## **Revision of the Advisory Note No. 3: Thermodynamic Derivatives from IAPWS Formulations**

H.-J. Kretzschmar, W. Wagner, S. Herrmann, M. Kunick

## Contents

- 1. Introduction
- 2. Determination of Thermodynamic Derivatives
- 3. History of the Advisory Note No. 3
- 4. Preparation of a Further Extension

Annual Meeting of the IAPWS German National Committee, Erlangen, 2013

## 1. Introduction

Thermodynamic derivatives such as

$$\left(\frac{\partial h}{\partial \rho}\right)_{v}, \left(\frac{\partial u}{\partial \rho}\right)_{v}, \left(\frac{\partial s}{\partial \rho}\right)_{v}, \left(\frac{\partial T}{\partial \rho}\right)_{h}, \left(\frac{\partial T}{\partial \rho}\right)_{s}, \left(\frac{\partial v}{\partial h}\right)_{\rho}, \left(\frac{\partial v}{\partial s}\right)_{\rho} \cdots$$

are required for:

- Calculating non-stationary processes
- Solving equation systems for stationary heat cycle calculations.
- All thermodynamic properties and derivatives can be determined from fundamental equations.

ŢĹ

Aim of the IAPWS Advisory Note No. 3: Description how to calculate any property or derivative from IAPWS Formulations.

S1



where x, y, z can represent one of the properties: p, T, v, h, u, s, g, or f

Derivatives of these properties with respect to v and T

| х, у, z | $\left(\frac{\partial \mathbf{x}}{\partial v}\right)_{T}, \left(\frac{\partial \mathbf{y}}{\partial v}\right)_{T}, \left(\frac{\partial \mathbf{z}}{\partial v}\right)_{T}$ | $\left(\frac{\partial \mathbf{x}}{\partial T}\right)_{v}, \left(\frac{\partial \mathbf{y}}{\partial T}\right)_{v}, \left(\frac{\partial \mathbf{z}}{\partial T}\right)_{v}$ |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| p       | - <i>pβ</i> <sub>ρ</sub>                                                                                                                                                    | $p \alpha_p$                                                                                                                                                                |
| Т       | 0                                                                                                                                                                           | 1                                                                                                                                                                           |
| v       | 1                                                                                                                                                                           | 0                                                                                                                                                                           |
| и       | $p(T\alpha_p-1)$                                                                                                                                                            | $c_v$                                                                                                                                                                       |
| h       | $p(T\alpha_p - v\beta_p)$                                                                                                                                                   | $c_v + \rho v \alpha_\rho$                                                                                                                                                  |
| S       | $p \alpha_p$                                                                                                                                                                | $\frac{c_v}{\tau}$                                                                                                                                                          |
| g       | $-pv\beta_p$                                                                                                                                                                | $pv\alpha_p - s$                                                                                                                                                            |
| f       | - <i>p</i>                                                                                                                                                                  | —S                                                                                                                                                                          |

## **Required quantities:**

Pressure p

Specific entropy sSpecific isochoric heat capacity  $c_v$ Relative pressure coefficient

$$\alpha_{p} = p^{-1} (\partial p / \partial T)_{v}$$

Isothermal stress coefficient

$$\beta_p = -p^{-1}(\partial p/\partial v)_T$$

Annual Meeting of the IAPWS German National Committee, Erlangen, 2013

| Adoption of the                  | e first version by IAPWS in Lucerne, 2007                             |   |
|----------------------------------|-----------------------------------------------------------------------|---|
| Description ho                   | w to form any derivative from:                                        |   |
| – IAPWS-95                       |                                                                       |   |
| – IAPWS-IF97                     | 7                                                                     |   |
| <ul> <li>– IAPWS-84 f</li> </ul> | or Heavy Water                                                        |   |
| – IAPWS-06 f                     | or Ice.                                                               |   |
| Adoption of a F                  | Revision by IAPWS in Berlin, 2008                                     |   |
| Addition of the                  | description how to form any derivative from:                          |   |
| – IAPWS-08 f                     | or Seawater.                                                          |   |
|                                  |                                                                       |   |
|                                  |                                                                       |   |
|                                  |                                                                       |   |
|                                  | Annual Meeting of the IAPWS German National Committee, Erlangen, 2013 | ę |
|                                  |                                                                       |   |
|                                  |                                                                       |   |

- Description how to form any derivative from:
  - IAPWS Supplementary Release on a Formulation for Liquid Water for Oceanographic Use (2008)
  - IAPWS Guideline on an Equation of State for Humid Air in Contact with Seawater and Ice (2010)
  - IAPWS Guideline on an IAPWS Formulation for Ammonia-Water Mixtures (2001)

Ţ

Presentation of an Revision of AN 3 at the IAPWS Meeting in Greenwich