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Introduction 

Optimising heat cycles and calculating non-
stationary processes require extremely fast 
algorithms for thermodynamic properties of 
working fluids because they are frequently used in 
the inner iteration cycles of the process 
calculations. The IAPWS-IF97 [1,2] contains very 
fast and accurate equations. For Computational 
Fluid Dynamics (CFD), however, even IAPWS-
IF97 is too slow. Therefore in CFD, fluid properties 
are often calculated with simple equations, for 
example with the ideal gas equation. Depending on 
the range of state this procedure leads to 
inaccuracies in the process calculation. IAPWS 
therefore established a task group in 2007 for 
developing fast property algorithms for water and 
steam. In the past, table look-up methods have been 
developed to calculate fluid properties faster and 
with reasonable accuracy. One of these methods, 
the Tabular Taylor Series Expansion Method 
(TTSE) [3], was adopted by IAPWS as a guideline 
in 2003 [4]. 

One disadvantage of this method is that it does not 
represent the property surfaces in a continuous 
form. 

In order to calculate fluid properties as fast as or 
faster as TTSE but with continuously represented 
property surfaces, two-dimensional splines can be 
used in a table look up method. 

In the first step a bi-quadratic spline surface for 
the function ( )2 ,T p hSPL  for region 2 of IAPWS-
IF97 was developed. Additionally, ( )2 ,h p TINV was 
obtained by solving ( )2 ,T p hSPL  in terms of h. 

This paper gives a brief introduction into spline-
based fluid property calculations and discusses its 
characteristics in comparison to IAPWS-IF97 and 
TTSE. 

The main focus of this work is the development 
of an extremely fast spline-based algorithm for 
calculating thermodynamic properties. 

An investigation to determine spline-
interpolation algorithms for thermodynamic 
properties not only for water and steam but also for 
other pure fluids and mixtures is currently being 
conducted. 
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The designing and optimising of advanced power cycles and processes requires fast and accurate 
methods for calculating thermodynamic properties. Precise fundamental equations for most 
working fluids have already been developed. In industrial software applications such as process 
optimisations with heat balance calculations, the calculation of these equations requires 
enormous computing time. In Computational Fluid Dynamics (CFD), ideal-gas equations or 
other simple algorithms are often used to achieve reasonable computing times, but this 
procedure leads to inaccuracies in the process calculation. IAPWS therefore established a task 
group in 2007 to develop extremely fast and accurate property algorithms for water and steam. 
This paper gives an overview of the aims, initial results achieved at the Zittau/Goerlitz 
University of Applied Sciences and of future tasks. An advanced method for the calculation of 
thermodynamic properties using spline interpolation is currently in development. An initial 
study has been done with the calculation of T(p,h) and h(p,T) in the steam region 2 of IAPWS-
IF97. 
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Aims of the Project 

In light of the requirements of modern 
calculation procedures such as solver-based heat 
cycle calculation and CFD, a method for fast and 
accurate calculation of fluid properties should be 
developed. The resulting algorithm shall substitute 
the calculation of properties from fundamental 
equations when high calculation speed and high 
accuracy is required. Because of iterative 
procedures in the superior process calculation, 
steadiness of the supplied functions and of their 
first derivatives is required. 

Another point of interest is the numerical 
consistency between forward and backward 
functions such as h(p, T) and T(p, h). In complex 
calculations, such as simulations of transient 
processes, numerical consistency is important. 

The algorithm should be usable for working 
fluid mixtures, as well. 

These requirements lead to spline-based table 
look-up methods. In order to minimize computation 
time, fast search algorithms and data handling 
methods must be applied. 

For each property function, the corresponding 
look-up table must be pre-processed. A software 
tool will be created which will generate these tables 
and necessary functions directly as usable source 
code or software libraries. 

Spline Interpolation of Thermodynamic 
Properties 

This section gives a brief description of how a 
spline-based calculation of fluid properties can be 
introduced into process calculations. 

If a property z is determined as a function of the 
variables x1 and x2 then a grid of values of these 
properties can be created as shown in Fig. 1, where 
I and J denote the number of grid lines along x1 and 
x2, respectively. Consequently the grid consists of 
I J×  nodes and ( 1) ( 1)I J− × − sub-rectangles. 

It is advantageous if the grid lines are 
equidistant, as this enables us to determine the 
corresponding sub-rectangle in the grid from a 
given point (x1, x2) without a comprehensive search 
algorithm. This is important because it would slow 
down the computing time of ( )1 2,z x xSPL . A sub-
division of the grid into several equidistant grids 
can be done as shown in Fig. 1. The density of the 
grid can then be changed locally in order to 
optimise the accuracy of the resulting spline 
function. 

Spline functions ( )1 2,ijz x xSPL  of the same 
structure must be defined for each sub-rectangle (i, j) 
(see Fig. 1). Depending on the requirements of the 
superior process calculation, a function must be 
chosen which is able to represent the fluid surface 
properly. A certain accuracy of ( )1 2,ijz x xSPL  in 
comparison to ( )1 2,z x xEOS , the property function 
derived from the equation of state, is required first. 
A second demand comes from the solver-based 
calculation algorithms, such as Newton’s method 
for non-linear systems, which are usually applied in 
heat cycle calculation programs. Normally the 
iterative procedures require continuous property 
functions and continuous first derivatives. 

The simplest function which is able to satisfy 
these requirements is the bi-quadratic polynomial. 
It can be written as: 
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with ( )1 1 1i ix x xΔ = −  and ( )2 2 2j jx x xΔ = − . 
The coefficients for this function must be 

determined so that the resulting function z is 
continuously differentiable at least once. 

To determine the 9 ( 1)( 1)I J× − −  coefficients, 9 
for each sub-rectangle, the same number of 
conditions must be given. There are several 
possible ways of calculating the coefficients. The 
choice of the conditions influences accuracy and 
steadiness of the resulting spline function. 

To create a spline function while preserving its 
optimal shape, it is recommended in [6] to have 
knots which are different from nodes. This means 
that a second grid of knots must be created. This 
should be done as shown in Figure 2. 

2x

1x1 i I≤ ≤

1 j J≤ ≤

( )1 2,ijz x xSPL

i 1i +

j

1j +

Figure 1:  Grid of nodes 
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Fig. 3 illustrates the relations between the grids; 
here (′) denotes the grid of knots. 

The interpolation requirement is to be fulfilled 
at ( ),i j . The derivatives ( )1 2

/ xz x∂ ∂  at ( )1,i j′ −  
and ( ),i j′  as well as ( )2 1

/ xz x∂ ∂  at ( ), 1i j′ −  and 
( ),i j′ , marked with white circles, must be equal to 
the corresponding derivatives of the neighbouring 
sub-rectangles. In addition, the crossed derivatives 

( )( )2
1 2/z x x∂ ∂ ∂  at the four corner points 

( )1, 1i j′ ′− − , ( )1,i j′ ′− , ( ), 1i j′ ′ −  and ( ),i j′ ′  
must be equal to the corresponding derivatives of 
the neighbouring sub-rectangles. The system of 
equations can be solved for given derivatives at the 
boundary knots to obtain the coefficients of the 
spline polynomials. 

The continuous behaviour at the nodes as well 
as at the boundaries between the sub-rectangles and 
their first derivatives can be mathematically 
proven [6]. 

Since all necessary function values zi,j(x1, x2) 
and derivatives ( )1 2

/ xz x∂ ∂  and ( )2 1
/ xz x∂ ∂ can be 

calculated directly from the fundamental equation, 
it is possible to create a spline with this approach. 

An inverse function for x1(z, x2) or x2(z, x1) can 
be obtained by solving ( )1 2,ijz x xSPL , Eq. (2), in 
terms of either x1 or x2.  

For example x1(z, x2) in a sub-rectangle (i, j) can 
be calculated from 

( )
( )2

1, 2 1

4
,

2ij i

B B AC
x z x x

A

− ± −
= +INV   (3) 

with 
( )31 2 32 33 2ij j ij ij jA a x a a x= + Δ + Δ , 

( )21 2 22 23 2ij j ij ij jB a x a a x= + Δ + Δ  and 

( )11 2 12 13 2ij j ij ij jC a x a a x z= + Δ + Δ − , 

where 2 jxΔ  is given in Eq. (2). 
The calculation of this equation consumes more 

computing time than the calculation of ( )1 2,ijz x xSPL  
since the operations square root and division are 
slower than multiplications. But the advantage is 
that ( )1, 2,ijx z xINV  is completely numerically 
consistent to the spline ( )1 2,ijz x xSPL . 

Spline-Function T(p, h) and Inverse Spline 
Function h(p, T) for IAPWS-IF97 Region 2 

Especially in heat cycle calculations thermo-
dynamic properties are frequently calculated from p 
and h. In order to find out about the quality of a 
spline-based calculation of thermodynamic 
properties with the approach described in the 
section above, a spline function ( )2 ,T p hSPL for 
IAPWS-IF97 region 2 has been created. 
Furthermore a function ( )2 ,h p TINV was prepared by 
solving the spline function ( )2 ,T p hSPL  in terms of h. 
Consequently ( )2 ,h p TINV  is completely 
numerically consistent to ( )2 ,T p hSPL . 

In the first step the p-h-grid was given and not 
optimised for accuracy. To reach the required 
accuracy the grid has been created as shown in 
Fig. 3 above. The function ( )2 ,T p hIF97  has been 
iterated from the fundamental equation for all nodes 
in the range 

0.000611 MPa 100 MPap< ≤ and 
1 12500.9 kJ kg 4161 kJ kgh− −≤ ≤ . 

Extrapolation was necessary because the spline 
algorithm currently in use is usable for rectangular 
grids only. The subdivision of the grid is also 
indicated in Fig. 3. Table 1 shows the number of 
grid lines in the corresponding ranges. The resulting 
grid consists of 60,000 nodes. 

Figure 2:  Grid of nodes and grid of knots 
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Figure 3:  Sub-rectangle in grid of nodes and grid 
of knots 
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The calculation of the entire spline function 
( )2 ,T p hSPL gives a maximum relative deviation of 

31 10 %−×  in comparison with ( )2 ,T p hIF97  iterated 

from the fundamental equation of IAPWS-IF97 
region 2. This means that the values of 

( )2 ,T p hIF97 of IAPWS-IF97 are represented by 5 

significant figures. 

 

Range p-grid lines 

0.000611 MPa 0.01 MPap≤ ≤  100 

0.01 MPa 0.1 MPap≤ ≤  100 

0.1 MPa 10 MPap≤ ≤  100 

10 MPa 100 MPap≤ ≤  100 

Range h-grid lines 

1 12500.9 kJ kg 2810 kJ kgh− −≤ ≤  50 

1 12810kJ kg 4161kJ kgh− −≤ ≤  100 

Computing time comparisons 

The computing time comparisons were carried 
out with a Pentium Xeon 3.2 GHz PC and 
Microsoft Windows XP operating system. Using 
the IAPWS software NIFBENCH [1], the 

computing speed of the developed spline-
interpolation algorithms was compared to IAPWS-
IF97 and to the TTSE method. 

First, the function ( )2 ,T p hSPL was compared to 
the corresponding IAPWS-IF97 backward 
equations ( )2 ,T p h97BW  and to the TTSE function 

( ),T p hTTSE  [5]. Table 2 shows the average 
computing times. They were determined for 
100,000 state points arbitrarily distributed in 
IAPWS-IF97 region 2. As can be seen, the spline 
function is twice as fast as IAPWS-IF97 backward 
equations. The TTSE is even slower than IAPWS-
IF97. The reason for this is the search algorithm of 
TTSE and its internal cell-finding logic using 
previous results. For given state points ( ),p h  close 
to each other, however, the TTSE function would 
be 2.1 times faster than IAPWS-IF97. 

 

( )2 ,T p hSPL  ( )2 ,T p h97BW  ( ),T p hTTSE  

0.056 0.114 0.178 

An interesting result of the investigations is that 
the computing speed of the spline interpolation is 
nearly independent of the grid size and therefore of 
the number of nodes. 

Furthermore the computing speed of the inverse 
spline function ( )2 ,h p TINV was investigated. The 
computing times of ( )2 ,h p TIF97  and ( )2 ,h p TINV  are 

Table 2: Computing times for T(p, h) in μs 
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Figure 3:  lg p-h-diagram with sub-divided p-h grid according to Table 1, where δp and δh indicate the distance 
along p and h , respectively 

Table 1: Number of grid lines in p-h-grid for region 2
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listed in Table 3. It can be seen that ( )2 ,h p TINV  is 
1.2 times faster than ( )2 ,h p TIF97 , but completely 
numerically consistent to ( )2 ,T p hSPL . The reason 
for this relatively low factor is that for evaluating 

( )2 ,h p TINV from ( )2 ,T p hSPL an auxiliary spline 
function, ( )2 ,h p TSPL , is used for generating an 
initial estimate for h. Then, in the p-h-grid, the 
corresponding sub-rectangle is determined by 
solving ( )2 ,T p hSPL  in terms of h and comparing h 
to the neighbouring nodes until 1ij ijh h h +≤ ≤  is 
fulfilled. The square root operation in Eq. (3) also 
slows down computation speed. 

If greater computing speed for ( )2 ,h p T  is 
required and numerical consistency with 

( )2 ,T p hSPL  does not need to be 100%, a separate 
spline function ( )2 ,h p TSPL could be generated. 

 

( )2 ,h p TINV  ( )2 ,h p TIF97  ( ),h p TTTSE  

0.202 0.242 0.237 

Summary and Outlook 

The first results of this project show that spline 
functions can be used to represent thermodynamic 
properties. It has been proven that a reduction in 
computing time is possible while at the same time 
achieving high accuracy and complete numerical 
consistency. The computing speed is nearly 
independent of the size of the grid. This enables 
both high accuracy and low computing times. 

A continuous spline function ( )2 ,T p hSPL  for 
region 2 has been developed. By solving 

( )2 ,T p hSPL  in terms of h, the function ( )2 ,h p TINV , 
which is completely numerically consistent to 

( )2 ,T p hSPL , could be obtained. The computational 
speed of these two functions is considerably faster 
than that of the IAPWS-IF97 fundamental or 
backward equations. The data grid of the spline-
polynomials was created so that both functions 
represent IAPWS-IF97 with high accuracy. Due to 
special data handling and simple search algorithms, 
this method is even faster than the TTSE method. 

Now the algorithm must be modified to enable 
the creation of spline functions from non-
rectangular grids. An algorithm for grid 
optimisation is also necessary in order to reach the 
required accuracy and to reduce the amount of 
memory needed. 

In order to make use of the described method in 
calculations of non-stationary processes, spline 
functions from v-u and v-h grids will be created. 

The use of other spline functions, such as bi-
cubic polynomials, is also intended for two-
dimensional functions. 

Spline algorithms are a very promising method 
for increasing the computing speed in calculating 
thermodynamic properties of mixtures.  

To make spline-based table look-up methods 
available for industrial software applications, the 
necessary algorithms need to be provided in a 
convenient form. The software tool FluidGrid, 
currently in development, should meet this need. 
This tool will provide an interface which allows the 
user to prepare spline-based property libraries. This 
will be possible for available equations of state 
provided by the user in a dynamic link library. For 
given range of state and required accuracy 
FluidGrid will create and optimise a data grid and 
the corresponding spline function. Finally the 
software will provide automatically generated 
source code which can then be linked to and 
compiled in the user’s application. 
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