

New Formulation for the Viscosity of *n*-Butane

Sebastian Herrmann^{a)}

Fachgebiet Technische Thermodynamik, Hochschule Zittau/Görlitz, D-02763 Zittau, Germany

Eckhard Vogel

Institut für Chemie, Universität Rostock, D-18059 Rostock, Germany

(Received 27 December 2017; accepted 31 January 2018; published online 12 March 2018)

A new viscosity formulation for *n*-butane, based on the residual quantity concept, uses the reference equation of state by Bücker and Wagner [J. Phys. Chem. Ref. Data 35, 929 (2006)] and is valid in the fluid region from the triple point to 650 K and to 100 MPa. The contributions for the zero-density viscosity and for the initial-density dependence were separately developed, whereas those for the critical enhancement and for the higher-density terms were pretreated. All contributions were given as a function of the reciprocal reduced temperature τ , while the last two contributions were correlated as a function of τ and of the reduced density δ . The different contributions were based on specific primary data sets, whose evaluation and choice were discussed in detail. The final formulation incorporates 13 coefficients derived employing a state-of-the-art linear optimization algorithm. The viscosity at low pressures $p \le 0.2$ MPa is described with an expanded uncertainty of 0.5% (coverage factor k = 2) for temperatures $293 \le T/K \le 626$. The expanded uncertainty in the vapor phase at subcritical temperatures $T \ge 298$ K as well as in the supercritical thermodynamic region $T \le 448$ K at pressures $p \le 30$ MPa is estimated to be 1.5%. It is raised to 4.0% in regions where only less reliable primary data sets are available and to 6.0% in ranges without any primary data, but in which the equation of state is valid. A weakness of the reference equation of state in the near-critical region prevents estimation of the expanded uncertainty in this region. Viscosity tables for the new formulation are presented in Appendix B for the single-phase region, for the vapor-liquid phase boundary, and for the near-critical region. Published by AIP Publishing on behalf of the National Institute of Standards and Technology. https://doi.org/10.1063/1.5020802

Key words: correlation; critical enhancement; fluid phase; normal butane; viscosity; viscosity tables.

CONTENTS

1.	Introduction	3
2.	Equations of State	4
3.	Experimental Viscosity Data	5
	3.1. Overview of the primary data	5
	3.2. Evaluation of the data	6
4.	Methodology and Development of the New	
	Formulation	8
	4.1. Viscosity in the limit of zero density	8
	4.2. Initial-density term of residual viscosity	10
	4.3. Critical enhancement of viscosity	11
	4.4. Higher-density terms of residual viscosity.	13
	4.5. Bank of terms	14
5.	Recommended Formulation: Comparison and	
	Evaluation	15
	5.1. New formulation	15

List of Tables

1.	Primary experimental viscosity data of	
	<i>n</i> -butane	5
2.	Secondary experimental viscosity data of	
	n-butane partly separated from the primary	
	experimental data of Table 1	7

^{5.2.} Comparison with primary experimental 16 5.3. Tabulations, computer-program verification, 18 validity range, and uncertainty estimates . . 5.4. Extrapolation and consistency behaviors . . 19 5.5. Comparison with previous correlations . . 20 Summary and Conclusions 6. 23 7. Appendix A: Re-evaluation of the Data by Küchenmeister and Vogel 29 8. Appendix B: Calculated Values of the Viscosity 31 9. References 32

^{a)}Electronic mail: s.herrmann@hszg.de.

Published by AIP Publishing on behalf of the National Institute of Standards and Technology.