K. Knobloch, I. Stöcker, H.-J. Kretzschmar

University of Applied Sciences of Zittau and Görlitz, Germany Department of Technical Thermodynamics

A. Dittmann

Technical University of Dresden, Germany Department of Thermodynamics

Development of Supplementary Backward Equations *T(p,h)* and *T(p,s)* for the Critical and Supercritical Regions of Water and Steam

Contents

Introduction

Numerical Consistency Requirements

First Results

Conclusion

IAPWS Meeting, Gaithersburg MD, 2001

The Industrial Formulation IAPWS-IF97 for the Thermodynamic Properties of Water and Steam

- International Survey: Backward equations $T_3(p,h)$ and $T_3(p,s)$ are required.
- IAPWS Task Group for developing those equations was established in Prague.

Why Equations $T_3(p,h)$ and $T_3(p,s)$?

Iterative Calculation of T(p,h) Using IAPWS-IF97 Basic Equation

Two-dimensional Iteration of
$$T$$
 and ρ from:
 $p = p_3^{97}(\rho, T)$
and
 $h = h_3^{97}(\rho, T)$
 $h = h_3^{97}(\rho, T)$

Iterative Calculation of T(p,s) Using IAPWS-IF97 Basic Equation

Two-dimensional Iteration of
$$T$$
 and ρ from:
 $p = p_3^{97}(\rho, T)$
and
 $s = s_3^{97}(\rho, T)$
 $rac{1}{2}$
Derivatives of $f_3^{97}(\rho, T)$

Backward equations $T_3(p,h)$ and $T_3(p,s)$ are required to reduce computing time of process calculations.

Numerical Consistency Requirements

Approximation Method

Algorithm of Trübenbach, Willkommen, Dittmann and Kretzschmar

Basis: Regressions Analysis of Wagner

Modifications:

- Automatic generation and optimization of the bank of terms
- Optimization of the non-linear parameters
- Automatic weighting of the data points for minimizing the maximum deviation of the equation to the data
- Considering the application computing time in the process of optimizing the equation structure

Data Basis: IAPWS-IF97

Backward Equations *T*(*p*,*h*) for Region 3

Subregion 3a

$$\frac{T_{3a}(p,h)}{860K} = \sum_{i=1}^{37} n_i \cdot \left(\frac{p}{100MPa} + 0.253\right)^{l_i} \cdot \left(\frac{h}{2800 \text{ kJ} \cdot \text{kg}^{-1}} - 0.544\right)^{J_i}$$
$$l_i = -12 \dots 0 \dots + 4 \quad , \qquad J_i = 0 \dots + 32$$

Subregion 3b

$$\frac{T_{3b}(p,h)}{650K} = \sum_{i=1}^{13} n_i \cdot \left(\frac{p}{23MPa} - 0.536\right)^{l_i} \cdot \left(\frac{h}{2600 \text{ kJ} \cdot \text{kg}^{-1}} - 0.556\right)^{J_i}$$
$$l_i = 0 \dots + 7 \quad , \qquad J_i = 0 \dots + 18$$

Subregion 3c

$$\frac{T_{3c}(p,h)}{670K} = \sum_{i=1}^{12} n_i \cdot \left(\frac{p}{23MPa} - 0.634\right)^{l_i} \cdot \left(\frac{h}{3300 \text{ kJ} \cdot \text{kg}^{-1}} - 0.456\right)^{J_i}$$
$$l_i = 0 \dots + 3 \quad , \qquad J_i = 0 \dots + 6$$

Backward Equations *T*(*p*,*s*) for Region 3

Subregion 3a

$$\frac{T_{3a}(p,s)}{860K} = \sum_{i=1}^{39} n_i \cdot \left(\frac{p}{100MPa} + 0.092\right)^{I_i} \cdot \left(\frac{s}{5.2kJ \cdot kg^{-1} \cdot K^{-1}} - 0.649\right)^{J_i}$$
$$I_i = -12 \dots 0 \dots + 2 \quad , \qquad J_i = 0 \dots + 36$$

Subregion 3b

$$\frac{T_{3b}(p,s)}{650K} = \sum_{i=1}^{13} n_i \cdot \left(\frac{p}{23MPa} - 0.128\right)^{I_i} \cdot \left(\frac{s}{5.2kJ \cdot kg^{-1} \cdot K^{-1}} - 0.595\right)^{J_i}$$
$$I_i = 0 \dots + 8 \quad , \qquad J_i = 0 \dots + 20$$

Subregion 3c

$$\frac{T_{3c}(p,s)}{670 \text{ K}} = \sum_{i=1}^{10} n_i \cdot \left(\frac{p}{23 \text{ MPa}} - 0.705\right)^{l_i} \cdot \left(\frac{s}{5.3 \text{ kJ} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}} - 0.573\right)^{J_i}$$
$$I_i = 0 \dots + 3 \quad , \qquad J_i = 0 \dots + 10$$

Results for Numerical Consistencies

Equation	$ \Delta T_{max} $	$\Delta T_{\sf RMS}$
T _{3a} (p,h)	22.9 mK	11.4 mK
T _{3b} (p,h)	24.8 mK	14.1 mK
$T_{\rm 3c}(p,h)$	23.8 mK	15.2 mK
$T_{3a}(p,s)$	23.4 mK	12.0 mK
$T_{\rm 3b}(p,s)$	19.6 mK	9.3 mK
$T_{\rm 3c}(p,s)$	20.4 mK	11.5 mK

Numerical Consistency with IAPWS-IF97 Basic Equation

 $\Delta T_{tol} = 25 \text{ mK}$

Numerical Consistency with IAPWS-IF97 Basic Equation at the Critical Point

Equation	$ \Delta T $
T _{3b} (p,h)	0.43 mK
T _{3c} (p,h)	0.40 mK
T _{3b} (p,s)	0.29 mK
$T_{\rm 3c}(p,s)$	0.34 mK

 $\Delta T_{tol} = 0.49 \text{ mK}$

Computing Time in Relation to IAPWS-IF97

Measurement of the Computing Time

- Basis: IAPWS benchmark program NIFBENCH
- Specifications of the test platform:
 - Computer: PC with Pentium 4, 1500 MHz, 400 MHz front side bus
 - Operation System: Windows 2000[®]
 - Compiler: Compaq Visual Fortran 6.1[®], standard options
 - Kind of executable file: Fortran Console Application

Computing Time Ratio (CTR Value)

 $CTR = \frac{\text{Computing time using IF97 equations only}}{\text{Computing time using the new } T_3(p,h) \text{ or } T_3(p,s) \text{ equations}}$

Computing Time using $T_3(p,h)$ in Relation to IAPWS-IF97

	Calculation of <i>T</i> using		
	$T = T_3(p, h)$ Two-dimensional Iteration of		
		T and ρ from: $p = p_3^{97}(\rho, T)$	
		and $h = h_3^{97}(\rho, T)$	
Subregion	Computing Time	Computing Time ^{a)}	CTR
Subregion 3a	Computing Time 0.26 μs/call	Computing Time ^{a)} 3.94 μs/call	CTR 15.0
Subregion 3a 3b	Computing Time 0.26 μs/call 0.19 μs/call	Computing Time ^{a)} 3.94 μs/call 3.94 μs/call	CTR 15.0 21.0

Computing Time using $T_3(p,s)$ in Relation to IAPWS-IF97

	Calculation of <i>T</i> using		
	$T = T_3(p,s)$ Two-dimensional Iteration of		
		T and ρ from: $p = p_3^{97}(\rho, T)$	
		and $s = s_3^{97}(\rho, T)$	
Subregion	Computing Time	Computing Time ^{a)}	CTR
3a	0.28 μs/call	4.52 μs/call	16.0
3b	0.20 µs/call	4.49 μs/call	23.0

a) Program Package: Property Database for the Calculation of Heat Cycles and Turbines, University of Applied Sciences of Zittau and Görlitz and Technical University of Dresden, 1998 - 2001

Conclusions

- Backward equations $T_3(p,h)$ and $T_3(p,s)$ for region 3 of IAPWS-IF97 are possible for required numerical consistency of $\Delta T_{tol} = 25$ mK.
 - ⇒ Confirmation of the specifications for numerical consistency necessary
- Calculation of *T* using backward equations $T_3(p,h)$ and $T_3(p,s)$:
 - ⇒ Depending on iteration method and starting values CTR-values between 10 and 20 in comparison with IAPWS-IF97 are possible.
- For calculating further properties, the determination of *ρ* is necessary:
 ⇒ Investigations will be performed.

Final set of backward equations $T_3(p,h)$ and $T_3(p,s)$ for region 3 of IAPWS-IF97 will be presented next year.