Proposal Advisory Note No. 5: Industrial Calculation of the Thermodynamic Properties of Seawater

H.-J. Kretzschmar, R. Feistel, W. Wagner, S. Herrmann

Contents

- 1. The IAPWS Formulation 2008
- 2. Proposal for an Industrial Formulation
- 3. Range of Validity
- 4. Computing Time Consumption
- 5. Current State of the Evaluation

Annual Meeting of the IAPWS German National Committee, Erlangen, 2013

1. The IAPWS Formulation 2008

Initial Situation

"Release on the IAPWS Formulation 2008 for the Thermodynamic Properties of Seawater"

Equation of State

$$g(p,T,S) = g^{W}(p,T) + g^{S}(p,T,S)$$

Water part calculated from IAPWS-95 Saline part Helmholtz free energy equation $f^{95}(T, v)$

$$g^{W}(p,T) = f^{95}(T,v) - v \cdot \left[\frac{\partial f^{95}(T,v)}{\partial v}\right]_{T}$$

where v is calculated from $p = -\left[\frac{\partial I^{\circ\circ}(I, V)}{\partial V}\right]_{T}$ by iteration

Industry is interested in calculating the water part from IAPWS-IF97 because of the consistency with other calculations, and computing speed.

S1

Property	Calculation from $g(p, T, S)$
Specific volume	$v(p,T,S) = g_p$
Specific enthalpy	$h(p,T,S) = g - T g_T$
Specific entropy	$s(p,T,S) = -g_T$
Specific isobaric heat capacity	$c_{p}(p,T,S) = -T g_{TT}$
Cubic isobaric expansion coefficient	$\alpha_{v}(p,T,S) = \frac{g_{pT}}{g_{p}}$
Isothermal compressibility	$\kappa_T(p,T,S) = -\frac{g_{pp}}{g_p}$
Speed of sound	$w(\rho, T, S) = g_{\rho} \sqrt{\frac{g_{TT}}{\left(g_{T\rho}^2 - g_{\rho\rho} g_{TT}\right)}}$
Chemical potential of water	$\mu_{W}\left(\boldsymbol{\mathcal{p}}, \boldsymbol{\mathcal{T}}, \boldsymbol{\mathcal{S}}\right) = \boldsymbol{\mathcal{g}} - \boldsymbol{\mathcal{S}} \cdot \boldsymbol{\mathcal{g}}_{\boldsymbol{\mathcal{S}}}$
Osmotic coefficient	$\phi(p,T,S) = -\frac{g^{S} - Sg_{S}}{bR_{m}T}$

Annual Meeting of the IAPWS German National Committee, Erlangen, 2013

2.2 Phase Equilibrium between Seawater and Water Vapor

Phase equilibrium condition

$$\mu_{W}(\rho,T,S) = g^{vap}(\rho,T)$$

I Chemical potential Gibbs free energy of water vapor, of water in seawater calculated from IAPWS-IF97 region 2 equation

$$g^{\mathrm{vap}}(\rho,T) = g_2^{97}(\rho,T)$$

Calculation of the saturation (boiling) temperature

$$T_{\rm S} = f(p, S)$$

Annual Meeting of the IAPWS German National Committee, Erlangen, 2013

S5

2.3 Further Properties

- Phase equilibrium between seawater and ice
- Triple-point temperatures and pressures
- Osmotic pressure
- Properties of sea ice

3. Range of Validity

Corresponding to the IAPWS Formulation 2008

Pressure:	0.3 kPa 100 MPa
Temperature:	261 K 353 K
Salinity:	0 0.12 kg kg ⁻¹

with restrictions in certain regions according to IAPWS-2008

Annual Meeting of the IAPWS German National Committee, Erlangen, 2013

5. Current State of the Evaluation

Evaluation Task Group: A. Singh (Chair), F. Blangetti, K. Orlov, I. Weber Subjects:

- a) Title:
 - Proposal for Boulder:

"Thermodynamic Properties of Seawater for Industrial Use"

- Proposal for Evaluation:

"The IAPWS Industrial Formulation for the Thermodynamic Properties of Seawater"

- Proposal of A. Harvey:
 "Industrial Calculation of the Thermodynamic Properties of Seawater"
- b) Errors in Table 2:

$$g^{W} = R_{W} T \gamma, \quad \left(\frac{\partial g^{W}}{\partial \rho}\right)_{T} = \frac{R_{W} T}{\rho} \pi \gamma_{\pi}, \quad \left(\frac{\partial^{2} g^{W}}{\partial \rho^{2}}\right)_{T} = \frac{R_{W} T}{\rho^{2}} \pi^{2} \gamma_{\pi\pi},$$
$$\left(\frac{\partial g^{W}}{\partial T}\right)_{p} = R_{W} \left(\gamma - \tau \gamma_{\tau}\right), \quad \left(\frac{\partial^{2} g^{W}}{\partial T^{2}}\right)_{p} = \frac{R_{W} \tau^{2} \gamma_{\tau\tau}}{T}, \quad \left(\frac{\partial^{2} g^{W}}{\partial \rho \partial T}\right) = \frac{R_{W} \pi}{\rho} (\gamma_{\pi} - \tau \gamma_{\pi\tau})$$

Annual Meeting of the IAPWS German National Committee, Erlangen, 2013

