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Available Property Calculation Algorithms for Water and Steam:

Demands on Fluid Property Functions in CFD:

Demands on Fluid Property Functions in CFD & Available Algorithms

Accurate property functions are required.

Property functions need to be extremely fast. 

Numerically consistent inverse functions are required, e.g., u(p,v) and p(v,u).

• Deviations in specific volume v result in

inaccurate mass flows and velocities.

� Inaccurate property calculations lead to inaccurate simulation results:

• Deviations in caloric properties, e.g. internal energy u or entropy s, result in 

inaccurate energy and entropy balances.

� Property functions have a major influence on the overall computing time:

• Fluid properties need to be determined millions of times!

� Numerical methods make high demands on property functions:

Continuity of property functions and their first derivatives is required.

� Ideal-Gas Model

� Cubic Equations of State (Peng-Robinson, Redlich-Kwong, …)

� Industrial Formulation IAPWS-IF97 (fundamental equations)

� Table Look-Up Methods (such as bi-linear or bi-cubic interpolation)



Deviations in Specific Volume (Water and Steam):

Ideal-Gas Model
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Deviations in Specific Volume (Water and Steam):

Cubic Equation of State (Peng-Robinson)
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Uncertainties in Specific Volume of IAPWS-IF97 for Water and Steam:
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Deviations in Isobaric Heat Capacity (Water and Steam):

Ideal-Gas Model
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Deviations in Isobaric Heat Capacity (Water and Steam):

Cubic Equation of State (Peng-Robinson) + ( )ideal
pc T

( ) ( )PR ideal,  and pp T v c T( )−PR real real/p p pc c c
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Uncertainties in Isobaric Heat Capacity of IAPWS-IF97 for Water and Steam:

( )−p p pc c cIF97 real real/
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depends on 

table size and 

algorithm

high

Available Property Calculation Algorithms for Water and Steam

Requirements Ideal gas
Cubic Equation

of State

Ind. Standard 

IAPWS-IF97

Accuracy

Computing 

speed
very high slow too slow

Fluid Property Calculations in CFD – Objectives

50 %v∆ ≤

50∆ ≤ %pc

5 %v∆ ≤

40 %pc∆ ≤

0 3. %v∆ ≤

0 5∆ ≤ . %pc

� Bi-linear interpolation:

Table Look-Up Methods:

Table Look-Up

Methods

� Bi-cubic interpolation:

• requires comparatively large look-up tables for a certain accuracy

• shows discontinuities in the first derivatives

• clustered look-up tables → computa7onally intensive cell search

• continuous first derivatives (local application)

• calculation of inverse functions is computationally intensive

Objectives for the Development of a Spline-Based Table Look-Up Method (SBTL):

� property calculations with high accuracy at high computing speed

� continuous property functions and first derivatives

� fast and numerically consistent inverse functions, e.g., u(p,v) and p(v,u)



Generation of a spline function pSPL(v,u) from an underlying eq. of state pEOS(v,u):

� Optimization for:

• required accuracy

• maximum computing speed

• minimum amount of data (table size)

� Generation of a rectangular grid of nodes:

• each node is calculated from the 

underlying equation of state: 
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Property calculation in CFD:

� Providing the look-up table with the 

determined spline coefficients

Fundamentals of the Spline-Based Table Look-Up Method (SBTL)

� Cell definition in the grid of knots:

• bi-quadratic spline polynomial:

• intersects the inner node

• continuous function and first derivatives
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� Variable transformation: v → v�

• enhance accuracy

• transform the range of state

� transformation of v → v�

� cell (i,j) determination

� computation of the spline polynomial



Fundamentals of the Spline-Based Table Look-Up Method (SBTL)
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Calculation of inverse spline functions (Example: bi-quadratic polynomial):
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� The inverse spline function is numerically consistent with its forward function.

� The inverse spline function can be calculated without any iteration.

Forward spline function:

Inverse spline function:



pSPL(v,u)

sSPL(v,u)

ηSPL(v,u)

TSPL(v,u)

uINV(p,v)

TSPL,sSPL,wSPL,ηSPL,λSPL(v, uINV)

vINV(u,s)

λSPL(v,u)

Spline functions of (v,u):

wSPL(v,u)

(p,v): (u,s):

pSPL,TSPL,wSPL,ηSPL,λSPL(vINV,u)

Calculation of inverse spline functions:

Pressure

Temperature

Spec. entropy

Speed of sound

Dynamic viscosity

Therm. conductivity

� All thermodynamic and transport properties including derivatives and inverse 

functions are calculated without iterations.

� Property functions are numerically consistent with each other.

Spline Functions of (v,u) and Inverse Spline Functions Based on IAPWS-IF97



Spline function pL (v,u):
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SBTL Functions p(v,u) – Deviations from IAPWS-IF97



� Spline-based property functions reproduce the industrial standard IAPWS-IF97 

with high accuracy.

� Differences between the results of process simulations using the SBTL method 

and those obtained through the use of IAPWS-IF97 are negligible.

SBTL Functions of (v,u) and Inverse Functions of (p,v) and (u,s) –

Deviations from IAPWS-IF97

   
SBTL function Max. deviation (liquid phase) Max. deviation (vapor phase)

( , )p v u  
2.5 MPap ≤  / 0.12 %∆ <p p  

/ 0.001 %∆ <p p  
2.5 MPap >  0.6 kPa∆ <p  

( , )T v u  1mK∆ <T  1mK∆ <T  

( , )s v u  6 1 110 kJ kg  K− − −∆ <s  
6 1 110 kJ kg  K− − −∆ <s  

( , )w v u  / 0.001 %∆ <w w  / 0.001 %∆ <w w  

( , )v uη  / 0.001 %η η∆ <  / 0.001 %η η∆ <  

   

 



SBTL Functions of (v,u) and Inverse Functions of (p,v) and (u,s) –

Computing time comparisons with IAPWS-IF97

Computing-Time Ratio
Computing time of  the calculation from IAPWS - IF97

CTR =
Computing time of  the calculation from the spline function

Processor: Intel Xeon – 3,2GHz

Operating system: Windows7 (32 Bit)

Compiler: Intel Composer XE 2011

IAPWS-IF97 Region

SBTL 

function

1

(liquid)

2

(vapour)

3

(critical)

4

(two-phase)

5

(high-temp.)

p(v,u) 130 271 161 19.6 470

T(v,u) 161 250 158 20.6 442

s(v,u) 164 261 160 17.8 449

w(v,u) 199 310 234 - 471

ηηηη(v,u) 197 309 239 - -

u(p,v) 2.0 6.4 2.8 5.6 3.2

v(u,s) 43.5 66.4 78.8 16.2 134

� Computing times are reduced by factors up to 300 (500)!



Application of the SBTL Method in CFD –

Condensing Steam Flow Around a Fixed Blade (White et al.)

CFD-Software TRACE (DLR)

German Aerospace Center (DLR)

Institute of Propulsion Technology

Numerical Methods,

Cologne, Germany

"
Dryness fraction 

' "
m

x
m m

=
+

blade profile

system boundary Test-case L3:

Inlet conditions:
• Tot. press.: 41.7 kPa

• Tot. temp.: 357.5 K 

(∆Ts=+7.5 K)

Outlet conditions:
• Stat. pressure: 20.6 kPa

Assumptions:
• equilibrium 

condensation (no sub-

cooling considered)

• homogeneous two-

phase flow

Dryness fraction:



Application of the SBTL Method in CFD –

Condensing Steam Flow Around a Fixed Blade (White et al.)

CFD-Software TRACE (DLR)

German Aerospace Center (DLR)

Institute of Propulsion Technology

Numerical Methods,

Cologne, Germany

Wilson point

pressure surface
shock-wave

Test-case L3:

Inlet conditions:
• Tot. press.: 41.7 kPa

• Tot. temp.: 357.5 K 

(∆Ts=+7.5 K)

Outlet conditions:
• Stat. pressure: 20.6 kPa

Assumptions:
• equilibrium 

condensation (no sub-

cooling considered)

• homogeneous two-

phase flow

Pressure coefficient along the blade profile:



Application of the SBTL Method in CFD –

Condensing Steam Flow Around a Fixed Blade (White et al.; L3)

Convergence: CFL-Factor (Courant–Friedrichs–Lewy-Factor)=20

� Calculation with SBTL functions:

• high speed of convergence because of

complete numerical consistency
• calculation accomplished after

1:50min/1000 steps

� Comparison to calculation with ideal gas model:

• calculation accomplished after

1:20min/1000 steps

� Consideration of real fluid behavior with the SBTL Method requires only

40% additional computing time in comparison to a calculation with the ideal gas model. 

Computing time: several hours/days

� Practical calculations:

• stage groups in 3D

• non-stationary processes

� Calculation is approx. 6-10 times faster than the IAPWS-IF97 implementation in TRACE.



Application of the SBTL Method in Other Software Products

�RELAP-7 – Idaho National Laboratory (INL)
international reference code for nuclear-reactor system safety analysis

�KRAWAL – SIEMENS
heat-cycle calculations for power-plant design

�DYNAPLANT – SIEMENS
simulation of non-stationary processes in power plants

• SBTL functions of (v,u) based on IAPWS-95 (incl. metastable liquid/vapor)

• SBTL functions of (p,h) based on IAPWS-IF97

• SBTL functions of (v,h) based on IAPWS-IF97

Simplified property calculation algorithms have been replaced:

• Accuracy is enhanced

• 7-equation non-equilibrium two-phase flow model is enabled

Computing times have been considerably reduced with regard to the direct 

application of IAPWS-IF97. Differences in the numerical results are negligible.

Computing times have been reduced by factors >2 with regard to the direct 

application of IAPWS-IF97. Differences in the numerical results are negligible.



Generation of SBTL Functions for Specific Demands

FluidSplines
Software for generating

spline-based property functions

Input:

(Thermodynamic Properties)

REFPROP©

Property-Libraries

(Zittau/Goerlitz Univ.)

Output:

• optimized source code for 

high computing speed

• static/dynamic libraries

• documentation of accuracy 

and computing speed

Generation of SBTL-Functions for:

• specified range of validity

• required accuracy

Additional Features:

• generation of inverse spline-functions

• accuracy tests

• computing time tests



Summary

� Spline-Based Table Look-up Method (SBTL) – a supplement to existing fluid property 

formulations:

• Reproduces underlying formulations with high accuracy at high computing speed

• Provides fast and numerically consistent inverse functions

• Property functions and their first derivatives are continuous

� Applicability in CFD has been demonstrated:

• Enables consideration of the real fluid behavior with high accuracy

• 6-10 times faster than simulations with IAPWS-IF97

• Only 40% slower than simulations with the ideal-gas model

� SBTL property functions can be generated for any fluid with FluidSplines

� SBTL functions based on IAPWS-IF97 and IAPWS-95:

• Property functions of IAPWS Standards are reproduced with an accuracy of 10 – 100 ppm

• Computing speeds are considerably increased

(SBTL functions of (v,u) are up to 300 times faster than IAPWS-IF97)

� SBTL method can be implemented into any CFD software to consider the real fluid 

behavior at high computing speeds



Summary

Thank you for your attention!

Available at: www.iapws.org


