imes 10^8$	36	1	0	$-0.326\ 650\ 121\ 426\ 383\times 10^{-1}$
18	-6	6	$0.316\ 373\ 510\ 564\ 015\times 10^4$	37	1	6	$0.498\;044\;171\;727\;877\times10^4$
19	-6	8	$0.224\ 040\ 754\ 426\ 988 imes 10^7$	38	3	0	$0.551\ 478\ 022\ 765\ 087 imes 10^{-2}$

i	I_i	J_i	n _i	i	I_i	J_i	n _i
1	-12	14	$0.715\ 815\ 808\ 404\ 721\times 10^9$	16	-3	6	$0.475~992~667~717~124 \times 10^{5}$
2	-12	16	$-0.114\ 328\ 360\ 753\ 449\times 10^{12}$	17	-3	7	$-0.266\ 627\ 750\ 390\ 341 imes 10^6$
3	-10	3	$0.376\ 531\ 002\ 015\ 720 imes 10^{-11}$	18	-2	0	$-0.153\ 314\ 954\ 386\ 524 imes 10^{-3}$
4	-10	6	$-0.903\ 983\ 668\ 691\ 157 imes 10^{-4}$	19	-2	1	0.305 638 404 828 265
5	-10	10	$0.665\ 695\ 908\ 836\ 252 imes 10^6$	20	-2	3	$0.123~654~999~499~486 \times 10^{3}$
6	-10	14	$0.535~364~174~960~127 \times 10^{10}$	21	-2	4	$-0.104\ 390\ 794\ 213\ 011 imes 10^4$
7	-10	16	$0.794\ 977\ 402\ 335\ 603 imes 10^{11}$	22	-1	0	$-0.157\ 496\ 516\ 174\ 308 imes 10^{-1}$
8	-8	7	$0.922\ 230\ 563\ 421\ 437 imes 10^2$	23	0	0	0.685 331 118 940 253
9	-8	8	$-0.142586073991215 \times 10^{6}$	24	0	1	$0.178\;373\;462\;873\;903 imes 10^1$
10	-8	10	$-0.111796381424162 \times 10^{7}$	25	1	0	-0.544 674 124 878 910
11	-6	6	$0.896\ 121\ 629\ 640\ 760 imes 10^4$	26	1	4	$0.204\ 529\ 931\ 318\ 843 imes 10^4$
12	-5	6	$-0.669\ 989\ 239\ 070\ 491 imes 10^4$	27	1	6	$-0.228\ 342\ 359\ 328\ 752 imes 10^5$
13	-4	2	$0.451\ 242\ 538\ 486\ 834 imes 10^{-2}$	28	2	0	0.413 197 481 515 899
14	-4	4	$-0.339731325977713 \times 10^{2}$	29	2	2	$-0.341\ 931\ 835\ 910\ 405 imes 10^2$
15	-3	2	$-0.120\ 523\ 111\ 552\ 278 \times 10^{1}$				

Table A1.5. Coefficients and exponents of the backward equation $v_{3e}(p,T)$ for subregion 3e

Table A1.6. Coefficients and exponents of the backward equation $v_{3f}(p,T)$ for subregion 3f

i	I_i	J_i	n _i	i	I_i	J_i	n _i
1	0	-3	$-0.251\ 756\ 547\ 792\ 325 imes 10^{-7}$	22	10	-6	$0.470\ 942\ 606\ 221\ 652 imes 10^{-5}$
2	0	-2	$0.601\;307\;193\;668\;763 \times 10^{-5}$	23	12	-10	$0.195\ 049\ 710\ 391\ 712 imes 10^{-12}$
3	0	-1	$-0.100\ 615\ 977\ 450\ 049 imes 10^{-2}$	24	12	-8	$-0.911\ 627\ 886\ 266\ 077 imes 10^{-8}$
4	0	0	0.999 969 140 252 192	25	12	-4	$0.604\ 374\ 640\ 201\ 265 imes 10^{-3}$
5	0	1	$0.214\ 107\ 759\ 236\ 486 imes 10^1$	26	14	-12	$-0.225\ 132\ 933\ 900\ 136 imes 10^{-15}$
6	0	2	$-0.165\ 175\ 571\ 959\ 086 \times 10^2$	27	14	-10	$0.610\ 916\ 973\ 582\ 981 imes 10^{-11}$
7	1	-1	$-0.141\ 987\ 303\ 638\ 727 imes 10^{-2}$	28	14	-8	$-0.303\ 063\ 908\ 043\ 404 \times 10^{-6}$
8	1	1	$0.269\ 251\ 915\ 156\ 554 imes10^1$	29	14	-6	$-0.137796070798409 \times 10^{-4}$
9	1	2	$0.349~741~815~858~722 \times 10^2$	30	14	-4	$-0.919\ 296\ 736\ 666\ 106 imes 10^{-3}$
10	1	3	$-0.300\ 208\ 695\ 771\ 783 imes 10^2$	31	16	-10	$0.639\ 288\ 223\ 132\ 545 imes 10^{-9}$
11	2	0	$-0.131\ 546\ 288\ 252\ 539 imes 10^1$	32	16	-8	$0.753\ 259\ 479\ 898\ 699 imes 10^{-6}$
12	2	1	$-0.839\ 091\ 277\ 286\ 169 imes 10^1$	33	18	-12	$-0.400\ 321\ 478\ 682\ 929 imes 10^{-12}$
13	3	-5	$0.181\ 545\ 608\ 337\ 015 imes 10^{-9}$	34	18	-10	$0.756\ 140\ 294\ 351\ 614 imes 10^{-8}$
14	3	-2	$-0.591\ 099\ 206\ 478\ 909 \times 10^{-3}$	35	20	-12	$-0.912\ 082\ 054\ 034\ 891\times 10^{-11}$
15	3	0	$0.152\ 115\ 067\ 087\ 106 imes 10^1$	36	20	-10	$-0.237\ 612\ 381\ 140\ 539 \times 10^{-7}$
16	4	-3	$0.252\ 956\ 470\ 663\ 225 imes 10^{-4}$	37	20	-6	$0.269\ 586\ 010\ 591\ 874 imes 10^{-4}$
17	5	-8	$0.100\ 726\ 265\ 203\ 786 imes 10^{-14}$	38	22	-12	$-0.732\ 828\ 135\ 157\ 839 imes 10^{-10}$
18	5	1	$-0.149\ 774\ 533\ 860\ 650 imes 10^1$	39	24	-12	$0.241\ 995\ 578\ 306\ 660 \times 10^{-9}$
19	6	-6	$-0.793 940 970 562 969 \times 10^{-9}$	40	24	-4	$-0.405\ 735\ 532\ 730\ 322 imes 10^{-3}$
20	7	-4	$-0.150\ 290\ 891\ 264\ 717 \times 10^{-3}$	41	28	-12	$0.189\;424\;143\;498\;011\times10^{-9}$
21	7	1	$0.151\ 205\ 531\ 275\ 133 imes 10^1$	42	32	-12	$-0.486\ 632\ 965\ 074\ 563 imes 10^{-9}$

i	I_i	J_i	n _i	i	I_i	J_i	n _i
1	-12	7	$0.412\ 209\ 020\ 652\ 996 imes 10^{-4}$	20	-2	3	$-0.910\ 782\ 540\ 134\ 681 imes 10^2$
2	-12	12	$-0.114\ 987\ 238\ 280\ 587 imes 10^7$	21	-2	5	$0.135\ 033\ 227\ 281\ 565 imes 10^6$
3	-12	14	$0.948\;180\;885\;032\;080\times10^{10}$	22	-2	14	$-0.712\ 949\ 383\ 408\ 211\times 10^{19}$
4	-12	18	$-0.195\ 788\ 865\ 718\ 971 imes 10^{18}$	23	-2	24	$-0.104\ 578\ 785\ 289\ 542 imes 10^{37}$
5	-12	22	$0.496\ 250\ 704\ 871\ 300 imes 10^{25}$	24	-1	2	$0.304\;331\;584\;444\;093 imes 10^2$
6	-12	24	$-0.105\ 549\ 884\ 548\ 496 imes 10^{29}$	25	-1	8	$0.593\ 250\ 797\ 959\ 445 imes 10^{10}$
7	-10	14	$-0.758\ 642\ 165\ 988\ 278\times 10^{12}$	26	-1	18	$-0.364\ 174\ 062\ 110\ 798\times 10^{28}$
8	-10	20	$-0.922\ 172\ 769\ 596\ 101 \times 10^{23}$	27	0	0	0.921 791 403 532 461
9	-10	24	$0.725\ 379\ 072\ 059\ 348 imes 10^{30}$	28	0	1	-0.337 693 609 657 471
10	-8	7	$-0.617\ 718\ 249\ 205\ 859 imes 10^2$	29	0	2	$-0.724\ 644\ 143\ 758\ 508 imes10^2$
11	-8	8	$0.107\ 555\ 033\ 344\ 858 imes 10^5$	30	1	0	-0.110 480 239 272 601
12	-8	10	$-0.379\ 545\ 802\ 336\ 487 imes 10^8$	31	1	1	$0.536\;516\;031\;875\;059 imes10^1$
13	-8	12	$0.228\ 646\ 846\ 221\ 831 imes 10^{12}$	32	1	3	$-0.291\ 441\ 872\ 156\ 205 imes10^4$
14	-6	8	$-0.499741093010619 \times 10^{7}$	33	3	24	$0.616\;338\;176\;535\;305 imes 10^{40}$
15	-6	22	$-0.280\ 214\ 310\ 054\ 101 imes 10^{31}$	34	5	22	$-0.120\ 889\ 175\ 861\ 180 imes 10^{39}$
16	-5	7	$0.104\ 915\ 406\ 769\ 586 imes 10^7$	35	6	12	$0.818\ 396\ 024\ 524\ 612\times 10^{23}$
17	-5	20	$0.613~754~229~168~619 \times 10^{28}$	36	8	3	$0.940~781~944~835~829 \times 10^9$
18	-4	22	$0.802\ 056\ 715\ 528\ 378\times 10^{32}$	37	10	0	$-0.367\ 279\ 669\ 545\ 448 imes 10^5$
19	-3	7	$-0.298\ 617\ 819\ 828\ 065 imes 10^8$	38	10	6	$-0.837\ 513\ 931\ 798\ 655 imes 10^{16}$

Table A1.7. Coefficients and exponents of the backward equation $v_{3g}(p,T)$ for subregion 3g

Table A1.8. Coefficients and exponents of the backward equation $v_{3h}(p,T)$ for subregion 3h

i	I_i	J_i	n _i	i	I_i	J_i	n _i
1	-12	8	$0.561\ 379\ 678\ 887\ 577 imes 10^{-1}$	16	-6	8	$-0.656\ 174\ 421\ 999\ 594 imes 10^7$
2	-12	12	$0.774\ 135\ 421\ 587\ 083 imes 10^{10}$	17	-5	2	$0.156\ 362\ 212\ 977\ 396 imes 10^{-4}$
3	-10	4	$0.111\ 482\ 975\ 877\ 938 imes 10^{-8}$	18	-5	3	$-0.212\ 946\ 257\ 021\ 400 imes 10^1$
4	-10	6	$-0.143\ 987\ 128\ 208\ 183 imes 10^{-2}$	19	-5	4	$0.135\ 249\ 306\ 374\ 858 imes 10^2$
5	-10	8	$0.193~696~558~764~920 \times 10^4$	20	-4	2	0.177 189 164 145 813
6	-10	10	$-0.605\ 971\ 823\ 585\ 005 \times 10^9$	21	-4	4	$0.139\ 499\ 167\ 345\ 464 imes 10^4$
7	-10	14	$0.171\ 951\ 568\ 124\ 337 imes 10^{14}$	22	-3	1	$-0.703\ 670\ 932\ 036\ 388 imes 10^{-2}$
8	-10	16	$-0.185\ 461\ 154\ 985\ 145 imes 10^{17}$	23	-3	2	-0.152 011 044 389 648
9	-8	0	$0.387~851~168~078~010 \times 10^{-16}$	24	-2	0	$0.981\ 916\ 922\ 991\ 113 imes 10^{-4}$
10	-8	1	$-0.395\ 464\ 327\ 846\ 105 imes 10^{-13}$	25	-1	0	$0.147\ 199\ 658\ 618\ 076 imes 10^{-2}$
11	-8	6	$-0.170\ 875\ 935\ 679\ 023 imes 10^3$	26	-1	2	$0.202\ 618\ 487\ 025\ 578 imes 10^2$
12	-8	7	$-0.212\ 010\ 620\ 701\ 220 \times 10^4$	27	0	0	0.899 345 518 944 240
13	-8	8	$0.177\ 683\ 337\ 348\ 191 imes 10^8$	28	1	0	-0.211 346 402 240 858
14	-6	4	$0.110\ 177\ 443\ 629\ 575 imes10^2$	29	1	2	$0.249\ 971\ 752\ 957\ 491 imes 10^2$
15	-6	6	$-0.234\ 396\ 091\ 693\ 313 imes 10^6$				

i	I_i	J_i	n _i	i	I_i	J_i	n _i
1	0	0	$0.106\ 905\ 684\ 359\ 136 imes 10^1$	22	12	-12	$0.164\ 395\ 334\ 345\ 040 \times 10^{-23}$
2	0	1	$-0.148\ 620\ 857\ 922\ 333 imes 10^1$	23	12	-6	$-0.339\ 823\ 323\ 754\ 373 imes 10^{-5}$
3	0	10	$0.259\ 862\ 256\ 980\ 408 imes 10^{15}$	24	12	-4	$-0.135\ 268\ 639\ 905\ 021 imes 10^{-1}$
4	1	-4	$-0.446\ 352\ 055\ 678\ 749 imes 10^{-11}$	25	14	-10	$-0.723\ 252\ 514\ 211\ 625 imes 10^{-14}$
5	1	-2	$-0.566\ 620\ 757\ 170\ 032 imes 10^{-6}$	26	14	-8	$0.184\;386\;437\;538\;366 \times 10^{-8}$
6	1	-1	$-0.235\ 302\ 885\ 736\ 849 \times 10^{-2}$	27	14	-4	$-0.463\ 959\ 533\ 752\ 385 imes 10^{-1}$
7	1	0	-0.269 226 321 968 839	28	14	5	$-0.992\ 263\ 100\ 376\ 750 imes 10^{14}$
8	2	0	$0.922\ 024\ 992\ 944\ 392 imes 10^1$	29	18	-12	$0.688\ 169\ 154\ 439\ 335 imes 10^{-16}$
9	3	-5	$0.357\ 633\ 505\ 503\ 772 imes 10^{-11}$	30	18	-10	$-0.222\ 620\ 998\ 452\ 197 imes 10^{-10}$
10	3	0	$-0.173\ 942\ 565\ 562\ 222 \times 10^2$	31	18	-8	$-0.540\ 843\ 018\ 624\ 083 imes 10^{-7}$
11	4	-3	$0.700\ 681\ 785\ 556\ 229 imes 10^{-5}$	32	18	-6	$0.345\ 570\ 606\ 200\ 257 imes 10^{-2}$
12	4	-2	$-0.267\ 050\ 351\ 075\ 768 imes 10^{-3}$	33	18	2	$0.422\ 275\ 800\ 304\ 086 \times 10^{11}$
13	4	-1	$-0.231779669675624 \times 10^{1}$	34	20	-12	$-0.126\ 974\ 478\ 770\ 487 imes 10^{-14}$
14	5	-6	$-0.753\ 533\ 046\ 979\ 752 imes 10^{-12}$	35	20	-10	$0.927\ 237\ 985\ 153\ 679 imes 10^{-9}$
15	5	-1	$0.481\;337\;131\;452\;891 \times 10^{1}$	36	22	-12	$0.612\ 670\ 812\ 016\ 489 imes 10^{-13}$
16	5	12	$-0.223\ 286\ 270\ 422\ 356 imes 10^{22}$	37	24	-12	$-0.722\ 693\ 924\ 063\ 497 imes 10^{-11}$
17	7	-4	$-0.118746004987383 imes 10^{-4}$	38	24	-8	$-0.383\ 669\ 502\ 636\ 822 imes 10^{-3}$
18	7	-3	0.646 412 934 136 496 × 10-2	39	32	-10	$0.374\ 684\ 572\ 410\ 204 imes 10^{-3}$
19	8	-6	$-0.410\ 588\ 536\ 330\ 937 imes 10^{-9}$	40	32	-5	$-0.931\ 976\ 897\ 511\ 086 imes 10^5$
20	8	10	$0.422\ 739\ 537\ 057\ 241\times 10^{20}$	41	36	-10	$-0.247\ 690\ 616\ 026\ 922 imes 10^{-1}$
21	10	-8	$0.313\ 698\ 180\ 473\ 812\times 10^{-12}$	42	36	-8	$0.658\ 110\ 546\ 759\ 474 imes 10^2$

Table A1.9. Coefficients and exponents of the backward equation $v_{3i}(p,T)$ for subregion 3i

Table A1.10. Coefficients and exponents of the backward equation $v_{3j}(p,T)$ for subregion 3j

i	$I_i J_i$	n _i	i	$I_i J_i$	n _i
1	0 -1	$-0.111\ 371\ 317\ 395\ 540 imes 10^{-3}$	16	10 -6	$-0.960754116701669 \times 10^{-8}$
2	0 0	$0.100\;342\;892\;423\;685 \times 10^{1}$	17	12 -8	$-0.510\ 572\ 269\ 720\ 488 \times 10^{-10}$
3	0 1	$0.530\;615\;581\;928\;979 imes 10^1$	18	12 -3	$0.767\ 373\ 781\ 404\ 211 \times 10^{-2}$
4	1 -2	$0.179\ 058\ 760\ 078\ 792 imes 10^{-5}$	19	14 -10	$0.663~855~469~485~254 \times 10^{-14}$
5	1 -1	$-0.728541958464774 \times 10^{-3}$	20	14 -8	$-0.717590735526745 \times 10^{-9}$
6	1 1	$-0.187576133371704 \times 10^{2}$	21	14 -5	$0.146\ 564\ 542\ 926\ 508 imes 10^{-4}$
7	2 -1	$0.199\ 060\ 874\ 071\ 849 imes 10^{-2}$	22	16 -10	$0.309\ 029\ 474\ 277\ 013 imes 10^{-11}$
8	2 1	$0.243\ 574\ 755\ 377\ 290 imes 10^2$	23	18 -12	$-0.464\ 216\ 300\ 971\ 708 imes 10^{-15}$
9	3 -2	$-0.177\ 040\ 785\ 499\ 444 imes 10^{-3}$	24	20 -12	$-0.390\ 499\ 637\ 961\ 161 \times 10^{-13}$
10	4 -2	$-0.259\ 680\ 385\ 227\ 130 imes 10^{-2}$	25	20 -10	$-0.236\ 716\ 126\ 781\ 431 \times 10^{-9}$
11	4 2	$-0.198\ 704\ 578\ 406\ 823 imes 10^3$	26	24 -12	$0.454\ 652\ 854\ 268\ 717 imes 10^{-11}$
12	5 -3	$0.738\ 627\ 790\ 224\ 287 imes 10^{-4}$	27	24 -6	$-0.422\ 271\ 787\ 482\ 497 \times 10^{-2}$
13	5 -2	$-0.236\ 264\ 692\ 844\ 138 imes 10^{-2}$	28	28 -12	$0.283\ 911\ 742\ 354\ 706 imes 10^{-10}$
14	5 0	$-0.161\ 023\ 121\ 314\ 333 imes 10^1$	29	28 -5	$0.270\ 929\ 002\ 720\ 228 imes 10^1$
15	6 3	$0.622\ 322\ 971\ 786\ 473 imes 10^4$			

i	I_i	J_i	n _i	i	I_i	J_i	n _i
1	-2	10	$-0.401\ 215\ 699\ 576\ 099 \times 10^9$	18	1	2	$-0.194\ 646\ 110\ 037\ 079 imes 10^3$
2	-2	12	$0.484\ 501\ 478\ 318\ 406 imes 10^{11}$	19	2	-8	$0.808\;354\;639\;772\;825\times10^{-15}$
3	-1	-5	$0.394\ 721\ 471\ 363\ 678 imes 10^{-14}$	20	2	-6	$-0.180\ 845\ 209\ 145\ 470 imes 10^{-10}$
4	-1	6	$0.372\ 629\ 967\ 374\ 147 imes 10^5$	21	2	-3	$-0.696\ 664\ 158\ 132\ 412 imes 10^{-5}$
5	0	-12	$-0.369794374168666 \times 10^{-29}$	22	2	-2	$-0.181\ 057\ 560\ 300\ 994 imes 10^{-2}$
6	0	-6	$-0.380\ 436\ 407\ 012\ 452 imes 10^{-14}$	23	2	0	$0.255\ 830\ 298\ 579\ 027 imes 10^1$
7	0	-2	$0.475\ 361\ 629\ 970\ 233 imes 10^{-6}$	24	2	4	$0.328\ 913\ 873\ 658\ 481\times 10^4$
8	0	-1	$-0.879\ 148\ 916\ 140\ 706 imes 10^{-3}$	25	5	-12	$-0.173\ 270\ 241\ 249\ 904 \times 10^{-18}$
9	0	0	0.844 317 863 844 331	26	5	-6	$-0.661\ 876\ 792\ 558\ 034 imes 10^{-6}$
10	0	1	$0.122\;433\;162\;656\;600 \times 10^2$	27	5	-3	$-0.395\ 688\ 923\ 421\ 250 imes 10^{-2}$
11	0	2	$-0.104\ 529\ 634\ 830\ 279 imes 10^3$	28	6	-12	$0.604\ 203\ 299\ 819\ 132 \times 10^{-17}$
12	0	3	$0.589\ 702\ 771\ 277\ 429 imes 10^3$	29	6	-10	$-0.400\ 879\ 935\ 920\ 517 imes 10^{-13}$
13	0	14	$-0.291\ 026\ 851\ 164\ 444 \times 10^{14}$	30	6	-8	$0.160~751~107~464~958 \times 10^{-8}$
14	1	-3	$0.170\;343\;072\;841\;850 \times 10^{-5}$	31	6	-5	$0.383\ 719\ 409\ 025\ 556 imes 10^{-4}$
15	1	-2	$-0.277\ 617\ 606\ 975\ 748 imes 10^{-3}$	32	8	-12	$-0.649\ 565\ 446\ 702\ 457 imes 10^{-14}$
16	1	0	$-0.344\ 709\ 605\ 486\ 686 imes 10^1$	33	10	-12	$-0.149\ 095\ 328\ 506\ 000 \times 10^{-11}$
17	1	1	$0.221\;333\;862\;447\;095\times10^2$	34	12	-10	$0.541\;449\;377\;329\;581\times10^{-8}$

Table A1.11. Coefficients and exponents of the backward equation $v_{3k}(p,T)$ for subregion 3k

Table A1.12. Coefficients and exponents of the backward equation $v_{31}(p,T)$ for subregion 31

i	I_i	J_i	n _i	i	I_i	J_i	n _i
1	-12	14	$0.260\ 702\ 058\ 647\ 537 imes 10^{10}$	23	-3	20	$-0.695\ 953\ 622\ 348\ 829 imes 10^{33}$
2	-12	16	$-0.188\ 277\ 213\ 604\ 704 imes 10^{15}$	24	-2	2	0.110 609 027 472 280
3	-12	18	$0.554\ 923\ 870\ 289\ 667 imes 10^{19}$	25	-2	3	$0.721\ 559\ 163\ 361\ 354 imes 10^2$
4	-12	20	$-0.758\ 966\ 946\ 387\ 758 imes 10^{23}$	26	-2	10	$-0.306\ 367\ 307\ 532\ 219 imes 10^{15}$
5	-12	22	$0.413\ 865\ 186\ 848\ 908 imes 10^{27}$	27	-1	0	$0.265\ 839\ 618\ 885\ 530 imes10^{-4}$
6	-10	14	$-0.815\ 038\ 000\ 738\ 060 imes 10^{12}$	28	-1	1	$0.253\ 392\ 392\ 889\ 754 imes 10^{-1}$
7	-10	24	$-0.381\ 458\ 260\ 489\ 955 imes 10^{33}$	29	-1	3	$-0.214\ 443\ 041\ 836\ 579 imes10^3$
8	-8	6	$-0.123\ 239\ 564\ 600\ 519 imes10^{-1}$	30	0	0	0.937 846 601 489 667
9	-8	10	$0.226\ 095\ 631\ 437\ 174 imes 10^8$	31	0	1	$0.223\ 184\ 043\ 101\ 700 imes 10^1$
10	-8	12	$-0.495\ 017\ 809\ 506\ 720 imes 10^{12}$	32	0	2	0.338 401 222 509 191 × 102
11	-8	14	$0.529\;482\;996\;422\;863 imes 10^{16}$	33	0	12	$0.494\ 237\ 237\ 179\ 718 imes 10^{21}$
12	-8	18	$-0.444\ 359\ 478\ 746\ 295 imes 10^{23}$	34	1	0	-0.198 068 404 154 428
13	-8	24	$0.521\ 635\ 864\ 527\ 315 imes 10^{35}$	35	1	16	$-0.141\ 415\ 349\ 881\ 140 imes 10^{31}$
14	-8	36	$-0.487\ 095\ 672\ 740\ 742 \times 10^{55}$	36	2	1	$-0.993\ 862\ 421\ 613\ 651 imes10^2$
15	-6	8	$-0.714\ 430\ 209\ 937\ 547 imes 10^6$	37	4	0	$0.125\ 070\ 534\ 142\ 731 imes 10^3$
16	-5	4	0.127 868 634 615 495	38	5	0	$-0.996\ 473\ 529\ 004\ 439 imes 10^3$
17	-5	5	$-0.100\ 752\ 127\ 917\ 598 imes 10^2$	39	5	1	$0.473\ 137\ 909\ 872\ 765 imes 10^5$
18	-4	7	$0.777\ 451\ 437\ 960\ 990 imes 10^7$	40	6	14	$0.116\ 662\ 121\ 219\ 322 \times 10^{33}$
19	-4	16	$-0.108\ 105\ 480\ 796\ 471 imes 10^{25}$	41	10	4	$-0.315\ 874\ 976\ 271\ 533 imes 10^{16}$
20	-3	1	$-0.357578581169659 \times 10^{-5}$	42	10	12	$-0.445\ 703\ 369\ 196\ 945 imes 10^{33}$
21	-3	3	$-0.212\ 857\ 169\ 423\ 484 imes 10^1$	43	14	10	$0.642~794~932~373~694 \times 10^{33}$
22	-3	18	$0.270\ 706\ 111\ 085\ 238 imes 10^{30}$				

i	Ŀ	J.	n.	i	Į.	J.	<i>p</i> .
	-1	0	0 011 204 262 401 047	21	20	20	
1	0	0	0.811 384 303 481 847	21	28	20	0.368 193 926 183 570 × 1000
2	3	0	-0.568 199 310 990 094 × 104	22	2	22	$0.170\ 215\ 539\ 458\ 936 imes 10^{18}$
3	8	0	$-0.178\ 657\ 198\ 172\ 556 imes 10^{11}$	23	16	22	$0.639\ 234\ 909\ 918\ 741\times 10^{42}$
4	20	2	$0.795\;537\;657\;613\;427 \times 10^{32}$	24	0	24	$-0.821\ 698\ 160\ 721\ 956 imes 10^{15}$
5	1	5	$-0.814\ 568\ 209\ 346\ 872 imes 10^5$	25	5	24	$-0.795\ 260\ 241\ 872\ 306 imes 10^{24}$
6	3	5	$-0.659774567602874 imes 10^{8}$	26	0	28	$0.233\;415\;869\;478\;510 imes10^{18}$
7	4	5	$-0.152\ 861\ 148\ 659\ 302 imes 10^{11}$	27	3	28	$-0.600\ 079\ 934\ 586\ 803 imes 10^{23}$
8	5	5	$-0.560\ 165\ 667\ 510\ 446 imes 10^{12}$	28	4	28	$0.594\;584\;382\;273\;384 imes 10^{25}$
9	1	6	0.458 384 828 593 949 × 10 ⁶	29	12	28	$0.189\ 461\ 279\ 349\ 492 imes 10^{40}$
10	6	6	$-0.385\ 754\ 000\ 383\ 848 imes 10^{14}$	30	16	28	$-0.810\ 093\ 428\ 842\ 645 imes 10^{46}$
11	2	7	$0.453\ 735\ 800\ 004\ 273 imes 10^8$	31	1	32	$0.188\;813\;911\;076\;809\times10^{22}$
12	4	8	$0.939~454~935~735~563 imes 10^{12}$	32	8	32	$0.111\ 052\ 244\ 098\ 768 imes 10^{36}$
13	14	8	$0.266\ 572\ 856\ 432\ 938 imes 10^{28}$	33	14	32	$0.291\ 133\ 958\ 602\ 503 imes 10^{46}$
14	2	10	$-0.547\ 578\ 313\ 899\ 097 imes 10^{10}$	34	0	36	$-0.329\ 421\ 923\ 951\ 460 imes 10^{22}$
15	5	10	$0.200\ 725\ 701\ 112\ 386 imes 10^{15}$	35	2	36	$-0.137\ 570\ 282\ 536\ 696 imes 10^{26}$
16	3	12	$0.185\ 007\ 245\ 563\ 239 imes 10^{13}$	36	3	36	$0.181\;508\;996\;303\;902\times10^{28}$
17	0	14	$0.185\ 135\ 446\ 828\ 337 imes 10^9$	37	4	36	$-0.346\ 865\ 122\ 768\ 353 imes 10^{30}$
18	1	14	$-0.170\ 451\ 090\ 076\ 385 imes 10^{12}$	38	8	36	$-0.211\ 961\ 148\ 774\ 260 imes 10^{38}$
19	1	18	$0.157\ 890\ 366\ 037\ 614\times 10^{15}$	39	14	36	$-0.128\ 617\ 899\ 887\ 675\times 10^{49}$
20	1	20	$-0.202\ 530\ 509\ 748\ 774 imes 10^{16}$	40	24	36	$0.479\;817\;895\;699\;239\times10^{65}$

Table A1.13. Coefficients and exponents of the backward equation $v_{3m}(p,T)$ for subregion 3m

Table A1.14. Coefficients and exponents of the backward equation $v_{3n}(p,T)$ for subregion 3n

i	$I_i J_i$	n _i	i	I_i	J_i	n _i
1	0 -12	$0.280\ 967\ 799\ 943\ 151 \times 10^{-38}$	21	3	-6	0.705 412 100 773 699 × 10 ⁻¹¹
2	3 -12	$0.614\ 869\ 006\ 573\ 609 imes 10^{-30}$	22	4	-6	$0.258\;585\;887\;897\;486 imes 10^{-8}$
3	4 -12	$0.582\ 238\ 667\ 048\ 942 imes 10^{-27}$	23	2	-5	$-0.493\ 111\ 362\ 030\ 162 imes 10^{-10}$
4	6 -12	$0.390\ 628\ 369\ 238\ 462 imes 10^{-22}$	24	4	-5	$-0.158\ 649\ 699\ 894\ 543 imes 10^{-5}$
5	7 -12	$0.821\;445\;758\;255\;119 imes 10^{-20}$	25	7	-5	-0.525 037 427 886 100
6	10 -12	$0.402\ 137\ 961\ 842\ 776 imes 10^{-14}$	26	4	-4	$0.220\ 019\ 901\ 729\ 615 imes 10^{-2}$
7	12 -12	$0.651\ 718\ 171\ 878\ 301 imes 10^{-12}$	27	3	-3	$-0.643\ 064\ 132\ 636\ 925 imes 10^{-2}$
8	14 -12	$-0.211\ 773\ 355\ 803\ 058 \times 10^{-7}$	28	5	-3	$0.629\ 154\ 149\ 015\ 048 imes 10^2$
9	18 -12	$0.264~953~354~380~072 \times 10^{-2}$	29	6	-3	$0.135\ 147\ 318\ 617\ 061 \times 10^3$
10	0 - 10	$-0.135\ 031\ 446\ 451\ 331 \times 10^{-31}$	30	0	-2	$0.240\ 560\ 808\ 321\ 713 imes 10^{-6}$
11	3 -10	$-0.607\ 246\ 643\ 970\ 893 imes 10^{-23}$	31	0	-1	$-0.890~763~306~701~305 \times 10^{-3}$
12	5 -10	$-0.402\ 352\ 115\ 234\ 494 \times 10^{-18}$	32	3	-1	$-0.440\ 209\ 599\ 407\ 714 imes10^4$
13	6 -10	$-0.744\ 938\ 506\ 925\ 544 imes 10^{-16}$	33	1	0	$-0.302\ 807\ 107\ 747\ 776 \times 10^3$
14	8 -10	$0.189\ 917\ 206\ 526\ 237 imes 10^{-12}$	34	0	1	$0.159\ 158\ 748\ 314\ 599 imes 10^4$
15	12 -10	$0.364\ 975\ 183\ 508\ 473 imes 10^{-5}$	35	1	1	$0.232\ 534\ 272\ 709\ 876 imes 10^6$
16	0 -8	$0.177\ 274\ 872\ 361\ 946 \times 10^{-25}$	36	0	2	$-0.792\ 681\ 207\ 132\ 600 imes 10^6$
17	3 -8	$-0.334\ 952\ 758\ 812\ 999 imes 10^{-18}$	37	1	4	$-0.869\ 871\ 364\ 662\ 769 imes 10^{11}$
18	7 -8	$-0.421\ 537\ 726\ 098\ 389 imes 10^{-8}$	38	0	5	$0.354\;542\;769\;185\;671 imes 10^{12}$
19	12 -8	$-0.391\ 048\ 167\ 929\ 649 imes 10^{-1}$	39	1	6	$0.400\;849\;240\;129\;329\times10^{15}$
20	2 -6	0.541 276 911 564 176 × 10 ⁻¹³				

i	$I_i J_i$	n _i	i	I_i	J_i	n _i
1	0 -12	$0.128~746~023~979~718 \times 10^{-34}$	13	6	-8	$0.814\ 897\ 605\ 805\ 513 imes 10^{-14}$
2	0 -4	$-0.735\ 234\ 770\ 382\ 342 \times 10^{-11}$	14	7	-12	$0.425\ 596\ 631\ 351\ 839 imes 10^{-25}$
3	0 -1	$0.289\ 078\ 692\ 149\ 150 imes 10^{-2}$	15	8	-10	$-0.387\ 449\ 113\ 787\ 755 imes 10^{-17}$
4	2 -1	0.244 482 731 907 223	16	8	-8	$0.139\ 814\ 747\ 930\ 240 imes 10^{-12}$
5	3 -10	$0.141\ 733\ 492\ 030\ 985 imes 10^{-23}$	17	8	-4	$-0.171\ 849\ 638\ 951\ 521 imes 10^{-2}$
6	4 -12	$-0.354\ 533\ 853\ 059\ 476 imes 10^{-28}$	18	10	-12	$0.641\ 890\ 529\ 513\ 296 imes 10^{-21}$
7	4 -8	$-0.594\ 539\ 202\ 901\ 431 imes 10^{-17}$	19	10	-8	$0.118\ 960\ 578\ 072\ 018 imes 10^{-10}$
8	4 -5	$-0.585\ 188\ 401\ 782\ 779 imes 10^{-8}$	20	14	-12	$-0.155\ 282\ 762\ 571\ 611 \times 10^{-17}$
9	4 -4	$0.201\ 377\ 325\ 411\ 803 imes 10^{-5}$	21	14	-8	$0.233\ 907\ 907\ 347\ 507 imes 10^{-7}$
10	4 -1	$0.138\;647\;388\;209\;306 imes 10^1$	22	20	-12	$-0.174\ 093\ 247\ 766\ 213 imes 10^{-12}$
11	5 -4	$-0.173\ 959\ 365\ 084\ 772 imes 10^{-4}$	23	20	-10	$0.377\ 682\ 649\ 089\ 149 imes 10^{-8}$
12	5 -3	$0.137\ 680\ 878\ 349\ 369 imes 10^{-2}$	24	24	-12	$-0.516\ 720\ 236\ 575\ 302 \times 10^{-10}$

Table A1.15. Coefficients and exponents of the backward equation $v_{30}(p,T)$ for subregion 30

Table A1.16. Coefficients and exponents of the backward equation $v_{3p}(p,T)$ for subregion 3p

i	I_i	J_i	n _i	i	I_i	J_i	n _i
1	0	-1	$-0.982\ 825\ 342\ 010\ 366 imes 10^{-4}$	15	12	-12	$0.343\ 480\ 022\ 104\ 968 imes 10^{-25}$
2	0	0	$0.105\;145\;700\;850\;612 imes 10^1$	16	12	-6	$0.816\ 256\ 095\ 947\ 021 imes 10^{-5}$
3	0	1	$0.116\ 033\ 094\ 095\ 084 \times 10^3$	17	12	-5	$0.294~985~697~916~798 \times 10^{-2}$
4	0	2	$0.324~664~750~281~543 \times 10^4$	18	14	-10	$0.711\ 730\ 466\ 276\ 584 imes 10^{-16}$
5	1	1	$-0.123\ 592\ 348\ 610\ 137 imes 10^4$	19	14	-8	$0.400~954~763~806~941 \times 10^{-9}$
6	2	-1	$-0.561\ 403\ 450\ 013\ 495 imes 10^{-1}$	20	14	-3	$0.107\ 766\ 027\ 032\ 853\times 10^2$
7	3	-3	$0.856\ 677\ 401\ 640\ 869 imes 10^{-7}$	21	16	-8	$-0.409\ 449\ 599\ 138\ 182 imes 10^{-6}$
8	3	0	$0.236\ 313\ 425\ 393\ 924 \times 10^3$	22	18	-8	$-0.729\ 121\ 307\ 758\ 902 imes 10^{-5}$
9	4	-2	$0.972\;503\;292\;350\;109 \times 10^{-2}$	23	20	-10	$0.677\ 107\ 970\ 938\ 909 imes 10^{-8}$
10	6	-2	$-0.103\ 001\ 994\ 531\ 927 imes 10^1$	24	22	-10	$0.602~745~973~022~975 \times 10^{-7}$
11	7	-5	$-0.149\ 653\ 706\ 199\ 162 imes 10^{-8}$	25	24	-12	$-0.382\ 323\ 011\ 855\ 257 imes 10^{-10}$
12	7	-4	$-0.215743778861592 \times 10^{-4}$	26	24	-8	$0.179~946~628~317~437 \times 10^{-2}$
13	8	-2	$-0.834\ 452\ 198\ 291\ 445 imes 10^1$	27	36	-12	$-0.345\ 042\ 834\ 640\ 005 imes 10^{-3}$
14	10	-3	0.586 602 660 564 988				

Table A1.17. Coefficients and exponents of the backward equation $v_{3q}(p,T)$ for subregion 3q

i	I_i	J_i	n _i	i	I_i	J_i	n _i
1	-12	10	$-0.820\ 433\ 843\ 259\ 950 imes 10^5$	13	-3	3	$0.232\ 808\ 472\ 983\ 776 imes 10^3$
2	-12	12	$0.473\ 271\ 518\ 461\ 586 imes 10^{11}$	14	-2	0	$-0.142\;808\;220\;416\;837\times10^{-4}$
3	-10	6	$-0.805\ 950\ 021\ 005\ 413 imes 10^{-1}$	15	-2	1	$-0.643\ 596\ 060\ 678\ 456 imes 10^{-2}$
4	-10	7	$0.328\ 600\ 025\ 435\ 980 imes 10^2$	16	-2	2	$-0.428\ 577\ 227\ 475\ 614 imes 10^1$
5	-10	8	$-0.356\ 617\ 029\ 982\ 490 imes 10^4$	17	-2	4	$0.225\ 689\ 939\ 161\ 918\times 10^4$
6	-10	10	$-0.172\ 985\ 781\ 433\ 335 imes 10^{10}$	18	-1	0	$0.100\ 355\ 651\ 721\ 510 imes10^{-2}$
7	-8	8	$0.351\ 769\ 232\ 729\ 192 imes 10^8$	19	-1	1	0.333 491 455 143 516
8	-6	6	$-0.775\ 489\ 259\ 985\ 144 imes 10^6$	20	-1	2	$0.109~697~576~888~873 imes 10^1$
9	-5	2	$0.710\;346\;691\;966\;018 imes 10^{-4}$	21	0	0	0.961 917 379 376 452
10	-5	5	$0.993\;499\;883\;820\;274 imes 10^5$	22	1	0	$-0.838\ 165\ 632\ 204\ 598 imes 10^{-1}$
11	-4	3	-0.642 094 171 904 570	23	1	1	$0.247~795~908~411~492 \times 10^{1}$
12	-4	4	$-0.612\ 842\ 816\ 820\ 083 imes 10^4$	24	1	3	-0.319 114 969 006 533 × 104

i	I_i	J_i	n _i	i	I_i	J_i	n _i
1	-8	6	$0.144\ 165\ 955\ 660\ 863 imes 10^{-2}$	15	8	-10	$0.399\ 988\ 795\ 693\ 162 imes 10^{-12}$
2	-8	14	$-0.701\;438\;599\;628\;258 imes 10^{13}$	16	8	-8	$-0.536\ 479\ 560\ 201\ 811 imes 10^{-6}$
3	-3	-3	$-0.830\ 946\ 716\ 459\ 219 imes 10^{-16}$	17	8	-5	$0.159\;536\;722\;411\;202\times10^{-1}$
4	-3	3	0.261 975 135 368 109	18	10	-12	$0.270\;303\;248\;860\;217 \times 10^{-14}$
5	-3	4	$0.393\ 097\ 214\ 706\ 245 \times 10^3$	19	10	-10	$0.244\ 247\ 453\ 858\ 506 imes 10^{-7}$
6	-3	5	$-0.104\ 334\ 030\ 654\ 021 imes10^5$	20	10	-8	$-0.983\;430\;636\;716\;454 imes 10^{-5}$
7	-3	8	0.490 112 654 154 211 × 10 ⁹	21	10	-6	$0.663\ 513\ 144\ 224\ 454 imes 10^{-1}$
8	0	-1	$-0.147\ 104\ 222\ 772\ 069 \times 10^{-3}$	22	10	-5	$-0.993\ 456\ 957\ 845\ 006 imes 10^1$
9	0	0	$0.103\;602\;748\;043\;408 \times 10^{1}$	23	10	-4	$0.546\ 491\ 323\ 528\ 491 imes 10^3$
10	0	1	$0.305\;308\;890\;065\;089 \times 10^{1}$	24	10	-3	$-0.143\ 365\ 406\ 393\ 758 imes 10^5$
11	0	5	$-0.399745276971264 \times 10^{7}$	25	10	-2	0.150 764 974 125 511 × 10 ⁶
12	3	-6	$0.569\ 233\ 719\ 593\ 750 imes 10^{-11}$	26	12	-12	$-0.337\ 209\ 709\ 340\ 105 imes 10^{-9}$
13	3	-2	$-0.464\ 923\ 504\ 407\ 778 imes 10^{-1}$	27	14	-12	$0.377\ 501\ 980\ 025\ 469 imes 10^{-8}$
14	8	-12	$-0.535\ 400\ 396\ 512\ 906 \times 10^{-17}$				

Table A1.18. Coefficients and exponents of the backward equation $v_{3r}(p,T)$ for subregion 3r

Table A1.19. Coefficients and exponents of the backward equation $v_{3s}(p,T)$ for subregion 3s

i	I_i	J_i	n _i	i	I_i	J_i	n _i
1	-12	20	$-0.532\ 466\ 612\ 140\ 254 \times 10^{23}$	16	0	0	0.965 961 650 599 775
2	-12	24	$0.100\;415\;480\;000\;824\times10^{32}$	17	0	1	$0.294\;885\;696\;802\;488 imes 10^1$
3	-10	22	$-0.191\ 540\ 001\ 821\ 367 \times 10^{30}$	18	0	4	$-0.653\ 915\ 627\ 346\ 115 imes 10^5$
4	-8	14	$0.105\;618\;377\;808\;847\times10^{17}$	19	0	28	$0.604\ 012\ 200\ 163\ 444 imes 10^{50}$
5	-6	36	$0.202\ 281\ 884\ 477\ 061 \times 10^{59}$	20	1	0	-0.198 339 358 557 937
6	-5	8	$0.884\ 585\ 472\ 596\ 134 imes 10^8$	21	1	32	$-0.175\ 984\ 090\ 163\ 501 imes 10^{58}$
7	-5	16	$0.166\ 540\ 181\ 638\ 363 imes 10^{23}$	22	3	0	$0.356\;314\;881\;403\;987 imes10^1$
8	-4	6	-0.313 563 197 669 111 × 10 ⁶	23	3	1	$-0.575\ 991\ 255\ 144\ 384 imes 10^3$
9	-4	32	$-0.185\ 662\ 327\ 545\ 324 imes 10^{54}$	24	3	2	$0.456\ 213\ 415\ 338\ 071 imes 10^5$
10	-3	3	$-0.624\ 942\ 093\ 918\ 942 imes 10^{-1}$	25	4	3	$-0.109\ 174\ 044\ 987\ 829 imes 10^8$
11	-3	8	$-0.504\ 160\ 724\ 132\ 590 imes 10^{10}$	26	4	18	$0.437\ 796\ 099\ 975\ 134\times 10^{34}$
12	-2	4	$0.187\ 514\ 491\ 833\ 092 imes 10^5$	27	4	24	$-0.616\ 552\ 611\ 135\ 792 imes 10^{46}$
13	-1	1	$0.121\ 399\ 979\ 993\ 217 imes 10^{-2}$	28	5	4	$0.193\;568\;768\;917\;797 imes 10^{10}$
14	-1	2	$0.188\;317\;043\;049\;455 imes10^1$	29	14	24	$0.950\;898\;170\;425\;042\times10^{54}$
15	-1	3	$-0.167\ 073\ 503\ 962\ 060 imes 10^4$				

i	I_i	J_i	n_i	i	I_i	J_i	n_i
1	0	0	$0.155\ 287\ 249\ 586\ 268 imes 10^1$	18	7	36	$-0.341\ 552\ 040\ 860\ 644 imes 10^{51}$
2	0	1	$0.664\ 235\ 115\ 009\ 031 imes 10^1$	19	10	10	$-0.527\ 251\ 339\ 709\ 047 imes 10^{21}$
3	0	4	$-0.289\ 366\ 236\ 727\ 210 imes 10^4$	20	10	12	$0.245\;375\;640\;937\;055\times10^{24}$
4	0	12	$-0.385\ 923\ 202\ 309\ 848 imes 10^{13}$	21	10	14	$-0.168\ 776\ 617\ 209\ 269 imes 10^{27}$
5	1	0	$-0.291\ 002\ 915\ 783\ 761 imes 10^1$	22	10	16	$0.358~958~955~867~578 imes 10^{29}$
6	1	10	$-0.829\ 088\ 246\ 858\ 083 imes 10^{12}$	23	10	22	$-0.656\ 475\ 280\ 339\ 411 imes 10^{36}$
7	2	0	$0.176\;814\;899\;675\;218 imes10^1$	24	18	18	$0.355\ 286\ 045\ 512\ 301 \times 10^{39}$
8	2	6	$-0.534\ 686\ 695\ 713\ 469 imes 10^9$	25	20	32	$0.569~021~454~413~270 \times 10^{58}$
9	2	14	$0.160\;464\;608\;687\;834 imes 10^{18}$	26	22	22	$-0.700\ 584\ 546\ 433\ 113\times 10^{48}$
10	3	3	0.196 435 366 560 186 × 10 ⁶	27	22	36	$-0.705\ 772\ 623\ 326\ 374 imes 10^{65}$
11	3	8	$0.156~637~427~541~729 \times 10^{13}$	28	24	24	$0.166~861~176~200~148\times 10^{53}$
12	4	0	$-0.178\ 154\ 560\ 260\ 006 imes 10^1$	29	28	28	$-0.300\ 475\ 129\ 680\ 486 imes 10^{61}$
13	4	10	$-0.229746237623692 \times 10^{16}$	30	32	22	$-0.668\ 481\ 295\ 196\ 808 imes 10^{51}$
14	7	3	$0.385\ 659\ 001\ 648\ 006 imes 10^8$	31	32	32	$0.428\;432\;338\;620\;678 imes 10^{69}$
15	7	4	$0.110\ 554\ 446\ 790\ 543 imes 10^{10}$	32	32	36	$-0.444\ 227\ 367\ 758\ 304\times 10^{72}$
16	7	7	$-0.677\ 073\ 830\ 687\ 349 imes 10^{14}$	33	36	36	$-0.281 \ 396 \ 013 \ 562 \ 745 imes 10^{77}$
17	7	20	$-0.327\ 910\ 592\ 086\ 523 imes 10^{31}$				

Table A1.20. Coefficients and exponents of the backward equation $v_{3t}(p,T)$ for subregion 3t

A2 Coefficients for Auxiliary Equations

Table A2.1. Coefficients and exponents of the auxiliary equation $v_{3u}(p,T)$ for subregion 3u

i	I_i	J_i	n _i	i	I_i	J_i	n _i
1	-12	14	$0.122\ 088\ 349\ 258\ 355 imes 10^{18}$	20	1	-2	$0.105\ 581\ 745\ 346\ 187 imes 10^{-2}$
2	-10	10	$0.104\ 216\ 468\ 608\ 488\times 10^{10}$	21	2	5	$-0.651\ 903\ 203\ 602\ 581\times 10^{15}$
3	-10	12	$-0.882\ 666\ 931\ 564\ 652 imes 10^{16}$	22	2	10	$-0.160\ 116\ 813\ 274\ 676\times 10^{25}$
4	-10	14	$0.259\ 929\ 510\ 849\ 499 imes 10^{20}$	23	3	-5	$-0.510\ 254\ 294\ 237\ 837 imes 10^{-8}$
5	-8	10	$0.222\ 612\ 779\ 142\ 211 imes 10^{15}$	24	5	-4	-0.152 355 388 953 402
6	-8	12	$-0.878\ 473\ 585\ 050\ 085 imes 10^{18}$	25	5	2	$0.677\ 143\ 292\ 290\ 144 imes 10^{12}$
7	-8	14	$-0.314\ 432\ 577\ 551\ 552 imes 10^{22}$	26	5	3	$0.276\;378\;438\;378\;930 imes 10^{15}$
8	-6	8	$-0.216\ 934\ 916\ 996\ 285 imes10^{13}$	27	6	-5	$0.116\ 862\ 983\ 141\ 686 imes 10^{-1}$
9	-6	12	$0.159\ 079\ 648\ 196\ 849 imes 10^{21}$	28	6	2	$-0.301\;426\;947\;980\;171\times10^{14}$
10	-5	4	$-0.339\ 567\ 617\ 303\ 423 \times 10^3$	29	8	-8	$0.169\ 719\ 813\ 884\ 840 imes 10^{-7}$
11	-5	8	$0.884\;387\;651\;337\;836 imes 10^{13}$	30	8	8	$0.104\ 674\ 840\ 020\ 929 imes 10^{27}$
12	-5	12	$-0.843\ 405\ 926\ 846\ 418 imes 10^{21}$	31	10	-4	$-0.108\ 016\ 904\ 560\ 140 imes 10^5$
13	-3	2	$0.114\ 178\ 193\ 518\ 022 imes 10^2$	32	12	-12	$-0.990\ 623\ 601\ 934\ 295 imes 10^{-12}$
14	-1	-1	$-0.122\ 708\ 229\ 235\ 641 \times 10^{-3}$	33	12	-4	0.536 116 483 602 738 × 10 ⁷
15	-1	1	$-0.106\ 201\ 671\ 767\ 107 \times 10^3$	34	12	4	$0.226\ 145\ 963\ 747\ 881\times 10^{22}$
16	-1	12	$0.903\;443\;213\;959\;313 imes 10^{25}$	35	14	-12	$-0.488\ 731\ 565\ 776\ 210 imes 10^{-9}$
17	-1	14	$-0.693\ 996\ 270\ 370\ 852 imes 10^{28}$	36	14	-10	$0.151\ 001\ 548\ 880\ 670 imes 10^{-4}$
18	0	-3	$0.648\ 916\ 718\ 965\ 575 imes 10^{-8}$	37	14	-6	$-0.227\ 700\ 464\ 643\ 920 \times 10^5$
19	0	1	$0.718\ 957\ 567\ 127\ 851 imes 10^4$	38	14	6	$-0.781754507698846 \times 10^{28}$

i	I_i	J_i	n_i	i	I_i	J_i	n _i
1	_10	-8	$-0.415\ 652\ 812\ 061\ 591\ imes\ 10^{-54}$	21	-3	12	$0.742.705.723.302.738 \times 10^{27}$
2	-8	-12	$0.177\ 441\ 742\ 924\ 043 \times 10^{-60}$	22	-2	2	$-0.517\ 429\ 682\ 450\ 605\times 10^2$
3	-6	-12	$-0.357\ 078\ 668\ 203\ 377 \times 10^{-54}$	23	-2	4	$0.820\;612\;048\;645\;469 imes 10^7$
4	-6	-3	$0.359\ 252\ 213\ 604\ 114 imes 10^{-25}$	24	-1	-2	$-0.188\ 214\ 882\ 341\ 448 imes 10^{-8}$
5	-6	5	$-0.259\ 123\ 736\ 380\ 269 imes 10^2$	25	-1	0	$0.184\;587\;261\;114\;837 \times 10^{-1}$
6	-6	6	$0.594~619~766~193~460 \times 10^{5}$	26	0	-2	$-0.135\ 830\ 407\ 782\ 663 imes 10^{-5}$
7	-6	8	$-0.624\ 184\ 007\ 103\ 158 imes 10^{11}$	27	0	6	$-0.723\ 681\ 885\ 626\ 348 imes 10^{17}$
8	-6	10	$0.313\ 080\ 299\ 915\ 944\times 10^{17}$	28	0	10	$-0.223\ 449\ 194\ 054\ 124 imes 10^{27}$
9	-5	1	$0.105\ 006\ 446\ 192\ 036 \times 10^{-8}$	29	1	-12	$-0.111526741826431 \times 10^{-34}$
10	-5	2	$-0.192\ 824\ 336\ 984\ 852 imes 10^{-5}$	30	1	-10	$0.276\ 032\ 601\ 145\ 151 \times 10^{-28}$
11	-5	6	$0.654\ 144\ 373\ 749\ 937 imes 10^6$	31	3	3	$0.134~856~491~567~853 imes 10^{15}$
12	-5	8	$0.513\ 117\ 462\ 865\ 044 imes 10^{13}$	32	4	-6	$0.652\ 440\ 293\ 345\ 860 \times 10^{-9}$
13	-5	10	$-0.697\ 595\ 750\ 347\ 391 imes 10^{19}$	33	4	3	$0.510~655~119~774~360 imes 10^{17}$
14	-5	14	$-0.103\ 977\ 184\ 454\ 767 imes 10^{29}$	34	4	10	$-0.468\ 138\ 358\ 908\ 732\times 10^{32}$
15	-4	-12	$0.119\ 563\ 135\ 540\ 666 \times 10^{-47}$	35	5	2	$-0.760\ 667\ 491\ 183\ 279 imes 10^{16}$
16	-4	-10	$-0.436\ 677\ 034\ 051\ 655 imes 10^{-41}$	36	8	-12	$-0.417\ 247\ 986\ 986\ 821 imes 10^{-18}$
17	-4	-6	$0.926~990~036~530~639 \times 10^{-29}$	37	10	-2	$0.312\ 545\ 677\ 756\ 104\times 10^{14}$
18	-4	10	$0.587~793~105~620~748 \times 10^{21}$	38	12	-3	$-0.100\ 375\ 333\ 864\ 186 imes 10^{15}$
19	-3	-3	$0.280\ 375\ 725\ 094\ 731 imes 10^{-17}$	39	14	1	$0.247\ 761\ 392\ 329\ 058\times 10^{27}$
20	-3	10	$-0.192\ 359\ 972\ 440\ 634 imes 10^{23}$				

Table A2.2. Coefficients and exponents of the auxiliary equation $v_{3v}(p,T)$ for subregion 3v

Table A2.3. Coefficients and exponents of the auxiliary equation $v_{3w}(p,T)$ for subregion 3w

i	I_i	J_{i}	n _i	i	I_i	J_{i}	n_i
1	-12	8	$-0.586\ 219\ 133\ 817\ 016 imes 10^{-7}$	19	-1	-8	$0.237\ 416\ 732\ 616\ 644 \times 10^{-26}$
2	-12	14	$-0.894\ 460\ 355\ 005\ 526 imes 10^{11}$	20	-1	-4	$0.271\ 700\ 235\ 739\ 893 imes 10^{-14}$
3	-10	-1	$0.531\ 168\ 037\ 519\ 774 imes 10^{-30}$	21	-1	1	$-0.907\ 886\ 213\ 483\ 600 imes 10^2$
4	-10	8	0.109 892 402 329 239	22	0	-12	$-0.171\ 242\ 509\ 570\ 207 \times 10^{-36}$
5	-8	6	$-0.575\ 368\ 389\ 425\ 212 imes 10^{-1}$	23	0	1	$0.156~792~067~854~621 \times 10^3$
6	-8	8	$0.228\ 276\ 853\ 990\ 249 imes 10^5$	24	1	-1	0.923 261 357 901 470
7	-8	14	$-0.158\ 548\ 609\ 655\ 002 imes 10^{19}$	25	2	-1	$-0.597\ 865\ 988\ 422\ 577 imes10^1$
8	-6	-4	$0.329\ 865\ 748\ 576\ 503 imes 10^{-27}$	26	2	2	$0.321~988~767~636~389 \times 10^{7}$
9	-6	-3	$-0.634\ 987\ 981\ 190\ 669 \times 10^{-24}$	27	3	-12	$-0.399\ 441\ 390\ 042\ 203 \times 10^{-29}$
10	-6	2	$0.615\ 762\ 068\ 640\ 611 imes 10^{-8}$	28	3	-5	$0.493\;429\;086\;046\;981 \times 10^{-7}$
11	-6	8	$-0.961\ 109\ 240\ 985\ 747 imes 10^8$	29	5	-10	$0.812\ 036\ 983\ 370\ 565 \times 10^{-19}$
12	-5	-10	$-0.406\ 274\ 286\ 652\ 625 imes 10^{-44}$	30	5	-8	$-0.207\ 610\ 284\ 654\ 137 imes 10^{-11}$
13	-4	-1	$-0.471\ 103\ 725\ 498\ 077 \times 10^{-12}$	31	5	-6	$-0.340\ 821\ 291\ 419\ 719 imes 10^{-6}$
14	-4	3	0.725 937 724 828 145	32	8	-12	$0.542\ 000\ 573\ 372\ 233 imes 10^{-17}$
15	-3	-10	$0.187~768~525~763~682 \times 10^{-38}$	33	8	-10	$-0.856\ 711\ 586\ 510\ 214 imes 10^{-12}$
16	-3	3	-0.103 308 436 323 771 × 104	34	10	-12	$0.266\ 170\ 454\ 405\ 981 imes 10^{-13}$
17	-2	1	$-0.662\ 552\ 816\ 342\ 168 imes 10^{-1}$	35	10	-8	$0.858\ 133\ 791\ 857\ 099 imes 10^{-5}$
18	-2	2	$0.579\ 514\ 041\ 765\ 710 imes 10^3$				

i	Ii	J _i	n _i	i	Ii	J _i	n _i
1	-8	14	$0.377\ 373\ 741\ 298\ 151 imes 10^{19}$	19	4	3	$0.397~949~001~553~184 \times 10^{14}$
2	-6	10	$-0.507\ 100\ 883\ 722\ 913 imes 10^{13}$	20	5	-6	$0.100\;824\;008\;584\;757 \times 10^{-6}$
3	-5	10	$-0.103\ 363\ 225\ 598\ 860 \times 10^{16}$	21	5	-2	$0.162\ 234\ 569\ 738\ 433 imes 10^5$
4	-4	1	$0.184~790~814~320~773 \times 10^{-5}$	22	5	1	$-0.432\ 355\ 225\ 319\ 745 imes 10^{11}$
5	-4	2	$-0.924\ 729\ 378\ 390\ 945 imes 10^{-3}$	23	6	1	$-0.592\ 874\ 245\ 598\ 610 imes10^{12}$
6	-4	14	$-0.425\ 999\ 562\ 292\ 738 imes 10^{24}$	24	8	-6	$0.133\ 061\ 647\ 281\ 106 imes 10^1$
7	-3	-2	$-0.462\ 307\ 771\ 873\ 973 \times 10^{-12}$	25	8	-3	$0.157\;338\;197\;797\;544 imes 10^7$
8	-3	12	$0.107\ 319\ 065\ 855\ 767\times 10^{22}$	26	8	1	$0.258\ 189\ 614\ 270\ 853 imes 10^{14}$
9	-1	5	$0.648\ 662\ 492\ 280\ 682\times 10^{11}$	27	8	8	$0.262\;413\;209\;706\;358 \times 10^{25}$
10	0	0	$0.244\ 200\ 600\ 688\ 281 imes 10^1$	28	10	-8	$-0.920\ 011\ 937\ 431\ 142 imes 10^{-1}$
11	0	4	$-0.851\ 535\ 733\ 484\ 258 imes 10^{10}$	29	12	-10	$0.220\ 213\ 765\ 905\ 426 imes 10^{-2}$
12	0	10	$0.169\ 894\ 481\ 433\ 592 imes 10^{22}$	30	12	-8	$-0.110\ 433\ 759\ 109\ 547 imes 10^2$
13	1	-10	$0.215\ 780\ 222\ 509\ 020 \times 10^{-26}$	31	12	-5	$0.847\ 004\ 870\ 612\ 087\times 10^7$
14	1	-1	-0.320 850 551 367 334	32	12	-4	$-0.592\ 910\ 695\ 762\ 536 imes 10^9$
15	2	6	$-0.382\ 642\ 448\ 458\ 610 imes 10^{17}$	33	14	-12	$-0.183\ 027\ 173\ 269\ 660 \times 10^{-4}$
16	3	-12	$-0.275\ 386\ 077\ 674\ 421 imes 10^{-28}$	34	14	-10	0.181 339 603 516 302
17	3	0	-0.563 199 253 391 666 × 10 ⁶	35	14	-8	$-0.119\ 228\ 759\ 669\ 889 imes 10^4$
18	3	8	$-0.326\ 068\ 646\ 279\ 314 imes 10^{21}$	36	14	-6	$0.430\;867\;658\;061\;468\times10^7$

Table A2.4. Coefficients and exponents of the auxiliary equation $v_{3x}(p,T)$ for subregion 3x

Table A2.5. Coefficients and exponents of the auxiliary equation $v_{3y}(p,T)$ for subregion 3y

i	I_i	J_{i}	n _i	i	I_i	J_{i}	n _i
1	0	-3	$-0.525\ 597\ 995\ 024\ 633 imes 10^{-9}$	11	3	4	$0.705\ 106\ 224\ 399\ 834 imes 10^{21}$
2	0	1	$0.583\;441\;305\;228\;407 imes 10^4$	12	3	8	$-0.266\ 713\ 136\ 106\ 469 \times 10^{31}$
3	0	5	$-0.134\ 778\ 968\ 457\ 925 imes 10^{17}$	13	4	-6	$-0.145\ 370\ 512\ 554\ 562 imes 10^{-7}$
4	0	8	$0.118\ 973\ 500\ 934\ 212 imes 10^{26}$	14	4	6	$0.149~333~917~053~130 \times 10^{28}$
5	1	8	$-0.159\ 096\ 490\ 904\ 708 imes 10^{27}$	15	5	-2	$-0.149\ 795\ 620\ 287\ 641 imes 10^8$
6	2	-4	$-0.315\ 839\ 902\ 302\ 021 imes 10^{-6}$	16	5	1	$-0.381\ 881\ 906\ 271\ 100 imes 10^{16}$
7	2	-1	$0.496\ 212\ 197\ 158\ 239 imes 10^3$	17	8	-8	$0.724\ 660\ 165\ 585\ 797 imes 10^{-4}$
8	2	4	$0.327\ 777\ 227\ 273\ 171 imes 10^{19}$	18	8	-2	$-0.937\ 808\ 169\ 550\ 193 imes 10^{14}$
9	2	5	$-0.527\ 114\ 657\ 850\ 696 imes 10^{22}$	19	10	-5	$0.514\;411\;468\;376\;383 imes10^{10}$
10	3	-8	$0.210\ 017\ 506\ 281\ 863 imes 10^{-16}$	20	12	-8	$-0.828\ 198\ 594\ 040\ 141\times 10^5$

Table A2.6. Coefficients and exponents of the auxiliary equation $v_{3z}(p,T)$ for subregion 3z

i	I_i	J_{i}	n _i	i	I_i	J_{i}	n _i
1	-8	3	$0.244\ 007\ 892\ 290\ 650 \times 10^{-10}$	13	0	3	$0.328\ 380\ 587\ 890\ 663 imes 10^{12}$
2	-6	6	$-0.463\ 057\ 430\ 331\ 242 imes 10^7$	14	1	1	$-0.625\ 004\ 791\ 171\ 543 imes 10^8$
3	-5	6	$0.728\;803\;274\;777\;712\times10^{10}$	15	2	6	$0.803\;197\;957\;462\;023\times10^{21}$
4	-5	8	$0.327\ 776\ 302\ 858\ 856 imes 10^{16}$	16	3	-6	$-0.204\ 397\ 011\ 338\ 353 imes 10^{-10}$
5	-4	5	$-0.110\ 598\ 170\ 118\ 409 imes 10^{10}$	17	3	-2	$-0.378\ 391\ 047\ 055\ 938 imes 10^4$
6	-4	6	$-0.323\ 899\ 915\ 729\ 957 imes 10^{13}$	18	6	-6	$0.972\ 876\ 545\ 938\ 620\times 10^{-2}$
7	-4	8	$0.923\;814\;007\;023\;245\times10^{16}$	19	6	-5	$0.154\;355\;721\;681\;459\times10^2$
8	-3	-2	$0.842\ 250\ 080\ 413\ 712\times 10^{-12}$	20	6	-4	$-0.373\ 962\ 862\ 928\ 643 imes 10^4$
9	-3	5	$0.663\ 221\ 436\ 245\ 506 imes 10^{12}$	21	6	-1	$-0.682\ 859\ 011\ 374\ 572 imes10^{11}$
10	-3	6	$-0.167\ 170\ 186\ 672\ 139 imes 10^{15}$	22	8	-8	$-0.248\;488\;015\;614\;543 imes10^{-3}$
11	-2	2	0.253 749 358 701 391 × 10 ⁴	23	8	-4	$0.394\;536\;049\;497\;068 imes 10^7$
12	-1	-6	$-0.819731559610523 \times 10^{-20}$				