2009 ASHRAE HANDBOOK

FUNDAMENTALS

SI Edition Supported by ASHRAE Research

2009 ASHRAE® HANDBOOK

FUNDAMENTALS

SI Edition

American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.

1791 Tullie Circle, N.E., Atlanta, GA 30329

(404) 636-8400

http://www.ashrae.org

CONTENTS

Contributors

ASHRAE Technical Committees, Task Groups, and Technical Resource Groups

ASHRAE Research: Improving the Quality of Life

Preface

PRINCIPLES

Chapter

- 1. **Psychrometrics** (TC 1.1, Thermodynamics and Psychrometrics, TC 8.3, Absorption and Heat-Operated Machines)
- 2. Thermodynamics and Refrigeration Cycles (TC 1.1)
- 3. Fluid Flow (TC 1.3, Heat Transfer and Fluid Flow)
- 4. Heat Transfer (TC 1.3)
- 5. Two-Phase Flow (TC 1.3)
- 6. Mass Transfer (TC 1.3)
- 7. Fundamentals of Control (TC 1.4, Control Theory and Application)
- 8. Sound and Vibration (TC 2.6, Sound and Vibration Control)

INDOOR ENVIRONMENTAL QUALITY

Chapter

- 9. Thermal Comfort (TC 2.1, Physiology and Human Environment)
- 10. Indoor Environmental Health (Environmental Health Committee)
- 11. **Air Contaminants** (TC 2.3, Gaseous Air Contaminants and Gas Contaminant Removal Equipment)
- 12. Odors (TC 2 .3)
- 13. Indoor Environmental Modeling (TC 4.10, Indoor Environmental Modeling)

LOAD AND ENERGY CALCULATIONS

Chapter

- 14. Climatic Design Information (TC 4.2, Climatic Information)
- 15. Fenestration (TC 4.5, Fenestration)
- 16. Ventilation and Infiltration (TC 4.3, Ventilation Requirements and Infiltration)
- 17. **Residential Cooling and Heating Load Calculations** (TC 4.1, Load Calculation Data and Procedures)
- 18. Nonresidential Cooling and Heating Load Calculations (TC 4.1)
- 19. Energy Estimating and Modeling Methods (TC 4.7, Energy Calculations)

HVAC DESIGN

Chapter

- 20. Space Air Diffusion (TC 5.3, Room Air Distribution)
- 21. Duct Design (TC 5.2, Duct Design)

- 22. Pipe Sizing (TC 6.1, Hydronic and Steam Equipment and Systems)
- 23. Insulation for Mechanical Systems (TC 1.8, Mechanical Systems Insulation)
- 24. Airflow Around Buildings (TC 4.3)

BUILDING ENVELOPE

Chapter

- 25. Heat, Air, and Moisture Control in Building Assemblies—Fundamentals (TC 4.4, Building Materials and Building Envelope Performance)
- 26. Heat, Air, and Moisture Control in Building Assemblies—Material Properties (TC 4.4)
- 27. Heat, Air, and Moisture Control in Insulated Assemblies—Examples (TC 4.4)

MATERIALS

Chapter

- 28. Combustion and Fuels (TC 6.10, Fuels and Combustion)
- 29. Refrigerants (TC 3.1, Refrigerants and Secondary Coolants)
- 30. Thermophysical Properties of Refrigerants (TC 3.1)
- 31. Physical Properties of Secondary Coolants (Brines) (TC 3.1)
- 32. Sorbents and Desiccants (TC 8.12, Dessicant Dehumidification Equipment and Components)
- 33. Physical Properties of Materials (TC 1.3)

GENERAL

Chapter

- 34. Energy Resources (TC 2.8, Building Environmental Impacts and Sustainability)
- 35. Sustainability (TC 2.8)
- 36. Measurement and Instruments (TC 1.2, Instruments and Measurements)
- 37. Abbreviations and Symbols (TC 1.6, Terminology)
- 38. Units and Conversions (TC 1.6)
- 39. Codes and Standards

ADDITIONS AND CORRECTIONS

INDEX

Composite index to the 2006 Refrigeration, 2007 HVAC Applications, 2008 HVAC Systems and Equipment, and 2009 Fundamentals volumes

Comment Pages

Table 2 Thermodynamic Properties of Moist Air at Standard Atmospheric Pressure, 101.325 kPa

Temp., °C t	Humidity Ratio W _s , kg _{se} /kg _{da}	Specific Volume, m ³ /kg _{da}			Specific Enthalpy, kJ/kg _{da}			Specific Entre	Temp., °C	
		v_{da}	ν_{an}	ν_x	h _{da}	h_{ui}	h_x	Sda	S_S	1
-60	0.0000067	0.6027	0.0000	0.6027	-60.341	0.016	-60.325	-0.2494	-0.2494	-60
-59	0.0000076	0.6055	0.0000	0.6055	-59.335	0.018	-59.317	-0.2447	-0.2446	-59
-58	0.0000087	0.6084	0.0000	0.6084	-58.329	0.021	-58.308	-0.2400	-0.2399	-58
-57	0.0000100	0.6112	0.0000	0.6112	-57.323	0.024	-57.299	-0.2354	-0.2353	-58 -57 -56
-56	0.0000114	0.6141	0.0000	0.6141	-56.317	0.027	-56.289	-0.2307	-0.2306	-56
-55	0.0000129	0.6169	0.0000	0.6169	-55.311	0.031	-55.280	-0.2261	-0.2260	-55
-54	0.0000147	0.6198	0.0000	0.6198	-54.305	0.035	-54.269	-0.2215	-0.2213	-54
-53	0.0000167	0.6226	0.0000	0.6226	-53.299	0.040	-53.258	-0.2169	-0.2167	-53
-52	0.0000190	0.6255	0.0000	0.6255	-52.293	0.046	-52.247	-0.2124	-0.2121	-54 -53 -52
-51	0.0000215	0.6283	0.0000	0.6283	-51.287	0.052	-51.235	-0.2078	-0.2076	-51
	**	0.6312	0.0000	0.6312	-50 261			* ***	-0.2030	-50 -49

Table 3 Thermodynamic Properties of Water at Saturation

Temp., °C t	Absolute Pressure p _{res} , kPa	Specific Volume, m3/kg _w			Specific Enthalpy, kJ/kg,,			Specific Entropy, kJ/(kgw·K)			Temp.,
		Sat. Solid v_i/v_f	Evap. v_{ig}/v_{fg}	Sat. Vapor ν_g	Sat. Solid	Evap. h_{ig}/h_{fg}	Sat. Vapor	Sat. Solid s _i /s _f	Evap. s_{ig}/s_{fg}	Sat. Vapor	°C t
-60	0.00108	0.001081	90971.58	90971.58	-446.12	2836,27	2390.14	-1.6842	13.3064	11.6222	-60
-59	0.00124	0.001082	79885.31	79885.31	-444.46	2836.45	2391.99	-1.6764	13,2452	11.5687	-59
-58	0.00141	0.001082	70235.77	70235.78	-442.79	2836.63	2393.85	-1.6687	13.1845	11.5158	-58
-57	0.00161	0.001082	61826.23	61826.24	-441.11	2836.81	2395.70	-1.6609	13.1243	11.4634	-57
-56	0.00184	0.001082	54488.28	54488.28	-439,42	2836.97	2397.55	-1.6531	13.0646	11.4115	-56
-55	0.00209	0.001082	48077.54	48077.54	-437.73	2837.13	2399.40	-1.6453	13.0054	11.3601	-55
-54	0.00238	0.001082	42470.11	42470.11	-436.03	2837.28	2401.25	-1.6375	12.9468	11.3092	-54
-53	0.00271	0.001082	37559.49	37559.50	-434.32	2837.42	2403.10	-1.6298	12.8886	11.2589	-53
-52	0.00307	0.001083	33254.07	33254.07	-432.61	2837.56	2404.95	-1 6220	12.8310	11.2090	-52
-51							2406 00				-51