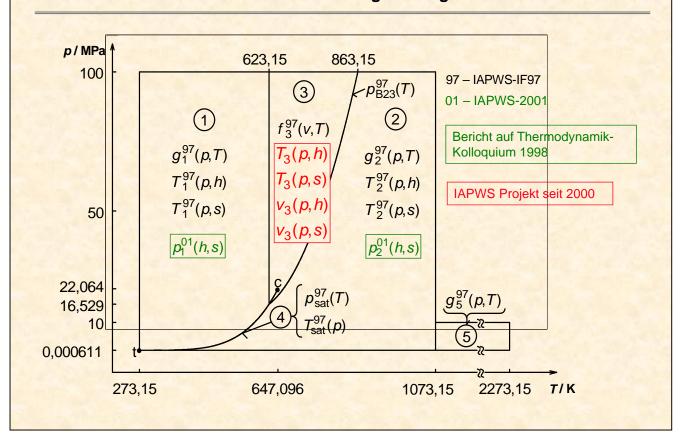
Ergänzende Gleichungen für die Umkehrfunktionen T(p,h), v(p,h) und T(p,s), v(p,s) für das kritische und überkritische Zustandsgebiet von Wasser zur Industrie-Formulation IAPWS-IF97

K. Knobloch, H.-J. Kretzschmar Hochschule Zittau/Görlitz (FH) Fachgebiet Technische Thermodynamik

A. Dittmann


Technische Universität Dresden Lehrstuhl für Technische Thermodynamik

VDI-Thermodynamik-Kolloquium Wernigerode, 07.10. - 08.10.2002

Inhalt

- Einleitung
- Anforderung an die Gleichungen
- Der Gleichungssatz
- Erreichte Genauigkeit
- Rechenzeitvergleich zur IAPWS-IF97
- Zusammenfassung

Die Industrie-Formulation IAPWS-IF97, der ergänzende Standard IAPWS-2001 und neue Rückwärtsgleichungen für Bereich 3

Weshalb Entwicklung von Gleichungen $T_3(p,h)$, $v_3(p,h)$ und $T_3(p,s)$, $v_3(p,s)$ für das kritische und überkritische Gebiet ?

Prozessberechnungen benötigen Funktionen mit den Variablen (p,h) oder (p,s)

Iterative Berechnung aus der IAPWS-IF97 Fundamentalgleichung

Funktionen von (p,h)

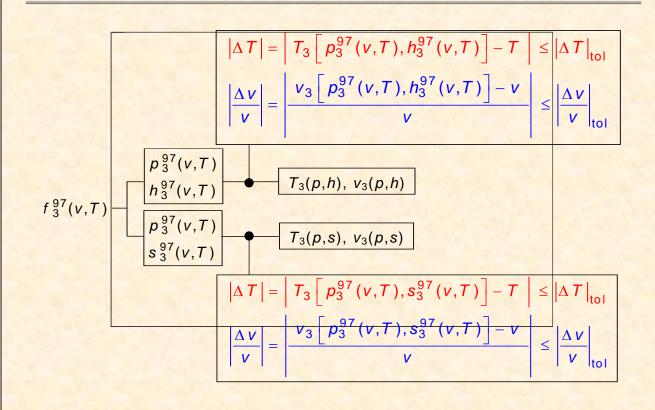
Zwei-dimensionale Iteration von *v* und *T* aus:

$$p = p_3^{97}(v,T)$$
und
$$h = h_3^{97}(v,T)$$
abgeleitet von $f_3^{97}(v,T)$

Funktionen von (p,s)

Zwei-dimensionale Iteration von *v* und *T* aus:

$$p = p_3^{97}(v,T)$$
und
$$s = s_3^{97}(v,T)$$
abgeleitet von $f_3^{97}(v,T)$


 $T_3(p,h), v_3(p,h)$

Rückwärtsgleichungen

 $T_3(p,s), v_3(p,s)$

verringern die Rechenzeit der Prozessmodellierung.

Anforderung an die Numerische Konsistenz zur IAPWS-IF97

Anforderung an die Numerische Konsistenz zur IAPWS-IF97 Bestimmung der zulässigen Werte ΔT_{tol} und Δv_{tol}

 ΔT_{tol} : - Anforderung der IAPWS an die Gleichungen T(p,h) und T(p,s)

ΔV_{tol}: - Ableitung aus den totalen Differentialen

$$\Delta V_{\text{tol}} = \left(\frac{\partial V}{\partial T}\right)_{h} \Delta T_{\text{tol}} + \left(\frac{\partial V}{\partial h}\right)_{T} \Delta h_{\text{tol}}$$

$$\Delta v_{\text{tol}} = \left(\frac{\partial v}{\partial T}\right)_{S} \Delta T_{\text{tol}} + \left(\frac{\partial v}{\partial S}\right)_{T} \Delta S_{\text{tol}}$$

- Berechnung der Differentialquotienten mit der IAPWS-IF97
- Übernahme der Werte für Δh tol und Δs tol aus den angrenzenden Bereichen 1 und 2 (Resultat einer Umfrage der IAPWS)

	$ \Delta T_{tol} $	$ \Delta h_{\text{tol}} $	$ \Delta s_{tol} $	(∆ <i>v</i> / <i>v</i>) _{tol}
Bereich 3	25 mK	80 J kg ⁻¹	0,10 J kg ⁻¹ K ⁻¹	0,01 %
kritischer Punkt	0,49 mK		-	0,0001 %

Approximationsverfahren

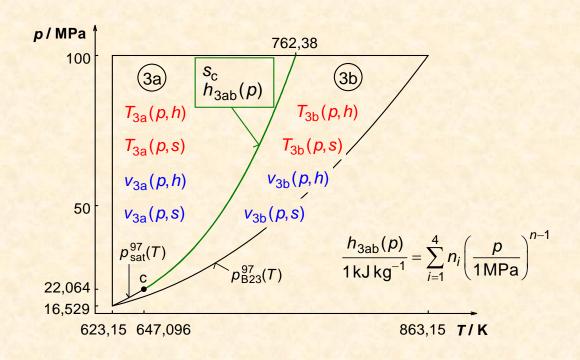
Algorithmus

- Dissertationen: T. Zschunke (1990), T. Willkommen (1995), J. Trübenbach (1998)
- Berichte auf Thermodynamik-Kolloquia: 1991, 1995, 1998

Basis Strukturoptimierungsmethode von Wagner und Setzmann

Modifikationen

- Automatisierte Generierung und Optimierung des Termvorrates
- Optimierung von nichtlinearen Parametern
- Automatische Stützpunktwichtung mit dem Ziel: Minimierung der maximalen Abweichung
- Berücksichtigung der Anwendungsrechenzeit bei der Optimierung der Gleichungsstruktur


Datenbasis Industrie-Formulation IAPWS-IF97

Hardware SGI Origin2000 mit 48 Prozessoren

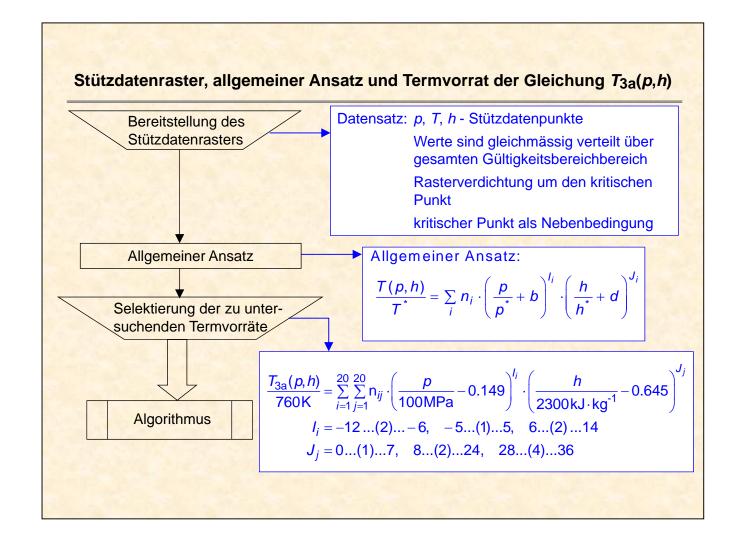
Gesamtrechenzeit: 10 Tage pro Termvorrat

Struktur des Gleichungssatzes

Rückwärtsgleichungen T(p,h) und v(p,h) für den Bereich 3

Unterbereich 3a

$$\frac{T_{3a}(p,h)}{760K} = \sum_{i=1}^{31} n_i \cdot \left(\frac{p}{100MPa} + 0.240\right)^{l_i} \cdot \left(\frac{h}{2300kJ \cdot kg^{-1}} - 0.615\right)^{J_i}$$


$$I_i = -12 \dots 0 \dots + 12 \quad , \qquad J_i = 0 \dots + 22$$

$$\begin{split} \frac{v_{3a}(\textit{p},\textit{h})}{0,0028\,\text{m}^3\cdot\text{kg}^{-1}} &= \sum_{i=1}^{32} n_i \cdot \left(\frac{\textit{p}}{100\,\text{MPa}} + 0,128\right)^{l_i} \cdot \left(\frac{\textit{h}}{2100\,\text{kJ}\cdot\text{kg}^{-1}} - 0,727\right)^{J_i} \\ &l_i = -12\dots0\dots + 8 \quad , \qquad J_i = 0\dots + 22 \end{split}$$

Unterbereich 3b

$$\begin{split} \frac{T_{3b}(\textit{p},\textit{h})}{860\,\textrm{K}} = \sum_{i=1}^{33} n_i \cdot \left(\frac{\textit{p}}{100\,\textrm{MPa}} + 0.298\right)^{l_i} \cdot \left(\frac{\textit{h}}{2800\,\textrm{kJ} \cdot \textrm{kg}^{-1}} - 0.720\right)^{J_i} \\ l_i = -12 \dots 0 \dots + 8 \quad , \qquad J_i = 0 \dots + 16 \end{split}$$

$$\begin{split} \frac{v_{3b}(\textit{p},\textit{h})}{0,0088\,\text{m}^3\cdot\text{kg}^{-1}} = \sum_{i=1}^{30} n_i \cdot \left(\frac{\textit{p}}{100\text{MPa}} + 0,0661\right)^{l_i} \cdot \left(\frac{\textit{h}}{2800\,\text{kJ}\cdot\text{kg}^{-1}} - 0,720\right)^{J_i} \\ l_i = -12\dots0\dots+2 \quad , \qquad J_i = 0\dots+10 \end{split}$$

Rückwärtsgleichungen T(p,h) und v(p,h) für den Bereich 3

Unterbereich 3a

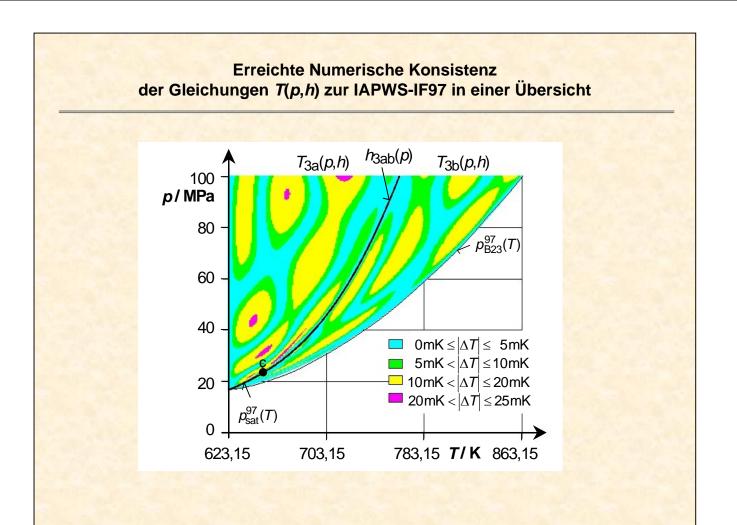
$$\frac{T_{3a}(p,h)}{760K} = \sum_{i=1}^{31} n_i \cdot \left(\frac{p}{100MPa} + 0.240\right)^{l_i} \cdot \left(\frac{h}{2300kJ \cdot kg^{-1}} - 0.615\right)^{J_i}$$

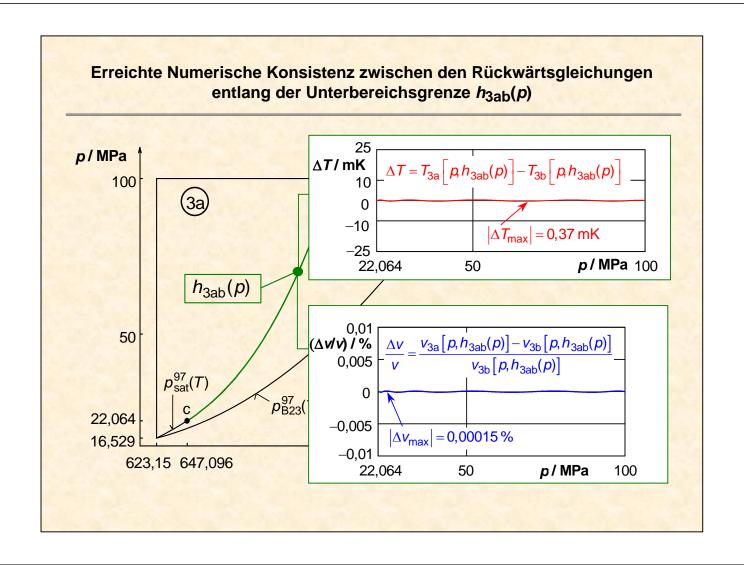
$$l_i = -12 \dots 0 \dots + 12 \quad , \qquad J_i = 0 \dots + 22$$

$$\frac{v_{3a}(p,h)}{0,0028 \, \text{m}^3 \cdot \text{kg}^{-1}} = \sum_{i=1}^{32} n_i \cdot \left(\frac{p}{100 \, \text{MPa}} + 0.128\right)^{l_i} \cdot \left(\frac{h}{2100 \, \text{kJ} \cdot \text{kg}^{-1}} - 0.727\right)^{J_i}$$

$$l_i = -12 \dots 0 \dots + 8 \quad , \qquad J_i = 0 \dots + 22$$

Unterbereich 3b


$$\begin{split} \frac{\textit{T}_{3b}(\textit{p},\textit{h})}{860\text{K}} = \sum_{i=1}^{33} n_i \cdot \left(\frac{\textit{p}}{100\text{MPa}} + 0.298\right)^{l_i} \cdot \left(\frac{\textit{h}}{2800\text{kJ} \cdot \text{kg}^{-1}} - 0.720\right)^{J_i} \\ l_i = -12 \dots 0 \dots + 8 \quad , \qquad J_i = 0 \dots + 16 \end{split}$$


$$\begin{split} \frac{v_{3b}(\textit{p},\textit{h})}{0,0088\,\text{m}^3\cdot\text{kg}^{-1}} = \sum_{i=1}^{30} n_i \cdot \left(\frac{\textit{p}}{100\text{MPa}} + 0,0661\right)^{l_i} \cdot \left(\frac{\textit{h}}{2800\,\text{kJ}\cdot\text{kg}^{-1}} - 0,720\right)^{J_i} \\ l_i = -12\dots0\dots+2 \quad , \qquad J_i = 0\dots+10 \end{split}$$

Erreichte Numerische Konsistenz der Gleichungen T(p,h) und v(p,h) zur IAPWS-IF97

Gleichung	$ \Delta T_{\text{tol}} $	_{\Delta\tau_{\text{max}}}
T _{3a} (p,h)	25 mK	23,6 mK
$T_{3b}(p,h)$	25 mK	19,6 mK
Gleichung	(Δ <i>v</i> / <i>v</i>) _{tol}	(Δv/v) _{max}
Gleichung v _{3a} (p,h)	(Δ v/v) _{tol} 0,01 %	(Δ v/v) _{max} 0,0080 %

Die kritische Temperatur und das kritische spezifische Volumen werden von den Gleichungen T(p,h) und v(p,h) exakt wiedergegeben.

Rückwärtsgleichungen T(p,s) und v(p,s) für den Bereich 3

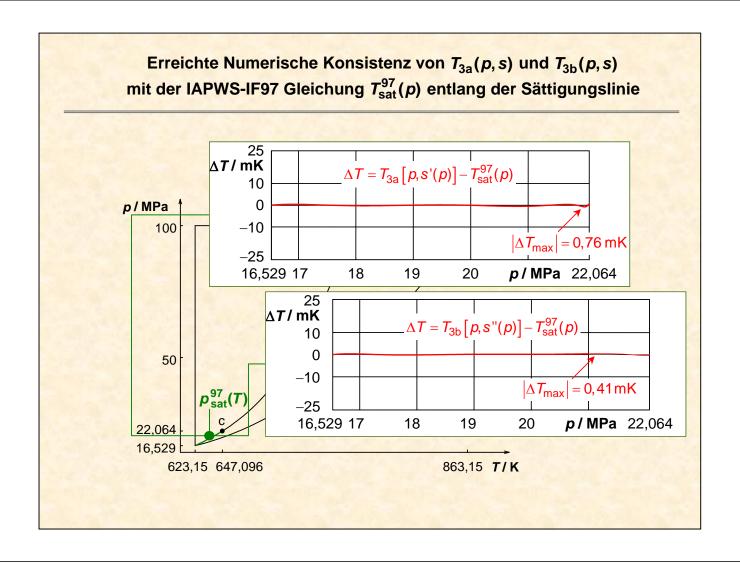
Unterbereich 3a

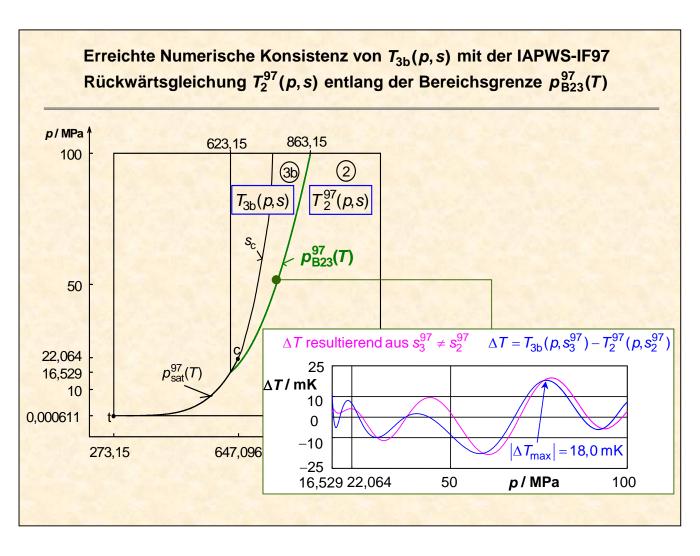
$$\begin{split} \frac{\textit{T}_{3a}(\textit{p},\textit{s})}{\textit{760 K}} = \sum_{i=1}^{33} n_i \cdot \left(\frac{\textit{p}}{\textit{100 MPa}} + 0.240\right)^{l_i} \cdot \left(\frac{\textit{s}}{\textit{4.4 kJ} \cdot \textit{kg}^{-1} \cdot \textit{K}^{-1}} - 0.703\right)^{J_i} \\ \textit{l}_i = -12 \dots 0 \dots + 10 \quad , \qquad \textit{J}_i = 0 \dots + 36 \end{split}$$

$$\begin{split} \frac{v_{3a}(\textit{p},s)}{0,0028\,\text{m}^3\cdot\text{kg}^{-1}} = & \sum_{i=1}^{28} n_i \cdot \left(\frac{\textit{p}}{100\,\text{MPa}} + 0,187\right)^{l_i} \cdot \left(\frac{s}{4,4\,\text{kJ}\cdot\text{kg}^{-1}\cdot\text{K}^{-1}} - 0,755\right)^{J_i} \\ l_i = & -12\dots0\dots+6 \quad , \qquad J_i = 0\dots+28 \end{split}$$

Unterbereich 3b

$$\frac{T_{3b}(p,s)}{860 \text{ K}} = \sum_{i=1}^{28} n_i \cdot \left(\frac{p}{100 \text{ MPa}} + 0.760\right)^{l_i} \cdot \left(\frac{s}{5.3 \text{ kJ} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}} - 0.818\right)^{J_i}$$


$$l_i = -12 \dots 0 \dots + 14 \quad , \qquad J_i = 0 \dots + 24$$


$$\begin{split} \frac{v_{3b}(\textit{p},s)}{0,0088\,\text{m}^3\cdot\text{kg}^{-1}} = \sum_{i=1}^{31} n_i \cdot \left(\frac{\textit{p}}{100\,\text{MPa}} + 0,298\right)^{l_i} \cdot \left(\frac{\textit{s}}{5,3\,\text{kJ}\cdot\text{kg}^{-1}\cdot\text{K}^{-1}} - 0,816\right)^{J_i} \\ l_i = -12\dots0\dots+2 \quad , \qquad J_i = 0\dots+12 \end{split}$$

Erreichte Numerische Konsistenz der Gleichungen T(p,s) und v(p,s) zur IAPWS-IF97

Gleichung	ΔT _{tol}	_Δ τ _{max}
$T_{3a}(p,s)$	25 mK	24,7 mK
$T_{3b}(p,s)$	25 mK	22,1 mK
	•	
Gleichung	(Δ <i>v</i> / <i>v</i>) _{tol}	(Δ <i>v / ν</i>) _{max}
Gleichung v _{3a} (p,s)	(Δ v/v) _{tol}	(Δv/v) _{max} 0,0096 %

Die kritische Temperatur und das kritische spezifische Volumen werden von den Gleichungen T(p,s) und v(p,s) exakt wiedergegeben.

Rechenzeitbedarf im Vergleich zur IAPWS-IF97

Messung der Rechenzeit:

- Basis: IAPWS Benchmark Programm NIFBENCH

- Testplattform:

• Computer: PC mit Pentium 4, 1500 MHz

Betriebssystem: Windows 2000[®]

• Compiler: Compaq Visual Fortran 6.1®, Standardoptionen

• Art des ausführbaren Programms: Fortran Console Application

Computing Time Ratio (CTR Wert):

Iterationsverfahren bei der Berechnung mit IAPWS-IF97:

- 2-dimensionales Newton-Verfahren

- Konvergenzkriteria: $|\Delta T_{it}| = 25 \text{ mK}$ und $|(\Delta v/v)_{it}| = 0.01\%$

Rechenzeitbedarf im Vergleich zur IAPWS-IF97

	Berechnung T,v(p,h) mit		
	Rückwärtsgleichungen	2-dimensionalen Iteration	
Unterbereich	Rechenzeit	Rechenzeit	CTR
3a	0,55 μs/call	123 μs/call	224
3b	0,52 μs/call	111 μs/call	212

	Berechnung <i>T,v(p,s</i>) mit		
	Rückwärtsgleichungen	2-dimensionalen Iteration	
Unterbereich	Rechenzeit	Rechenzeit	CTR
3a	0,53 μs/call	208 μs/call	393
3b	0,49 μs/call	188 μs/call	384

Zusammenfassung

Rückwärtsgleichungen T(p,h), v(p,h) und T(p,s), v(p,s) für Bereich 3 der IAPWS-IF97 wurden präsentiert.

Erreichte numerische Konsistenz ausreichend für Prozessberechnungen

2-dimensionale Iterationen können vermieden werden

Berechnung $T, v(p,h) \Rightarrow 200$ mal schneller als IAPWS-IF97 Berechnung $T, v(p,s) \Rightarrow 350$ mal schneller als IAPWS-IF97

Zusammenfassung

Rückwärtsgleichungen T(p,h), v(p,h) und T(p,s), v(p,s) für Bereich 3 der IAPWS-IF97 wurden präsentiert.

Entwickelten Rückwärtsgleichungen in der Evaluierungsphase seit IAPWS-Meeting 2002

Annahme als ergänzender Standard für 2003 vorgesehen