

Calculation of the Thermodynamic Properties for Working Fluids in Simulations of Power Engineering Processes Properties Calculation Libraries

Hans-Joachim Kretzschmar, Matthias Kunick, Sebastian Herrmann

Steam, Water, and Ice

Library LibIF97

- Industrial Formulation IAPWS-IF97 (Revision 2007)
- Supplementary Standards

Humid Combustion Gas Mixtures

Library LibHuGas

Model: Ideal mixture of the real fluids:

- CO₂ Span and Wagner (1994)
- O_2 Schmidt and Wagner (1995)

Humid Air

Library LibHuAir

Model: Ideal mixture of the real fluids:

- Dry air from Lemmon et al. (2000)
- Steam, water, and ice

Extremely Fast Property Calculations Using the Spline-Based Table Look-up Method (SBTL)

	IAPWS-IF97-S01, -S03ref, -S04, -S05
)	IAPWS Revised Advisory Note No. 3
	on Thermodynamic Derivatives (2008)

Library LibIF97_META

Industrial Formulation IAPWS-IF97 (Revision 2007) for metastable steam

Library LibICE

- Ice from IAPWS-06
- Melting line and sublimation line from IAPWS-08
- Water from IAPWS-IF97
- Steam from IAPWS-95 and IAPWS-IF97

Carbon Dioxide

Including Dry Ice

Library LibCO2

Formulation of

Span and Wagner (1994)

Seawater

 H_2O - IAPWS-95

- Ar Tegeler et al. (1999)
- N₂ Span et. al. (2000)

and of the ideal gases: SO₂, CO, Ne (Bücker et al., 2003) Consideration of:

Condensation of steam

Dissociation and Poynting effect

Library LibIdGasMix

Model: Ideal gas mixture of 25 ideal gases from VDI-Guideline 4670 (2003)

Ammonia/Water -

Mixtures

Library LibAmWa

IAPWS Guideline 2001 of

Tillner-Roth and Friend (1998)

Ammonia

from IAPWS-IF97 and IAPWS-06

Consideration of:

- Condensation and freezing of steam
- Dissociation from the VDI-Guideline 4670 (2003)
- Poynting effect from ASHRAE RP-1485

Library ASHRAE LibHuAirProp

Model: Virial equation from ASHRAE Report RP-1485 for real mixture of the real fluids dry air and steam.

Library LibSBTL_IF97 Library LibSBTL_95 Library LibSBTL_HuAir

For steam, water, humid air, carbon dioxide and other fluids and mixtures according IAPWS Guideline 2015 for Computational Fluid Dynamics (CFD), real-time and non-stationary simulations

Water/Lithium Bromide -Mixtures

Library LibWaLi

Formulation of Kim and Infante Ferreira (2004)

Hydrogen

Dry Air Including Liquid State Library LibRealAir

> Formulation of Lemmon et al. (2000)

Nitrogen and Oxygen Libraries LibN2 and LibO2

Library LibSeaWa IAPWS Industrial Formulation (2013)	Library LibNH3 Formulation of Tillner-Roth et al. (1993)	Library LibH2 Formulation of Leachman et al. (2009)	Libraries LibN2 and LibO2 Formulations of Span et al. (2000) and Schmidt and Wagner (1985)
Siloxanes as ORC Working Fluids C ₈ H ₂₄ O ₄ Si ₄ Octamethylcyclotetrasiloxane Library LibD4	R134a Library LibR134a Formulation of Tillner-Roth and Baehr (1994)	Propane Library LibPropane Formulation of Lemmon et al. (2009)	$\begin{array}{l} \mbox{Hydrocarbons} \\ \mbox{C}_{10}\mbox{H}_{22} \mbox{ Decane} \\ \mbox{Library LibC10H22} \\ \mbox{C}_{5}\mbox{H}_{12} \mbox{ Iso-Pentane} \\ \mbox{Library LibC5H12_ISO} \end{array}$
C ₁₀ H ₃₀ O ₅ Si ₅ Decamethylcyclopentasiloxane Library LibD5 C ₁₄ H ₄₂ O ₅ Si ₆ Tetradecamethylhexasiloxane Library LibMD4M	Iso-Butane Library LibButane_Iso Formulation of Bücker and Wagner (2006)	n-Butane Library LibButane_n Formulation of Bücker and Wagner (2006)	$\begin{array}{c} C_5H_{12} \ \mbox{Neo-Pentane} \\ \mbox{Library LibC5H12_NEO} \\ C_5H_{14} \ \mbox{Iso-Hexane} \\ \mbox{Library LibC5H14} \\ C_7H_8 \ \ \mbox{Toluene} \\ \mbox{Library LibC7H8} \end{array}$
C ₆ H ₁₈ OSi ₂ Hexamethyldisiloxane Library LibMM Formulation of Colonna et al. (2006) C ₁₂ H ₃₆ O ₆ Si ₆ Dodecamethylcyclohexasiloxane	Liquid Coolants Library LibSecRef Liquid solutions of water with $C_2H_6O_2$ Ethylene glycol	Ethanol Library LibC2H5OH Formulation of Schroeder et al. (2012)	Formulation of Lemmon and Span (2006) Other Fluids CO Carbon monoxide Library LibCO

Library LibD6

C₁₀H₃₀O₃Si₄ Decamethyltetrasiloxane Library LibMD2M

C₁₂H₃₆O₄Si₅ Dodecamethylpentasiloxane Library LibMD3M

C₈H₂₄O₂Si₃ Octamethyltrisiloxane Library LibMDM

Formulation of Colonna et al. (2008)

 $C_3H_8O_2$ Propylene glycol C_2H_5OH Ethanol CH₃OH Methanol $C_3H_8O_3$ Glycerol K_2CO_3 Potassium carbonate Calcium chloride MgCl₂ Magnesium chloride NaCl Sodium chloride $C_2H_3KO_2$ Potassium acetate $CHKO_2$ Potassium formate LiCI Lithium chloride NH_3 Ammonia Formulation of the International Institute of Refrigeration (IIR 2010)

Methanol Library LibCH3OH Formulation of de Reuck and Craven (1993) Helium Library LibHe Formulation of Arp et al. (1998) COS Carbonyl sulfide Library LibCOS H₂S Hydrogen sulfide Library LibH2S N₂O Dinitrogen monoxide Library LibN2O SO₂ Sulfur dioxide Library LibSO2 C₃H₆O Acetone Library LibC3H6O

www.thermodynamic-property-libraries.com