M. Kunick, H.-J. Kretzschmar

Zittau/Görlitz University of Applied Sciences, Department of Technical Thermodynamics, Zittau, Germany
U. Gampe

Technical University of Dresden, Institute for Power Engineering, Chair of Thermal Power Machinery and Plants, Dresden, Germany

Fast Calculation of Thermodynamic Properties of Water and Steam in Process Modelling using Spline Interpolation

Agenda

- Introduction: Motivation and Aims
- Spline Interpolation of Thermodynamic Properties
- Example: Spline Function $T_{2}^{\mathrm{SPL}}(p, h)$ and Inverse Spline Function $h_{2}^{\mathrm{INV}}(p, T)$
- Computing Time comparisons with IAPWS-IF97 and TTSE
- Summary and Outlook

Introduction: Motivation and Aims

Algorithms for calculating thermodynamic properties used in process modelling have to fulfill these requirements:
\rightarrow Thermodynamic properties must be represented continuously with high accuracy
\rightarrow Numerical consistency between forward and backward functions
\rightarrow High computing speed

Current state of fast property algorithms:

\rightarrow IAPWS-IF97 contains fast fundamental equations and backward equations.
\rightarrow Table look-up methods: IAPWS adopted Tabular Taylor Series Expansion Method (TTSE) as a guideline in 2003. TTSE is not able to represent thermodynamic property functions continuously.

Further requirements of Computational Fluid Dynamics (CFD) and calculations of non-stationary processes on property calculations:
\rightarrow Extremely high numerical consistency between forward and backward functions
\rightarrow Extremely high computing speed
\rightarrow Flexible algorithm, suitable for property functions such as $p(v, h)$ and $p(v, u)$

Can table look-up methods meet these requirements?

Spline Interpolation of Thermodynamic Properties

Characteristics of spline functions:

\rightarrow Consists of piecewise defined functions (spline polynomials)
\rightarrow Continuous and smooth representation of one- or multi-dimensional functions
\rightarrow Several kinds of splines and ways to determine them are possible

Choice of spline function:

\rightarrow Demand on high computing speed leads to simple spline polynomials
\rightarrow Bi-quadratic spline polynomial can be solved in terms of its variables analytically
\rightarrow On piecewise equidistant grids simple search algorithm can be applied
\rightarrow Special data handling can be applied which enables high computing speed

Bi-quadratic polynomial: $\quad z_{i j}^{\text {spl }}\left(x_{1}, x_{2}\right)=\sum_{k=1}^{3} \sum_{l=1}^{3} a_{i j k l}\left(x_{1}-x_{i j}\right)^{k-1}\left(x_{2}-x_{2 j}\right)^{l-1}$

$$
\begin{aligned}
& z_{i j}^{\mathrm{SPL}}\left(x_{1}, x_{2}\right)=a_{i j 11}+a_{i j 21} \Delta x_{1 i}+a_{31} \Delta x_{1 i}^{2} \\
& \quad+a_{i j 12} \Delta x_{2 j}+a_{i j 22} \Delta x_{1 i} \Delta x_{2 j}+a_{32} \Delta x_{1 i}^{2} \Delta x_{2 j} \\
& \quad+a_{i j 13} \Delta x_{2 j}^{2}+a_{i j 23} \Delta x_{1 i} \Delta x_{2 j}^{2}+a_{33} \Delta x_{1 i}^{2} \Delta x_{2 j}^{2}
\end{aligned}
$$

with

$$
\Delta x_{1 i}=\left(x_{1}-x_{1 i}\right) \quad \text { and } \quad \Delta x_{2 j}=\left(x_{2}-x_{2 j}\right)
$$

Spline Interpolation of Thermodynamic Properties

Creating a spline function $z^{\text {SPL }}\left(x_{1}, X_{2}\right)$ from a given e.o.s. $z\left(x_{1}, x_{2}\right)$:
\rightarrow Calculation of a piecewise equidistant grid of nodes from a given equation of state $z\left(x_{1}, x_{2}\right)$
\rightarrow Determination of all spline coefficients for each function $z_{i j}^{\mathrm{SPL}}\left(x_{1}, x_{2}\right)$
\rightarrow Several ways are possible (depending on interpolation conditions)

Spline Interpolation of Thermodynamic Properties

Inverse spline functions:

\rightarrow Bi-quadratic polynomials can be solved analytically in terms of its variables
\rightarrow Inverse spline function:
with
$A=a_{i j 11}+\Delta x_{2 j}\left(a_{i j 22}+a_{i j 33} \Delta x_{2 j}\right) \quad B=a_{i j 21}+\Delta x_{2 j}\left(a_{i j 22}+a_{i 23} \Delta x_{2 j}\right) \quad C=a_{i j 11}+\Delta x_{2 j}\left(a_{i j 2}+a_{i j 13} \Delta x_{2 j}\right)-z$
and $\quad \Delta x_{2 j}=\left(x_{2}-x_{2 j}\right)$
\rightarrow The inverse spline function is completely numerical consistent to the spline function $z_{i j}^{\mathrm{SLL}}\left(x_{1}, x_{2}\right)$

Computing speed:

\rightarrow Mathematical operations such as square root and division are more time consuming than multiplications or additions
\rightarrow A more time consuming search algorithm is necessary to determine the sub-rectangle from given $\left(z, x_{2}\right)$
\rightarrow Therefore the computing speed of an inverse spline function is lower than the speed of the corresponding spline function

Example: Spline Function $T_{2}^{\mathrm{SPL}}(p, h)$ and Inverse Spline Function $h_{2}^{\mathrm{NVV}}(p, T)$

The p-h grid:

\rightarrow In order to reach high accuracy (5 significant figures) the grid was created as shown here:

Range	p-grid lines
$0.000611 \mathrm{MPa} \leq p \leq 0.01 \mathrm{MPa}$	100
$0.01 \mathrm{MPa} \leq p \leq 0.1 \mathrm{MPa}$	100
$0.1 \mathrm{MPa} \leq p \leq 10 \mathrm{MPa}$	100
$10 \mathrm{MPa} \leq p \leq 100 \mathrm{MPa}$	100
Range	h-grid lines
$2500.9 \mathrm{~kJ} \mathrm{~kg}^{-1} \leq h \leq 2810 \mathrm{~kJ} \mathrm{~kg}^{-1}$	50
$2810 \mathrm{~kJ} \mathrm{~kg}^{-1} \leq h \leq 4161 \mathrm{~kJ} \mathrm{~kg}^{-1}$	100

Computing Time comparisons to IAPWS-IF97 and to TTSE

\rightarrow Using the IAPWS-software NIFBENCH computing time comparisons have been carried out
Spline function $T_{2}^{\mathrm{SPL}}(p, h)$:
\rightarrow Computing times was compared to $T_{2}^{97 \mathrm{BW}}(p, h)$ and $T^{\text {TTSE }}(p, h)$
\rightarrow Computing times in $\mu \mathrm{s}$:

$T_{2}^{\text {SPL }}(p, h)$	$T_{2}^{97 \mathrm{BW}}(p, h)$	$T^{\mathrm{TTSE}}(p, h)$
0.056	0.114	0.178

\rightarrow The spline function $T_{2}^{\text {SPL }}(p, h)$ is 2 times faster than the backward equation $T_{2}^{97 \mathrm{BW}}(p, h)$
Inverse spline function $h_{2}^{\operatorname{INV}}(p, T)$:
\rightarrow Computing times was compared to $h_{2}^{\mathrm{IF97}}(p, T)$ and $h^{\mathrm{TTSE}}(p, T)$
\rightarrow Computing times in $\mu \mathrm{s}$:

$h_{2}^{\mathrm{INV}}(p, T)$	$h_{2}^{\mathrm{FP97}}(p, T)$	$h^{\mathrm{TTSE}}(p, T)$
0.202	0.242	0.237

\rightarrow The inverse spline function $h_{2}^{\mathrm{NNV}}(p, T)$ is 1.2 times faster than $h_{2}^{\mathrm{IP97}}(p, T)$
\rightarrow The inverse spline function $h_{2}^{\mathrm{INV}}(p, T)$ is completely numerically consistent to $T_{2}^{\mathrm{SPL}}(p, h)$

Summary

\rightarrow Spline functions are able to represent thermodynamic properties continuously
\rightarrow A spline function $T_{2}^{\mathrm{SPL}}(p, h)$ has been created in a first study
\rightarrow High accuracy (5 significant figures) could be achieved
$\rightarrow T_{2}^{\mathrm{SPL}}(p, h)$ is 2 times faster than the corresponding backward equation $T_{2}^{97 B \mathrm{BW}}(p, h)$
\rightarrow By solving $T_{2}^{\text {SPL }}(p, h)$ in terms of h , the inverse spline function $h_{2}^{\mathrm{INV}}(p, T)$ could be obtained \rightarrow The inverse spline function $h_{2}^{\mathrm{INV}}(p, T)$ is completely numerically consistent to $T_{2}^{\mathrm{SPL}}(p, h)$

Outlook

\rightarrow The algorithm will be modified for non-rectangular grids
\rightarrow An algorithm for grid optimization is being developed
\rightarrow Other spline functions will be investigated
\rightarrow The algorithm will be extended for mixtures
\rightarrow Software for automatic generation of spline functions will be developed
\rightarrow From a given equation of state spline functions will be generated
\rightarrow For the desired range of validity and desired accuracy a spline function will be optimized
\rightarrow Source code will be generated automatically

Thank you for paying attention.

