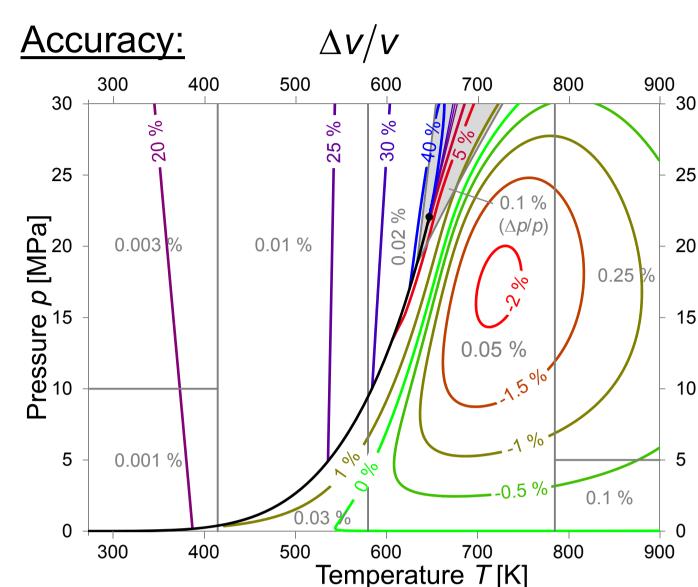


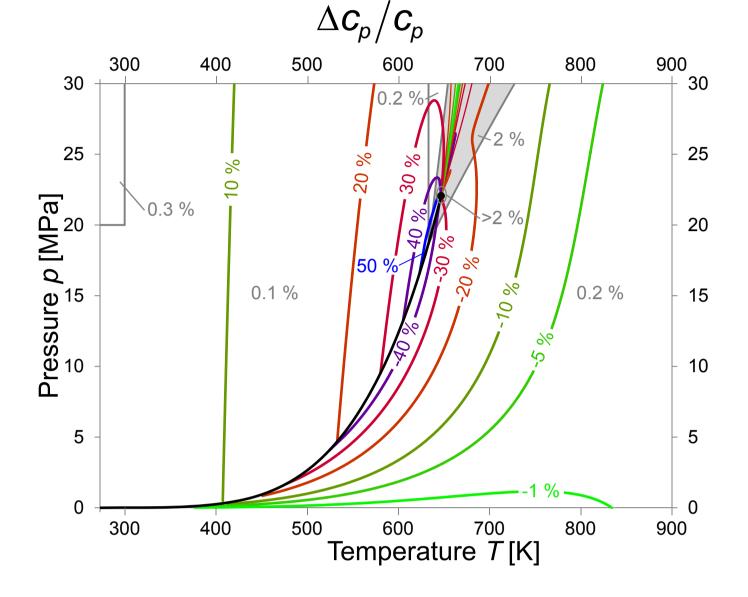
ZITTAU/GÖRLITZ UNIV. OF APPL. SCIENCES, FACULTY OF MECHANICAL ENGINEERING, **DEPT. OF TECHNICAL THERMODYNAMICS**

The IAPWS Guideline on the Fast Calculation of Steam and Water Properties with the Spline-Based Table Look-Up Method (SBTL)

Matthias Kunick, Hans-Joachim Kretzschmar, Ray Berry, Richard Martineau, and Uwe Gampe

Motivation and Objectives


Problem Statement:


- > Deviations in calculated fluid properties lead to inaccurate mass, energy, and entropy → Property calculation algorithms need to be very accurate. balances.
- > Fluid properties are calculated extremely often, which consumes the majority of the → Property functions need to be extremely fast. computing time.
- > Solvers require continuity and numerical consistency of the equations to be solved. → Property functions need to be continuous and consistent.

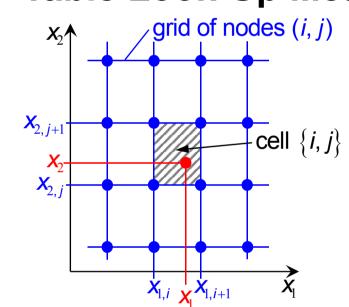
Real Fluid Properties in Process Simulations (example: water and steam):

> Equations of State (EOS): • Cubic EOS, e.g., Peng-Robinson EOS (PR-EOS)

• Fundamental EOS, e.g., IAPWS-95 [1] or IAPWS-IF97 [2]

Colored contours: deviations of PR-EOS from IAPWS-95 Gray figures: uncertainties of IAPWS-95 (those of IAPWS-IF97 are slightly higher)

Computing-Time Ratio (CTR):


$$CTR = \frac{\text{Comp. Time of IAPWS-IF97 (-95)}}{\text{Comp. Time of PR-EOS}}$$

Phase/region tests are not included in these CTR values and increase the computing times even further!

	IAPWS-IF97 Region			
Function	1 (liquid)	2 (vapor)		
p(v,u)	4.8 (88)	9.0 (114)		
T(v,u)	4.8 (91)	9.3 (115)		
T(p,h)	0.41 a) (23)	0.60 a) (43)		
<i>v</i> (<i>p</i> , <i>h</i>)	0.48 a) (23)	0.91 a) (43)		

a) IAPWS-IF97 backward equation and one Newton step

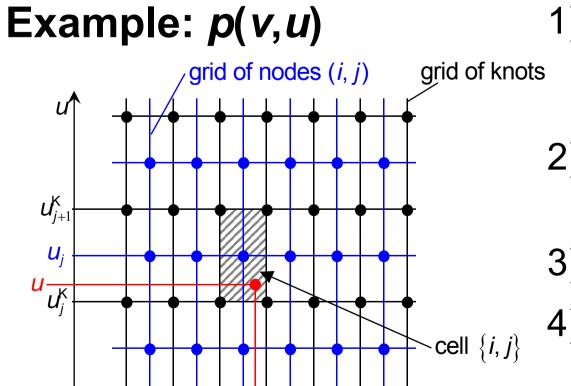
Table Look-Up Methods (interpolation from tabulated values):

Calculation of any property $z(x_1,x_2)$:

- Discrete values $z_{ij}(x_{1,i},x_{2,j})$ are calculated at the nodes (i,j) from an equation of state and stored in a look-up table.
- During the process simulation, the cell {i,j} in the grid of nodes is to be determined and $z(x_1,x_2)$ is interpolated.

Accuracy and computing speed depend on the structure of the grid of nodes and the applied interpolation algorithm.

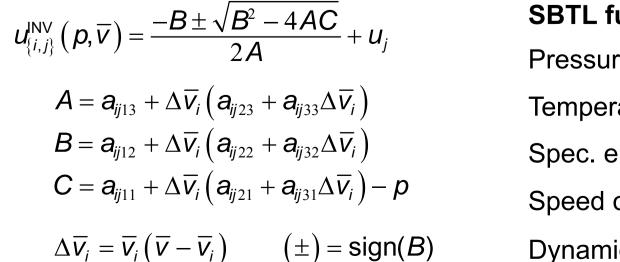
Shortcomings of frequently applied methods:

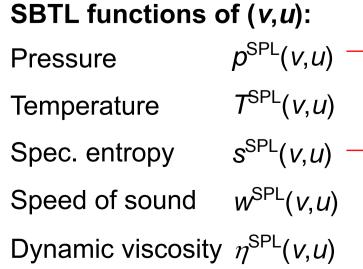

- Nodes are often clustered to consider the nonlinear behavior of the fluid property function, which leads to computationally intensive cell search algorithms.
- Most frequently applied property functions are often calculated from inverse functions, rather than from explicit forward functions.
- Bi-linear interpolation cannot provide continuous 1st derivatives.
- Bi-cubic interpolation leads to computationally intensive inverse functions.

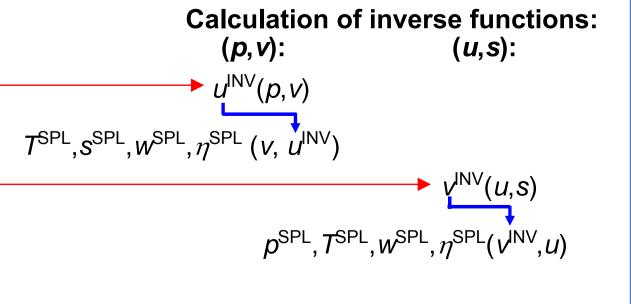
Objectives of this Project:

Development of new table look-up algorithms that overcome the shortcomings outlined above and provide: • fast and accurate property functions with cont. 1st derivatives

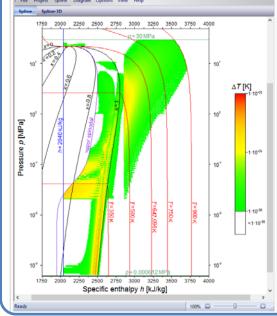
fast and numerically consistent inverse functions

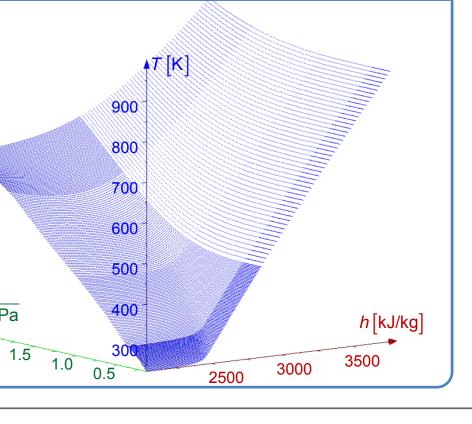

Spline-Based Table Look-up Method (SBTL)




- 1) Variable transformations (e.g., $v \rightarrow \overline{v}$) to:
 - enhance accuracy (linearization)
 - reshape the range of state
- 2) Definition of a rectangular, piecewise equidistant grid of nodes (fast cell search algorithm)
- 3) Definition of cells in the grid of knots
- 4) Calculation of all coefficients a_{iikl} of the bi-quadratic spline-polynomial (continuous 1st derivatives):

$$p_{\{i,j\}}(\overline{v},u) = \sum_{k=1}^{3} \sum_{l=1}^{3} a_{ijkl} (\overline{v} - \overline{v}_i)^{k-1} (u - u_j)^{l-1}$$


Inverse Functions, e.g., *u*(*p*, *v*):



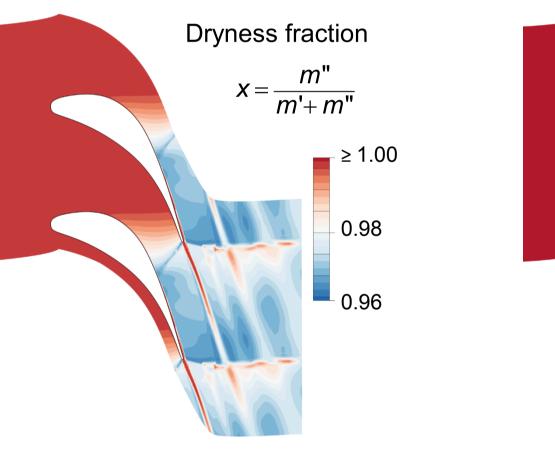
Software FluidSplines: > Generation of SBTL functions for any fluid,

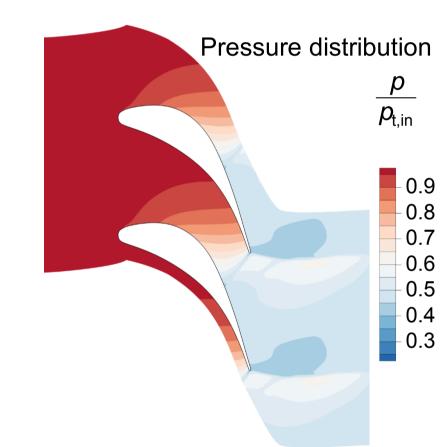
- optimized for: specified range of validity desired accuracy

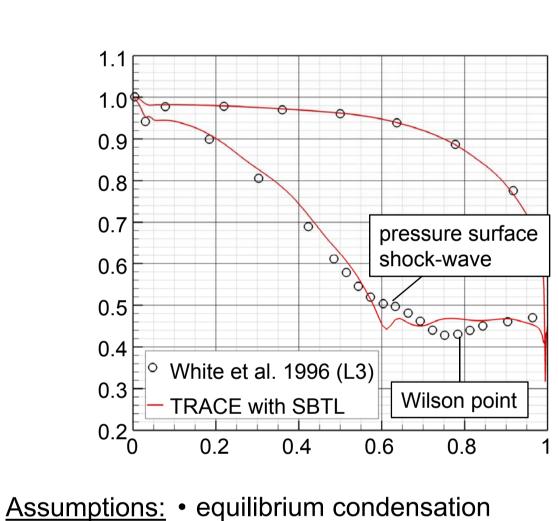
 - computational speed
- Underlying property formulations are calculated from: • REFPROP
- HSZG libraries

p(v,u) - liquid p(v,u) - vapor 2000 1000 p=1 MPa - 500 $p = 0.1 \, \text{MPa}$ 250 p = 0.01 MPa0.001 Specific volume *v* [m³/kg] Specific volume *v* [m³/kg] **Transformations:** $\overline{v}(v) = \ln(v)$ Comp. Time of IAPWS-IF97

Accuracy and Computing-Time Ratio (CTR):


		Max. deviation from IAPWS-IF97				
Function		liquid		vapor		
p(v,u)	≤2.5MPa	$ \Delta p/p $	<0.12%		<0.001%	
	>2.5MPa	$ \Delta p $	<0.6kPa	<i>∆p</i> / <i>p</i> 		
T(v,u)		$ \Delta T $ < 1 mK $ \Delta T $ < 1 mK				
S(V,U)		$ \Delta s $	<10 ⁻⁶ kJ kg ⁻¹ K ⁻¹	\Delta s	<10 ⁻⁶ kJ kg ⁻¹ K ⁻¹	
W(V,U)		$ \Delta w w$	<0.001%	$ \Delta w/w $	<0.001%	
$\eta(v,u)$		$ \Delta \eta/\eta $	<0.001%	$ \Delta \eta / \eta $	<0.001%	


	$CIR = \frac{CIR}{Comp. Time of SBTL Function}$							
		IAPWS-IF97 Region						
	Func.	1 (liquid)	2 (vapor)	4 (two-phase)				
	<i>p</i> (<i>v</i> , <i>u</i>)	130	271	19.6				
	T(v,u)	161	250	20.6				
	$\eta(v,u)$	197	309	_				
•	<i>u</i> (<i>p</i> , <i>v</i>)	2.0	6.4	5.6				
	v(u,s)	43.5	66.4	16.2				


Application of the SBTL Method

> TRACE (CFD-Software, developed at DLR):

Simulation of condensing steam flow around a fixed blade [3]:

<u>Inlet:</u> • $p_{t in} = 41.7 \text{ kPa}$ • $T_{t in} = 357.5 \text{ K} (\Delta T_s = +7.5 \text{ K})$

Outlet: • $p_{\text{out}} = 20.6 \,\text{kPa}$

(no sub-cooling considered) homogeneous two-phase flow

- → The numerical results show negligible differences from those obtained with the direct application of IAPWS-IF97.
- → Computing times for flow simulations considering the real fluid behavior are reduced by a factor of 10 with regard to simulations based on IAPWS-IF97.
- → With regard to the application of the ideal-gas model, the computing times are increased by a factor of 1.4 only.

> KRAWAL (software for power plant design, developed at SIEMENS PG):

→ The overall computing time is reduced by 50% with regard to calculations based on IAPWS-IF97, whereas the differences in the numerical results are negligible.

> RELAP-7 (Nuclear-Reactor System Safety Analysis Code, developed at INL):

- → Simplified property calculation algorithms have been replaced with fast and accurate SBTL functions; applied in a 7-equation non-equilibrium two-phase model [4].
- → New SBTL property libraries are being developed for various pure fluids and mixtures.

Conclusions and Outlook

The newly developed SBTL method [5,6,7]:

- enables the consideration of the real fluid behavior in computationally intensive process simulations with high accuracy and low computing times.
- can be applied to any fluid (SBTL functions can be generated with FluidSplines).
- is being applied successfully in a variety of software tools for process simulations.
- is being extended for mixtures, e.g., humid air and humid combustion gases.

References/Publications

- [1] IAPWS, Revised Release on the IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use (2014), available at http://www.iapws.org.
- [2] IAPWS, Revised Release on the IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam (2007), available at http://www.iapws.org.
- [3] Kunick, M., Kretzschmar, H.-J., di Mare, F., Gampe, U., CFD Analysis of Steam Turbines with the IAPWS Standard on the Spline-Based Table Look-Up Method (SBTL) for the Fast Calculation of Real Fluid Properties, ASME Turbo Expo 2015: Turbine Technical Conference and Exposition, Vol. 8: Microturbines, Turbochargers and Small Turbomachines; Steam Turbines, ISBN: 978-0-7918-5679-6 (2015).
- [4] Kunick, M., Berry, R. A., Martineau, R. C., Kretzschmar, H.-J., Gampe, U., Application of the new IAPWS Guideline on the fast and accurate calculation of steam and water properties with the Spline-Based Table Look-Up Method (SBTL) in RELAP-7, KERNTECHNIK, 82 (3), 264-279 (2017).
- [5] IAPWS, Guideline on the Fast Calculation of Steam and Water Properties with the Spline-Based Table Look-Up Method (SBTL), available at http://www.iapws.org.
- [6] Kunick, M., Kretzschmar, H.-J., Gampe, U., di Mare, F., Hrubý, J., Duška, M., Vinš, V., Singh, A., Miyagawa, K., Weber, I., Pawellek, R., Novi, A., Blangetti, F., Friend, D.G., Harvey, A.H., Fast Calculation of Steam and Water Properties with the Spline-Based Table Look-Up Method (SBTL), J. Eng. Gas Turbines & Power, in preparation.
- [7] Kunick, M., Fast Calculation of Thermophysical Properties in Extensive Process Simulations with the Spline-Based Table Look-Up Method (SBTL), Fortschritt-Berichte VDI, Reihe 6, ISBN: 978-3-18-361806-4 (2018).