

ZITTAU/GÖRLITZ

University of Applied Sciences Department of Technical Thermodynamics www.thermodynamics-zittau.de

H.-J. Kretzschmar, I. Stöcker, M. Kunick, S. Herrmann, M. Nicke

Property Libraries

for Water and Steam, and other Working Fluids for Calculating Heat Cycles, Turbines, Heat Pumps, and Refrigeration Processes

Steam, Water, and Ice

Library LibIF97

- Industrial Formulation IAPWS-IF97 (Revision 2007)
- Supplementary Standards IAPWS-IF97-S01 IAPWS-IF97-S03ref IAPWS-IF97-S04 IAPWS-IF97-S05
- IAPWS Revised Advisory Note No. 3 on Thermodynamic Derivatives (2008)

Library LibICE

- Ice from IAPWS-06
- Melting line and sublimation line from IAPWS-08
- Water from IAPWS-IF97
- Steam from IAPWS-95 and IAPWS-IF97

Humid Combustion Gas Mixtures

Library LibHuGas

Model: Ideal mixture of the real fluids:

CO₂ - Span and Wagner (1994) - Schmidt and Wagner (1995)

O₂ - Schmidt an H₂O - IAPWS-95

- Tegeler et al. (1999)

- Span (2000)

and of the ideal Gases:

SO₂, CO, Ne (Bücker et al., 2003)

Consideration of:

- Condensation of steam
- Dissociation and poynting effect

Library LibIDGAS

Model: Ideal gas mixture from VDI-Guideline 4670

Humid Air

Library LibHuAir

Model: Ideal mixture of the real fluids:

- Dry air from Lemmon et al. (2000)
- Steam, water, and ice from IAPWS-IF97 and IAPWS-06
 - Consideration of:
- Condensation and freezing
- Dissociation from VDI-Guideline 4670 (2003)

of steam

 Poynting effect from ASHRAE RP-1485 (2009)

Ideal **Gas Mixtures**

Library LibldGasMix

Model: Ideal mixture of the ideal gases:

Methane SO₂ Ne Ethane H₂ H₂S Ethylene N_2 ОН Propylene 0, CO He Propane CO n-Butane Air NΗ₃ Isobutane NO Benzene Methanol

> Consideration of: Dissociation from VDI-Guideline 4670 (2003)

Carbon Dioxide including Dry Ice

Library LibCO2

Formulation of Span and Wagner (1994)

Seawater

Library LibSeaWa

IAPWS-Formulation of Feistel (2008) and IAPWS-IF97

Ammonia/Water -**Mixtures**

Library LibAmWa

IAPWS Guideline 2001 of Tillner-Roth and Friend (1998)

Ammonia

Library LibNH3

Formulation of Tillner-Roth (1995)

Water/Lithium Bromide -**Mixtures**

Library LibWaLi

Formulation of Kim and Infante Ferreira (2004)

Hydrogen

Library LibH2

Formulation of Leachman et al. (2007)

Propane

Library LibPropane

Formulation of

Lemmon et al. (2007)

Nitrogen

Library LibN2

Formulation of Span et al. (2000)

Siloxanes as ORC Working Fluids

C₈H₂₄O₄Si₄

Octamethylcyclotetrasiloxane

Library LibD4

 $C_{10}H_{30}O_5Si_5$

Decamethylcyclopentasiloxane

Library LibD5

 $\mathbf{C_{14}H_{42}O_{5}Si_{6}}$

Tetradecamethylhexasiloxane

Library LibMD4M

C₆H₁₈OSi₂

Hexamethyldisiloxane

Library LibMM

Formulation of Colonna et al. (2006)

 $\mathbf{C_{12}H_{36}O_6Si_6}$

Dodecamethylcyclohexasiloxane

Library LibD6

C₁₀H₃₀O₃Si₄

Decamethyltetrasiloxane

Library LibMD2M

 $C_{12}H_{36}O_4Si_5$

Dodecamethylpentasiloxane

Library LibMD3M

 $\mathbf{C_8H_{24}O_2Si_3}$

Octamethyltrisiloxane

Library LibMDM

Formulation of Colonna et al. (2008)

R134a

Library LibR134a

Formulation of

Tillner-Roth and Baehr (1994)

Iso-Butane

Library LibButane_Iso

Formulation of Bücker et al. (2003)

Liquid Coolants

Library LibSecRef

Liquid solutions of water with:

Ethylene glycol

Propylene glycol

Ethyl alcohol

Methyl alcohol

Potassium carbonate

Magnesium chloride

Calcium chloride

Sodium chloride

Potassium acetate

Glycerol

Formulation of the International Institute

of Refrigeration (1997)

C₂H₆O₂

C₃H₈O₂

C₂H₅OH

CH₃OH

C₃H₈O₃

K2CO3

CaCl₂

MgCl₂

NaCl

C₂H₃KO₂

n-Butane

Library LibButane n

Formulation of Bücker et al. (2003)

Ethanol

Library LibC2H5OH

Formulation of Schroeder et al. (2012)

Methanol

Library LibCH3OH

Formulation of de Reuck and Craven (1993)

Helium

Library LibHe

Formulation of Arp et al. (1998)

Dry Air including Liquid Air

Library LibRealAir

Formulation of Lemmon et al. (2000)

Hydrocarbons

C₁₀H₂₂ Dekane

Library LibC10H22

C₅H₁₂ Isopentane

Library LibC5H12_ISO C₅H₁₂ Neopentane

Library LibC5H12_NEO C₅H₁₄ Isohexane

Library LibC5H14

C7H8 Toluene Library LibC7H8

Formulation: Lemmon and Span (2006)

Other Fluids

CO Carbon monoxide

Library LibCO COS Carbonyl sulfide

Library LibCOS

H₂S Hydrogen sulfide

Library LibH2S

N₂O Dinitrogen monoxide

Library LibN2O SO, Sulfur dioxide

Library LibSO2

C₃H₆O Acetone

Library LibC3H6O

Formulation: Lemmon and Span (2006)