Eine ingenieurtechnische Viskositätskorrelation für n-Butan

S. Herrmann¹, H.-J. Kretzschmar¹, E. Vogel²

¹ Fachgebiet Technische Thermodynamik, Hochschule Zittau/Görlitz, Zittau
² Institut für Chemie, Universität Rostock, Rostock

Motivation und Aufgabenstellung

- Genaue Kenntnis thermophysikalischer Eigenschaften von industriell bedeutenden Fluiden notwendig
- Problemlose Anwendung im Ingenieursalltag gewünscht
- Ungenau: Bisherige Viskositätskorrelation nach Vogel *et al.* (1999) durch große Unsicherheiten von bis zu $\pm 6\%$ gekennzeichnet, keine Beschreibung des nahe kritischen Gebietes
- Problematisch: Referenz-Datenbank des NIST [Lemmon et al. (2013)] empfiehlt für Berechnung der Dichte von n-Butan Zustandsgleichung nach Bücker und Wagner (2006), aber: Vogel et al. nutzten Zustandsgleichung nach Younglove und Ely (1987)
- Neue Daten: Verbesserung der Datensituation in größeren fluiden Bereichen und auch im nahe kritischen Gebiet durch neue präzise Viskositätsmesswerte von Herrmann und Vogel (2015) mit einem Schwingdrahtviskosimeter
- Kritische Erhöhung: Geeignete Terme für Erhöhung der Viskosität im kritischen und nahe kritischen Gebiet von Vogel et al. (2015) für Ethan sowie von Vogel und Herrmann (2016) für Propan veröffentlicht

Neue und neu bewertete experimentelle Daten

- Herrmann und Vogel (2015)
 Sieben Isothermen bei 298,15, 323,15, 348,15, 373,15, 423,15, 428,15 und 448,15 K
- Küchenmeister und Vogel (1998, neu bewertet 2015)
 14 Datenpunkte im Limit von Nulldichte zwischen 298 und 626 K

Gleichung der neuen Korrelation

$$\frac{\eta_{\mathsf{Kor}}(T,\rho)}{\mu \mathsf{Pa} \; \mathsf{s}} = \sum_{i=1}^{10} A_i \tau^{t_i} \delta^{d_i} + \sum_{i=11}^{13} A_i \tau^{t_i} \delta^{d_i} \, \mathsf{e}^{-\delta} + \sum_{i=14}^{15} A_i \tau \delta \, \mathsf{e}^{-\beta_i (\delta-1)^2 - \varepsilon_i |\tau-1|}$$

 $\to \eta \dots$ Viskosität; $T \dots$ Temperatur; $\rho \dots$ Dichte; $A_i \dots$ Koeffizienten; $\tau = T_c/T$; $\delta = \rho/\rho_c$; t_i , d_i , β_i , $\varepsilon_i \dots$ Parameter

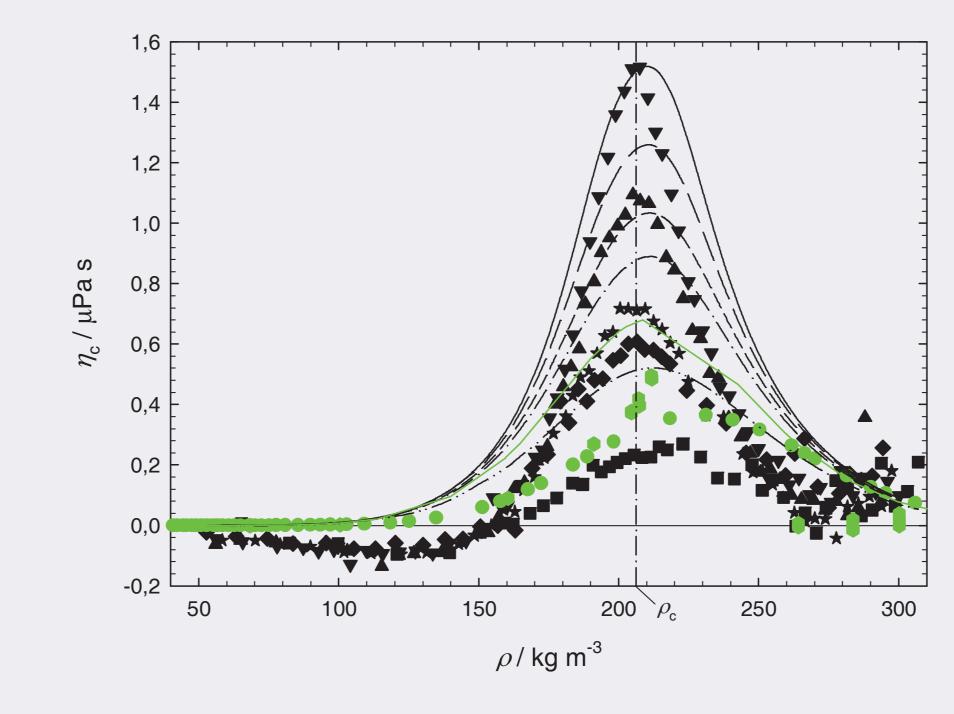
Vorgehen bei der Erstellung der Viskositätskorrelation

Nutzung des Strukturoptimierungsverfahrens nach Setzmann und Wagner (1989)

• Termvorrat für Limit von Nulldichte und fluides Gebiet

$$\frac{\eta_{0,\text{Terme}}(T)}{\mu \text{Pa s}} = \sum_{i=0}^{-8} A_{0,i} \tau^{i} \quad \text{Ergebnis} : A_{0,0}, A_{0,-1}, A_{0,-6}, A_{0,-7}$$
(2)

$$\frac{\eta_{\text{Terme}}(T,\rho)}{\mu \text{Pa s}} = \frac{\eta_{0}(T)}{\mu \text{Pa s}} A_{0} + \sum_{i=0}^{8} \sum_{j=1}^{20} A_{ij} \tau^{i} \delta^{j} + \sum_{k=0}^{5} \sum_{l=1}^{5} A_{kl} \tau^{k} \delta^{l} e^{-\delta}
+ \sum_{m=0}^{1} A_{m} \tau \delta \mu_{m} e^{-\beta_{m}(\delta - \gamma_{m})^{2} - \varepsilon_{m} |\tau - \zeta_{m}|}$$
(3)


- Koeffizienten und Parameter
 - A_i sind Koeffizienten, eta und arepsilon sind Parameter, $\mu=\gamma=\zeta=1$
 - Reduzierte Größen: $\tau = T_{\rm c}/T$ und $\delta = \rho/\rho_{\rm c}$ mit $T_{\rm c}, \ \rho_{\rm c} \dots$ Temperatur und Dichte am kritischen Punkt
- Theorie der kritischen Erhöhung der Viskosität
 - Grundlage ist vereinfachter Ansatz nach Bhattacharjee *et al.* $(1981) \rightarrow$ auch für aktuelle IAPWS-Viskositätskorrelation von Wasser (2009) verwendet:

$$\eta_{c} = \eta_{g}[\exp(z_{\eta}Y) - 1] \tag{4}$$

- $-\eta_{\rm c}$...kritische Erhöhung der Viskosität; $\eta_{\rm g}$...Grundbeitrag der Viskosität; z_{η} ...universeller kritischer Exponent; Y...Übergangsfunktion
- \rightarrow Terme für kritische Erhöhung analog theoretischem Ansatz

Kritische Erhöhung in Theorie und Experiment

• Kritische Erhöhung der Viskosität für Ethan und n-Butan

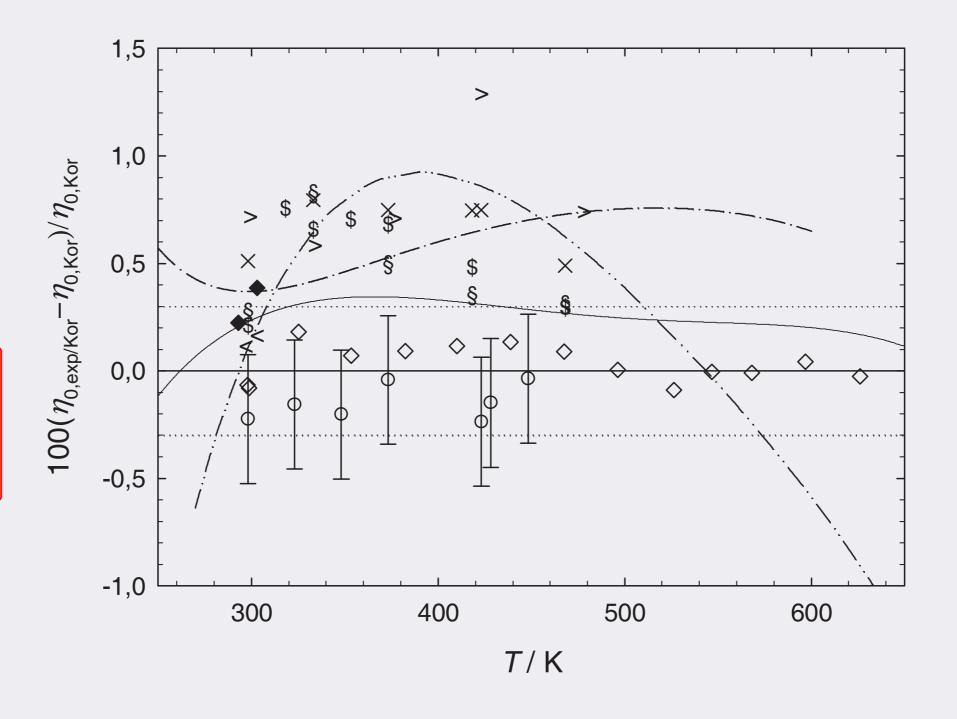
1,5

1,0

1,0

0,5

0,5


0 100 200 Pc 300 400 500

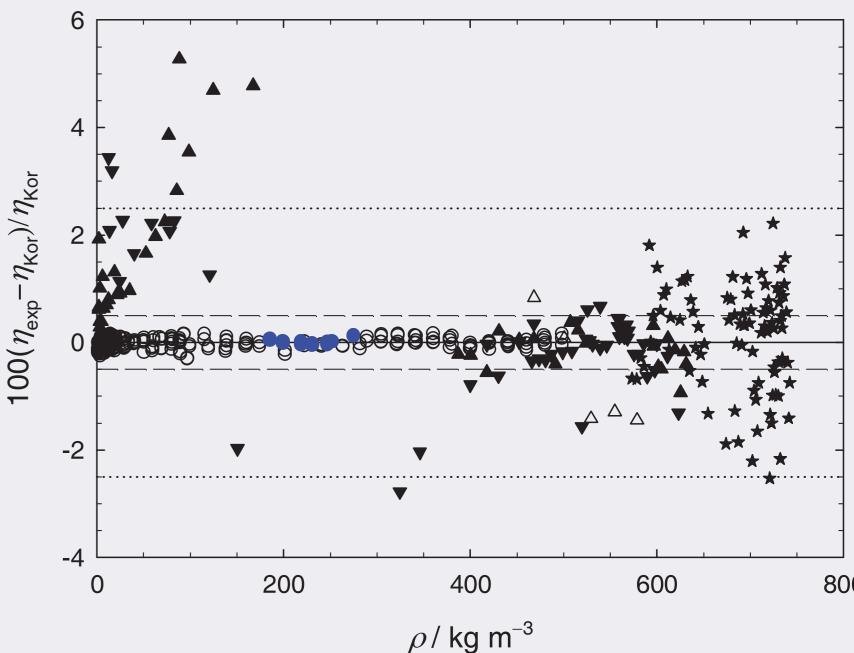
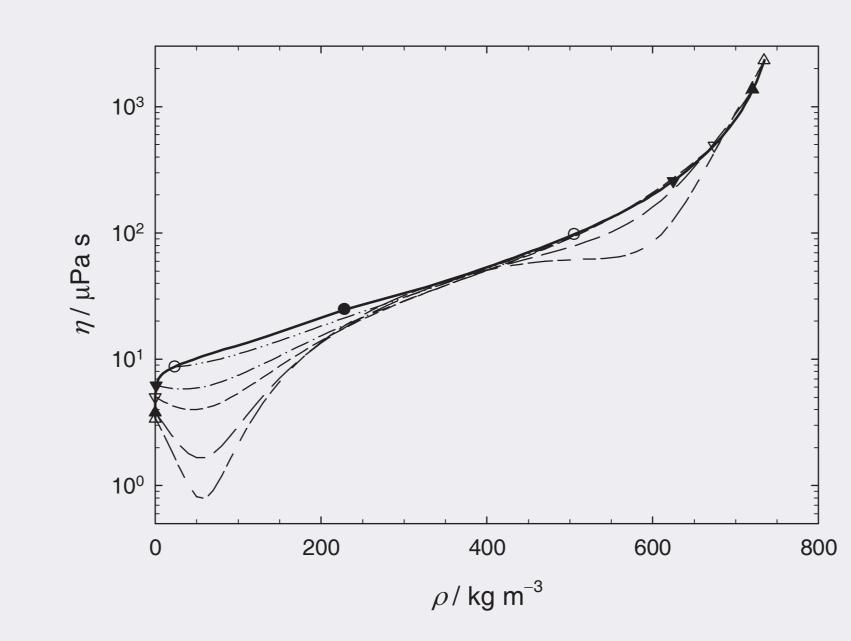

Abb. 1: Vergleich der kritischen Erhöhung der Viskosität η_c für Ethan, abgeleitet aus den experimentellen Daten von Iwasaki und Takahashi (1981) sowie von Seibt *et al.* (2011), mit theoretisch berechneten Werten nach Bhattacharjee *et al.* (1981) in Abhängigkeit von der Dichte ρ . Experimentelle Daten: Iwasaki und Takahashi: ▼, 305,64 K; ▲, 305,84 K; ★, 306,14 K; ♠, 306,44 K; ■, 308,14 K. Seibt *et al.*: ●, 307,15 K. Theoretisch berechnete Werte: —, 305.64 K; —, 305.84 K; —, 306.44 K; —, 307.15 K; —, 308.14 K. $\rho_c = 228,0 \text{ kg m}^{-3}$.

Abb. 2: Vergleich neuer experimenteller Viskositätsdaten von Herrmann und Vogel (2015) in Abhängigkeit von der Dichte mit Werten, die mit einer vorläufigen Korrelation gemäß Gleichung (3), aber **ohne** Terme für die kritische Erhöhung, für n-Butan berechnet wurden. Als primär eingestufte Daten: <, 298,15 K; \triangle , 323,15 K; ∇ , 348,15 K; \bigstar , 373,15 K; \bigcirc , 423,15 K; \diamondsuit , 428,15 K; \square , 448,15 K. Durch das nahe kritische Gebiet geprägte, für die vorläufige Korrelation nicht als primär betrachtete Daten: \blacklozenge , 428,15 K. $\rho_c = 228,0$ kg m $^{-3}$.

Bewertung der neuen Viskositätskorrelation

 Vergleich experimenteller Viskositätsdaten und von Werten früherer Korrelationen mit Werten, die mit der neuen Viskositätskorrelation für n-Butan berechnet wurden



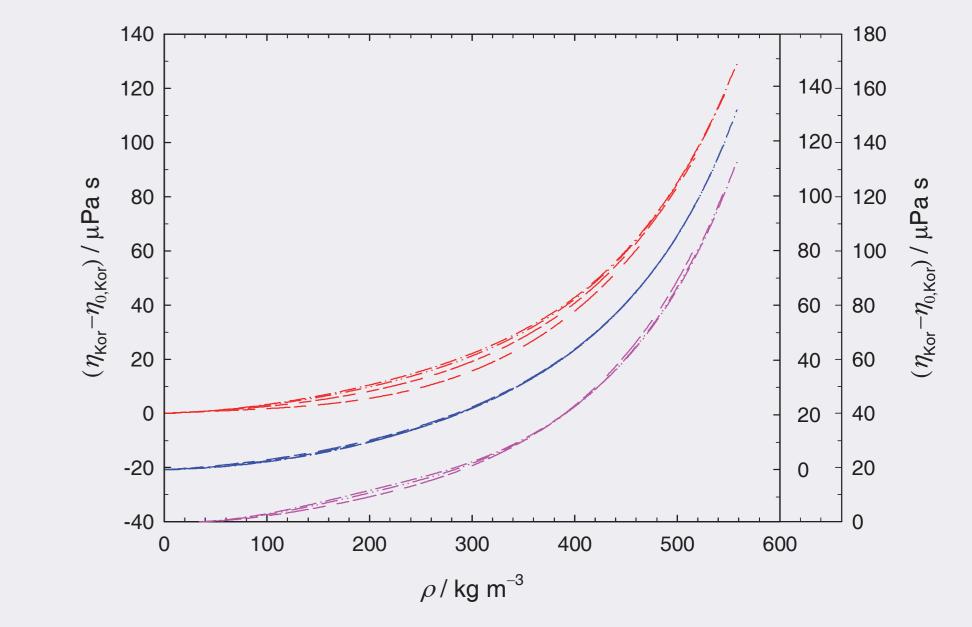


Abb. 3: Vergleich experimenteller Viskositätsdaten im Limit von Nulldichte und bei geringen Drücken sowie von Korrelationen des Schrifttums in Abhängigkeit von der Temperatur mit Werten, die mittels Gleichung (1) für n-Butan berechnet wurden. Nulldichte: ♠, Kestin und Yata (1968); ♦, Küchenmeister und Vogel (2015); O, Herrmann und Vogel (2015), Fehlerbalken: ±0,3 %. Atmosphärendruck: <, Kestin *et al.* (1971); >, Kestin *et al.* (1977); §, Abe *et al.* (1978); x, Abe *et al.* (1979a); \$, Abe *et al.* (1979b). Korrelationen: -·-, Younglove und Ely (1987); —, Vogel *et al.* (1999); -··-, Quiñones-Cisneros und Deiters (2006).

Abb. 4: Vergleich der primären experimentellen Viskositätsdaten in Abhängigkeit von der Dichte mit Werten, die mittels Gleichung (1) für n-Butan berechnet wurden. ▼, Dolan *et al.* (1963), Kapillarviskosimeter; ▲, Carmichael und Sage (1963), Rotierender Zylinder; △, Swift *et al.* (1960), Fallender Zylinder; ★, Diller und van Poolen (1985), Oszillierender Quarzzylinder; O, Herrmann und Vogel (2015), Schwingdrahtviskosimeter; ○, Herrmann und Vogel, 428,15 K, durch das nahe kritische Gebiet geprägte (vgl. Abb. 2) und für die endgültige Korrelation als primär betrachtete Daten.

• Untersuchungen des Verhaltens im Zweiphasengebiet und Konsistenz verschiedener Isothermen

Abb. 5: Berechnete Viskositätswerte im Zweiphasengebiet für n-Butan gemäß Gleichung (1), dargestellt für Isothermen in Abhängigkeit von der Dichte. lacktriangle, Kritischer Punkt [$T_c = 425,125 \, \text{K}$ und $\rho_c = 228,0 \, \text{kg m}^{-3}$ nach Bücker und Wagner (2006)]; \triangle , Tripelpunkt. Grenzkurven der Viskosität: $\overline{}$, gesättigter Dampf und gesättigte Flüssigkeit. $\triangle - \overline{} - \overline{}$, 150 K; $\nabla - \overline{}$, 200 K; $\nabla - \overline{}$, 250 K; $O - \overline{}$, 350 K.

Abb. 6: Berechnete Werte für die Residualviskosität $(\eta_{\text{Kor}} - \eta_{0,\text{Kor}})$ für n-Butan bei Temperaturen zwischen 430 K und 600 K in Abhängigkeit von der Dichte. $-\cdot -$, 430 K; $-\cdot -$, 450 K; - -, 500 K; - -, 600 K. Linke Ordinate: Viskositätskorrelation nach Vogel *et al.* (1999). Rechte Ordinate links: Viskositätskorrelation gemäß Gleichung (1). Rechte Ordinate rechts: Viskositätskorrelation nach Quiñones-Cisneros und Deiters (2006), nur bis 500 K gültig.

Schrifttum

Abe, Y.; Kestin, J.; Khalifa, H. E.; Wakeham, W. A.: Physica 93A, 155–170 (1978). Abe, Y.; Kestin, J.; Khalifa, H. E.; Wakeham, W. A.: Ber. Bunsenges. Phys. Chem. 83, 271–276 (1979a). Abe, Y.; Kestin, J.; Khalifa, H. E.; Wakeham, W. A.: Physica 97A, 296–305 (1979b). Bhattacharjee, J. K.; Ferrell, R. A.; Basu, R. S.; Sengers, J. V.: Phys. Rev. A 24, 1469–1475 (1981). Bücker, D.; Wagner, W.: J. Phys. Chem. Ref. Data 35, 929–1019 (2006). Carmichael, L. T.; Sage, B. H.: J. Chem. Eng. Data 8, 612–616 (1963). Diller, D. E.; van Poolen, L. J.: Int. J. Thermophys. 6, 43–62 (1985). Dolan, J. P.; Starling, K. E.; Lee, A. L.; Eakin, B. E.; Ellington, R. T.: J. Chem. Eng. Data 8, 396–399 (1963). Herrmann, S.; Vogel, E.: J. Chem. Eng. Data 60, 3703–3720 (2015). Iwasaki, H.; Takahashi, M.: J. Chem. Phys. 74 1930–1943 (1981). Kestin, J.; Yata, J.: J. Chem. Phys. 49, 4780–4791 (1968). Kestin, J.; Ro, S. T.; Wakeham, W. A.: Trans. Faraday Soc. 67, 2308–2313 (1971). Kestin, J.; Khalifa, H. E.; Wakeham, W. A.: J. Chem. Phys. 66, 1132–1134 (1977). Küchenmeister, C.; Vogel, E.: Int. J. Thermophys. 19, 1085–1097 (1998), neu bewertet in: Herrmann, S.: Fortschr.-Ber. VDI, Reihe 6, Nr. 615, VDI-Verlag: Düsseldorf (2015). Lemmon, E. W.; Huber, M. L.; McLinden, M. O.: Standard Reference Data Program, National Institute of Standards and Technology, Gaithersburg (2013). Quiñones-Cisneros, S. E.; Deiters, U. K.: J. Phys. Chem. B 110, 12820–12834 (2006). Seibt, D.; Voß, K.; Herrmann, S.; Vogel, E.; Hassel, E.: J. Chem. Eng. Data 56, 1476–1493 (2011). Setzmann, U.; Wagner, W.: Lehrstuhl für Thermodynamik, Ruhr-Universität Bochum (1989). Swift, G. W.; Lohrenz, J.; Kurata, F.: AlChe J. 6, 415–419 (1960). Vogel, E.; Küchenmeister, C.; Bich, E.: High Temp.-High Pressures 31, 173–186 (1999). Vogel, E.; Span, R.; Herrmann, S.: J. Phys. Chem. Ref. Data 44, 043101 (2015). Vogel, E.; Herrmann, S.: J. Phys. Chem. Ref. Data 44, 043101