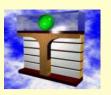


Hochschule Zittau/Görlitz (FH) University of Applied Sciences Fachgebiet Technische Thermodynamik http://thermodynamik.hs-zigr.de

- H.-J. Kretzschmar
 - I. Stöcker
 - J. Schuster
 - A. Bläser


Einsatz von Ebsilon in der Hochschulausbildung

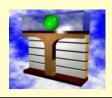
Ebsilon-Anwendertagung
Bensheim 12.-13.09.2002

Inhalt:

- 1. Weshalb Ebsilon in Ausbildung?
- 2. Studentische Arbeiten und Praktika mit Ebsilon
- 3. Ebsilon im Thermodynamischen Grundlagenpraktikum
 - 3.1 Vorbereitung
 - 3.2 Durchführung
 - 3.3 Auswertung
- 4. Weitergehende Nutzung von Ebsilon in studentischen Arbeiten

Stoffwert-Bibliotheken für Ebsilon

Weshalb Ebsilon in Ausbildung?


Moderne CAD-Software in Ausbildung

Studiengang Maschinenbau

> I-DEAS ANSYS

Studiengang Energietechnik

> AutoCAD Ebsilon

(FH) - University of Applied Sciences

Entscheidung für Ebsilon weil:

- Ausschließlich graphischer Aufbau des Schaltbildes, übersichtliche Dateneingabe

Anschaulichkeit

Eignung für Lehre

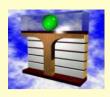
- Durchgängige Verwendung von Ebsilon im Studium möglich
 - Grundstudium → Praktikum
 - Hauptstudium → Belege
 - Studienarbeiten
 - Diplomarbeiten
- Programm mit breiter Anwendung und hoher Akzeptanz
 - → Spätere Anwendung im Beruf mit hoher Wahrscheinlichkeit gegeben

Hochschule Zittau/Görlitz Fachgebiet Technische Thermodynamik http://thermodynamik.hs-zigr.de

(FH) - University of Applied Sciences

Beschaffung von Ebsilon

2000: Ebsilon-Testversion (kostenfrei)


2001: 20 Netzwerk-Lizenzen für PC-Pool des Fachbereichs

Maschinenwesen

Ausbauziel: Lizenzen für zweiten PC-Pool

5 Einzelplatz-Lizenzen

10 Home-Use-Lizenzen für Studierende

(FH) - University of Applied Sciences

Studentische Arbeiten und Praktika mit Ebsilon

• **Grundstudium:** Praktikum (Sitzung am PC für 2 Stunden)

im Fach Technische Thermodynamik II

Studiengang Energietechnik	30 Studierende
----------------------------	----------------

• Hauptstudium: Beleg (Umfang 60 Stunden)

in Fächern Kraftwerkstechnik

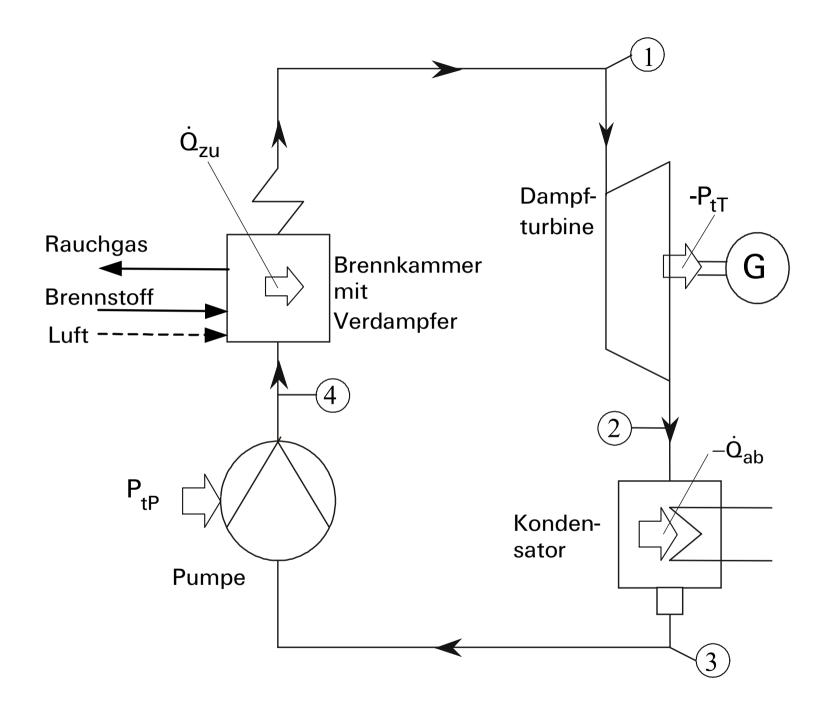
Wärmeversorgung

Energietechnik

Studienrichtung	Studierende
Wärme- und Kraftwerkstechnik	10
Regenerative Energietechnik	10
Kernenergie- und Strahlentechnik	10

Studien- und Diplomarbeiten

Inhalt: Einfacher Clausius-Rankine-Rechtsprozeß


→ Parameterstudien

Vorbereitung des Praktikums

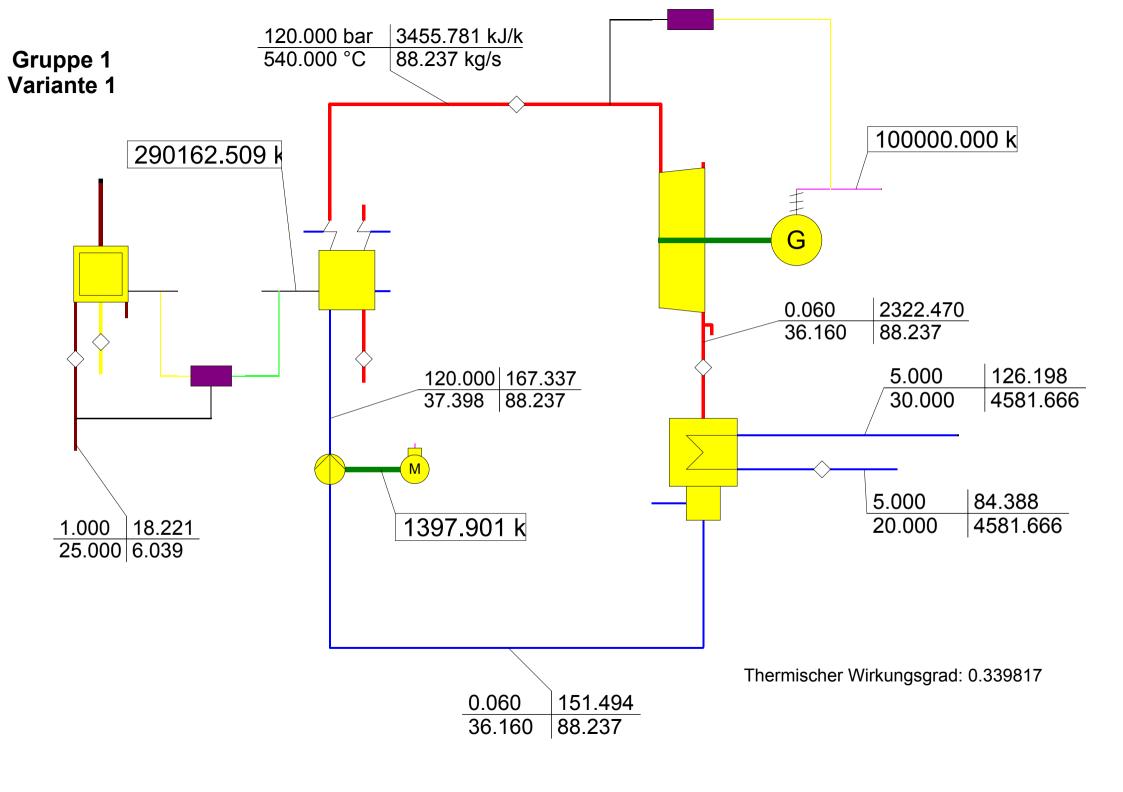
Studierende erhalten

Broschüre mit

- allgemeinen Informationen über Ebsilon
- prinzipiellen Hinweisen zur Bedienung von Ebsilon
- Beschreibung des Praktikumablaufs

- Konkrete Aufgabenstellung mit Werten für Berechnung eines einfachen Clausius-Rankine-Kreisprozesses
 - 30 Varianten für Aufgabenstellungen in 3 Gruppen

Gruppe	Unterschiede bei den gegebenen Größen		
	ṁ	P_{G}	ṁ _Β
1		х	
2			x
3	×		


Handrechnung zur Vorbereitung

- Berechnung der nicht gegebenen Größen sowie \dot{Q}_{DE} , P_{P} und η_{th}
- Darstellung des Schaltbildes und der Zustandsänderungen im h,s- und T,s- Diagramm

Durchführung des Praktikums

Sitzung am PC (ca. 2 Stunden)

- Aufbau des Schaltbildes nach einer detaillierten Anleitung (31 Seiten)
- Eingabe der gegebenen Werte gemäß Aufgabenstellung
- Nachrechnung des von "Hand" gerechneten Prozesses (Schaltbild)
- Durchführung einer Parametervariation durch Editieren der Ebsilon-Eingabedatei
 - → ausgehend von jeweiliger Variante der Aufgabenstellung werden
 2 Größen in je 5 Werten variiert

Auswertung des Praktikums

- Vergleich mit Handrechnung
- Darstellung der Parametervariation in Diagrammen, beispielsweise:

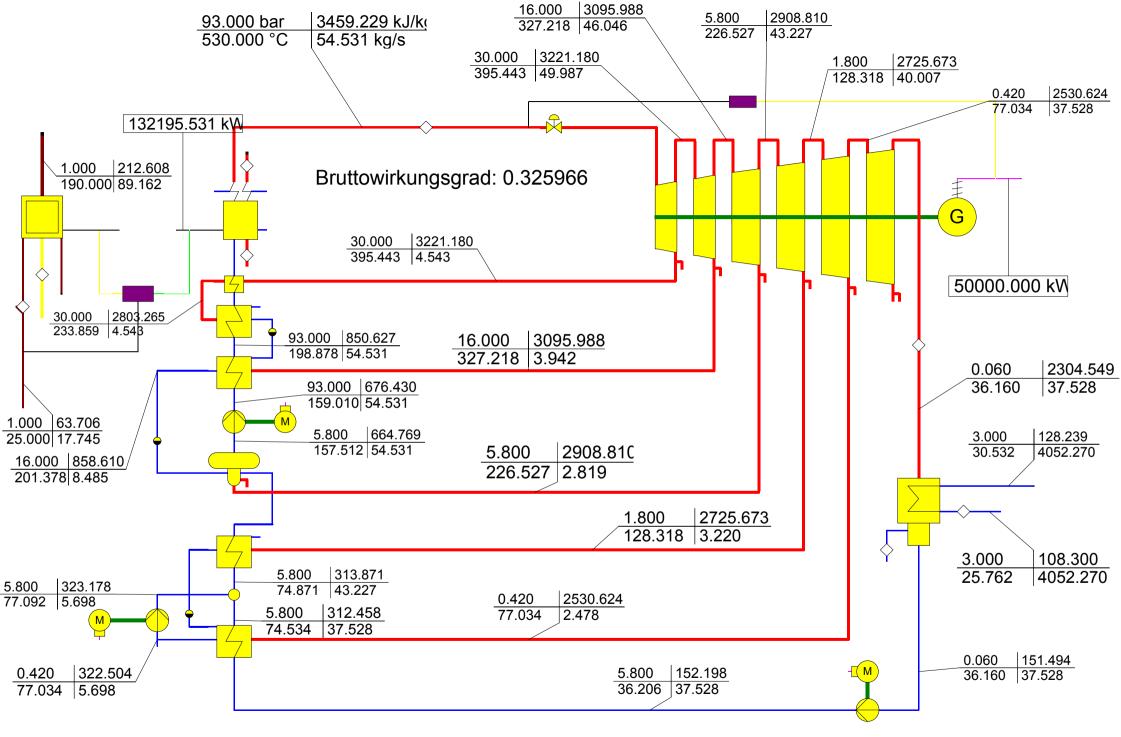
Parametervariation Aufgabe 1

Frischdampfmassestrom in Abhängigkeit von der Generatorleistung

Erfahrungen

Studierende nehmen Praktikum mit Ebsilon an !

Was wird mit einem solchen Praktikum erreicht:

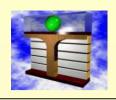

- Kennenlernen eines kommerziellen Programms
 - ... Philosophie solcher Programme
- Programmanwendung kein Blindflug
 - ... Anschaulichkeit durch graphische Bedienung
 - ... vorausgegangene Handrechnung
- "aha"-Erlebnis Programm bestätigt Handrechnung
 - ... Gefühl für das, was im Programm passiert
- Parametervariation
 - ... von Hand nicht durchführbar
 - ... Gefühl für Einfluß verschiedener Größen

Weitergehende Nutzung von Ebsilon in Belegen

- Beleg im Fach Kraftwerkstechnik (Prof. Wierick)
 - Wärmetechnische Auslegung eines Kondensationskraftwerkblockes insbesondere: Gestaltung der Vorwärmsäule

 - → davon ausgehend Variierung der Schaltung
 - Parametervariation
 - Teillastrechnungen

- weitere Belege
 - GuD- und Kombikraftwerke
 - BHKW


Belegaufgabe im Fach Kraftwerkstechnik 50-MW-Block

Stoffwertbibliotheken für Ebsilon

Wasser und Wasserdampf LibIF97

- Industrie-Formulation IAPWS-IF97 (Ebsilon 2000)
- Ergänzender Standard IAPWS-2001 Gleichungen für Umkehrfunktionen p(h,s) und T(h,s) für Wasserflüssigkeit und Wasserdampf (Ebsilon 2002)
- In Evaluierungsphase seit IAPWS-Meeting 2002 (Annahme 2003 geplant) Gleichungen für Umkehrfunktionen T(p,h), v(p,h), T(p,s) und v(p,s) für kritisches und überkritisches Gebiet
- In Vorbereitung für IAPWS-Meeting 2003 (Annahme 2004 geplant) Gleichungen v(p,T) und T(h,s), v(h,s) für kritisches und überkritisches Gebiet

Hochschule Zittau/Görlitz Fachgebiet Technische Thermodynamik http://thermodynamik.hs-zigr.de

(FH) - University of Applied Sciences

Gasgemische und Verbrennungsgase

Ideales Gasgemisch LibIDGAS

Berechnung als ideales Gemisch idealer Gase:

$$\begin{array}{c} \text{CO}_2 \\ \text{H}_2\text{O} \\ \text{N}_2 \\ \text{O}_2 \\ \text{Ar} \\ \text{SO}_2 \\ \text{CO} \\ \text{Ne} \end{array} \right) \text{ neue VDI-Richtlinie 4670}$$

Berücksichtigung von:

- $-c_p = f(T)$
- Dissoziation oberhalb 1000°C

Anwendbarkeit bis zu 10 bar und 1800°C

Ideales Gemisch realer Fluide LibHuGas

Berechnung als ideales Gemisch der realen Fluide:

CO₂ - Span und Wagner

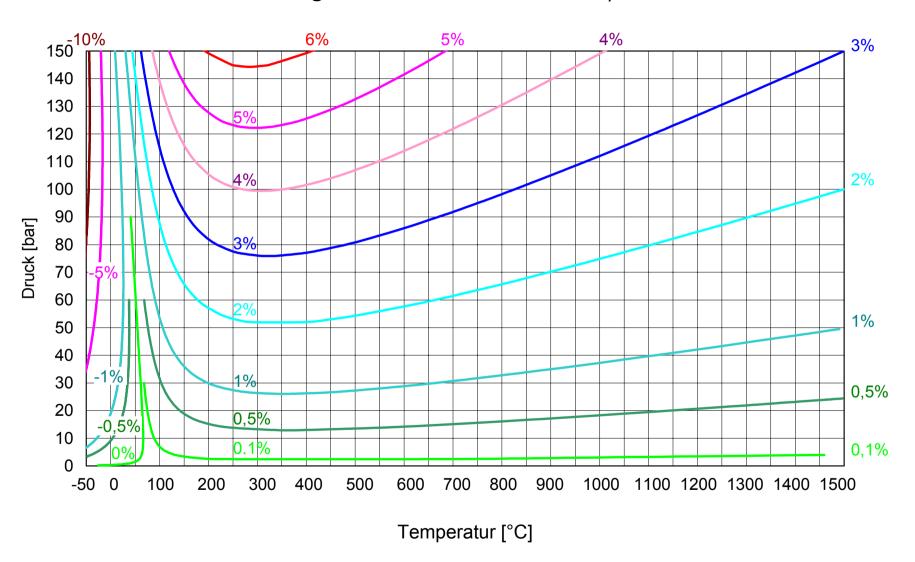
H₂O - IAPWS-95 N₂ - Span et al.

O₂ - Schmidt und Wagner

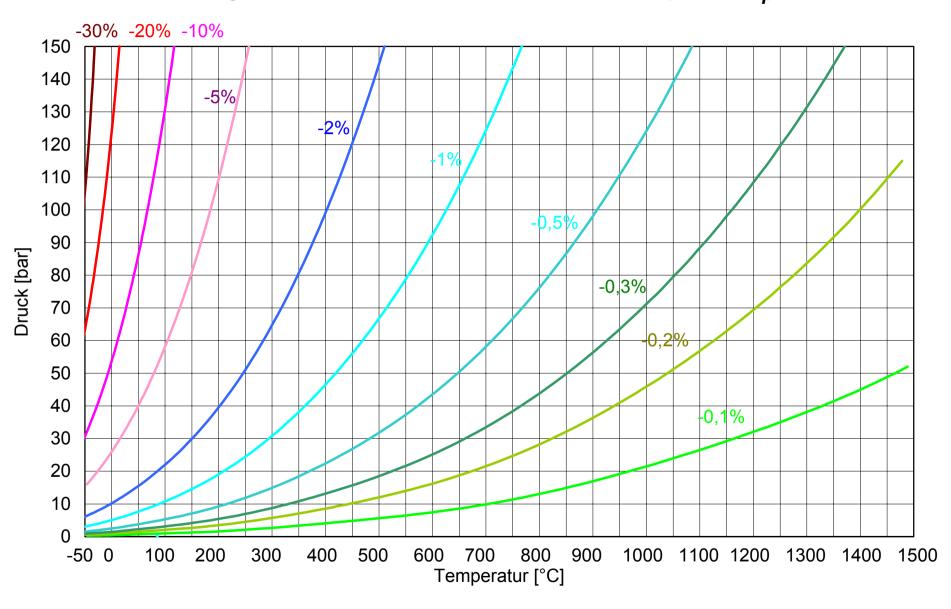
Ar - Tegeler et al.

und der idealen Gase:

 SO_2 CO wissenschaftlicher Standard Ne


Berücksichtigung von:

- $c_p = f(p.T)$ Realgasverhalten
- Dissoziation oberhalb 1000°C
- Poynting-Effekt


 $\frac{\text{Bsp.1 Dichte}}{\text{Bsp.2 } c_p}$

Anwendbarkeit bis zu 160 bar und 1800°C

Einfluß des Realgasverhaltens auf die Dichte $\boldsymbol{\rho}$ von Luft

Einfluß des Realgasverhaltens auf die isobare Wärmekapazität c_p von Luft

Hochschule Zittau/Görlitz Fachgebiet Technische Thermodynamik http://thermodynamik.hs-zigr.de

(FH) - University of Applied Sciences

Feuchte Luft

Ideales Gasgemisch LibFLUFT

Berechnung als ideales Gemisch idealer Gase

trockene Luft - VDI-Richtlinie 4670

Wasserdampf - VDI-Richtlinie 4670

Wasserflüssigkeit - IAPWS-IF97

Wassereis - Wexler et al.

Berücksichtigung von:

- $-c_p = f(T)$
- Dissoziation oberhalb 1000°C

Anwendbarkeit bis zu 10 bar und 1800°C

Ideales Gemisch realer Fluide LibHuAir

Berechnung als ideales Gemisch der realen Fluide:

trockene Luft - Lemmon et al.

Wasserdampf

und - IAPWS-IF97

Wasserflüssigkeit

Wassereis - Wexler et al.

Berücksichtigung von:

- $c_p = f(p, T)$ Realgasverhalten
- Dissoziation oberhalb 1000°C
- Poynting-Effekt

Anwendbarkeit bis zu 1000 bar und 1800°C

Schlußfolgerungen

- Ebsilon außerordentlich gut geeignet für Ausbildung
- Ebsilon ausgerüstet mit genauester Stoffwertberechnung
- Stoffwertprogrammbibliotheken verfügbar für:
 - Wasser und Wasserdampf
 - Verbrennungsgasgemische
 - feuchte Luft

für Excel® und Mathcad®