

Property Libraries

for Working Fluids for Calculating Heat Cycles, Turbines, Heat Pumps, and Refrigeration Processes

Hans-Joachim Kretzschmar, Matthias Kunick, Sebastian Herrmann, Ines Stoecker, and Mariana Nicke

Steam, Water, and Ice

Library LibIF97

- Industrial Formulation IAPWS-IF97 (Revision 2007)
- Supplementary Standards IAPWS-IF97-S01 IAPWS-IF97-S03ref IAPWS-IF97-S04 IAPWS-IF97-S05
- IAPWS Revised Advisory Note No. 3 on Thermodynamic Derivatives (2008)

Library LibICE

- Ice from IAPWS-06
- Melting line and sublimation line from IAPWS-08
- Water from IAPWS-IF97
- Steam from IAPWS-95 and IAPWS-IF97

Library LibSBTL_IF97 Library LibSBTL_95

Extremely fast property calculations according to the

IAPWS Guideline 2015
Spline-based Table Look-up Method
(SBTL)

applied to the Industrial Formulation IAPWS-IF97

and

to the Scientific Formulation IAPWS-95

for Computational Fluid Dynamics (CFD) and the simulation of non-stationary processes

Humid Combustion Gas Mixtures

Library LibHuGas

Model: Ideal mixture of the real fluids:

CO₂ - Span and Wagner (1994)

O₂ - Schmidt and Wagner (1995)

 H_2O - IAPWS-95

Ar - Tegeler et al. (1999)

N₂ - Span et. al. (2000)

and of the ideal gases:

SO₂, CO, Ne (Bücker et al., 2003)

- Consideration of:Condensation of steam
- Dissociation and Poynting effect

Library LibldGasMix

Model: Ideal gas mixture of 25 ideal gases from VDI-Guideline 4670 (2003)

Humid Air

Library LibHuAir

Model: Ideal mixture of the real fluids:

- Dry air from Lemmon et al. (2000)
- Steam, water, and ice

from IAPWS-IF97 and IAPWS-06

Consideration of:

- Condensation and freezing of steam
- Dissociation from the VDI-Guideline 4670 (2003)
- Poynting effect from ASHRAE RP-1485

ASHRAE LibHuAirProp

Model: Virial equation from ASHRAE Report RP-1485 for real mixture of the real fluids dry air and steam.

Dry Air

Including Liquid Air

Library LibRealAir

Formulation of

Lemmon et al. (2000)

Carbon Dioxide Including Dry Ice

Library LibCO2

Formulation of Span and Wagner (1994)

Seawater

Library LibSeaWa

IAPWS Industrial Formulation (2013)

Ammonia/Water - Mixtures

Library LibAmWa

IAPWS Guideline 2001 of Tillner-Roth and Friend (1998)

Ammonia

Library LibNH3

Formulation of Tillner-Roth (1993)

Water/Lithium Bromide - Mixtures

Library LibWaLi

Formulation of Kim and Infante Ferreira (2004)

Hydrogen

Library LibH2

Formulation of Leachman et al. (2009)

Propane

Library LibPropane

Formulation of

Lemmon et al. (2009)

Nitrogen

Library LibN2

Formulation of Span et al. (2000)

Siloxanes as ORC Working Fluids

C₈**H**₂₄**O**₄**Si**₄ Octamethylcyclotetrasiloxane

Library LibD4

C₁₀H₃₀O₅Si₅
Decamethylcyclopentasiloxane
Library LibD5

 $C_{14}H_{42}O_{5}Si_{6}$

Tetradecamethylhexasiloxane
Library LibMD4M

C₆H₁₈OSi₂ Hexamethyldisiloxane

Library LibMM

Formulation of Colonna et al. (2006)

C₁₂H₃₆O₆Si₆
Dodecamethylcyclohexasiloxane
Library LibD6

C₁₀H₃₀O₃Si₄
Decamethyltetrasiloxane
Library LibMD2M

C₁₂H₃₆O₄Si₅
Dodecamethylpentasiloxane

Library LibMD3M

C₈H₂₄O₂Si₃
Octamethyltrisiloxane
Library LibMDM

Formulation of Colonna et al. (2008)

R134a

Library LibR134a

Formulation of Tillner-Roth and Baehr (1994)

Iso-Butane

Library LibButane_Iso

Formulation of Bücker and Wagner (2006)

Liquid Coolants

Library LibSecRef

Liquid solutions of water with:

Ethylene glycol

Propylene glycol

Ethyl alcohol

Methyl alcohol

Potassium carbonate

Magnesium chloride

Calcium chloride

Sodium chloride

Potassium acetate

Glycerol

Formulation of the International Institute

of Refrigeration (1997)

 $C_2H_6O_2$

 $C_3H_8O_2$

C₂H₅OH

CH₃OH

 $C_3H_8O_3$

 K_2CO_3

CaCl₂

MgCl₂

NaCl

 $C_2H_3KO_2$

n-Butane

Library LibButane_n

Formulation of Bücker and Wagner (2006)

Ethanol

Library LibC2H5OH

Formulation of Schroeder et al. (2012)

Methanol

Library LibCH3OH

Formulation of de Reuck and Craven (1993)

Helium

Library LibHe

Formulation of Arp et al. (1998)

Hydrocarbons

C₁₀H₂₂ Decane

Library LibC10H22

C₅H₁₂ Isopentane

Library LibC5H12 ISO

C₅H₁₂ Neopentane

Library LibC5H12_NEO

C₅H₁₄ Isohexane

Library LibC5H14

C₇H₈ Toluene

Library LibC7H8

Formulation: Lemmon and Span (2006)

Other Fluids

CO Carbon monoxide
Library LibCO

COS Carbonyl sulfide

Library LibCOS

H₂S Hydrogen sulfide

Library LibH2S

N₂O Dinitrogen monoxide

Library LibN2O

SO₂ Sulfur dioxide

Library LibSO2

C₃H₆O Acetone

Library LibC3H6O

Formulation: Lemmon and Span (2006)