Editorial Changes to "Advisory Note No. 5: Thermodynamic Properties of Seawater for Industrial Use"

Sebastian Herrmann, Hans-Joachim Kretzschmar, Konstantin Orlov

Motivation and objective of Advisory Note No. 5

► "Advisory Note No. 5: Thermodynamic Properties of Seawater for Industrial Use" (2013)

$$g(p,T,S) = g^{W}(p,T) + g^{S}(p,T,S)$$

Water part from IAPWS-IF97, Region 1, calculated $g^{W} = g_{1}^{97} (p, T)$ Saline part from IAPWS 2008

Description of Corrections (Editorial Changes)

- ► Table A1 in the Appendix of AN5 contains three rounding errors in the test values for calculating properties of seawater for verification
- Konstantin Orlov discovered these errors now (at the time of adoption of AN5 he was a member of the evaluation committee)
- ► Errors confirmed by the authors of AN5 and corrected
- ➤ Smaller Corrections made in the Reference section.

Corrections (Editorial Changes) in Table A1 of Advisory Note No. 5

APPENDIX

Table A1 Numerical check values for the water part computed from $g^{W}(p,T)$, Eq. (4), and its derivatives, for the saline part computed from $g^{S}(p,T,S)$, Eq. (5), and its derivatives, for the seawater properties computed from the Gibbs function g(p,T,S), Eq. (1) and its derivatives and for selected seawater properties of Table 1 at given points (p,T,S)

Properties at p = 0.101325 MPa, T = 273.15 K, $S = S_n = 0.03516504 \text{ kg kg}^{-1}$

Quantity	Water part	Saline part	Property of seawater	Unit
g	0.101 359 446 × 10 ³	-0.101342742×10^3	$0.167~04\times10^{-1}$	J kg ⁻¹
$(\partial g/\partial p)_{T,S}$	$0.100\ 015\ 572\times10^{-2}$	$-0.274957224 \times 10^{-4}$	$0.972 659 99 \frac{5}{5} \times 10^{-3}$	$\mathrm{m^3~kg^{-1}}$
$(\partial^2 g/\partial p^2)_{T,S}$	$-0.508885499 \times 10^{-12}$	$0.581\ 535\ 172 \times 10^{-13}$	$-0.450731982 \times 10^{-12}$	${ m m}^3~{ m kg}^{-1}~{ m Pa}^{-1}$
$(\partial g/\partial T)_{p,S}$	0.147 711 823	-0.147 643 376	$0.684\ 47\times10^{-4}$	$\rm J \ kg^{-1} \ K^{-1}$
$(\partial^2 g/\partial T^2)_{p,S}$	-0.154473013×10^2	0.852 861 151	-0.145944401×10^2	$\rm J \ kg^{-1} \ K^{-2}$
$(\partial^2 g/\partial p \ \partial T)_S$	$-0.676992620 \times 10^{-7}$	$0.119\ 286\ 787 \times 10^{-6}$	$0.515\ 875\ 254 \times 10^{-7}$	$m^3 kg^{-1} K^{-1}$
$(\partial g/\partial S)_{p,T}$	0	0.639974067×10^5	$0.639\ 974\ 067 \times 10^5$	$\rm J~kg^{-1}$
$(\partial^2 g/\partial p \ \partial S)_T$	0	$-0.759 615 412 \times 10^{-3}$	$-0.759 615 412 \times 10^{-3}$	$\mathrm{m^3~kg^{-1}}$
v	$0.100\ 015\ 572\ \times 10^{-2}$	$-0.274957224 \times 10^{-4}$	$0.972\ 659\ 995 \times 10^{-3}$	$\mathrm{m^3kg^{-1}}$
u	$-0.403\ 288\ 161 \times 10^{-1}$	$-0.582\ 279\ 494\times10^{-1}$	$-0.985\ 567\ 655 \times 10^{-1}$	${ m kJ~kg}^{-1}$
h	$0.610\ 119\ 617 \times 10^{-1}$	$-0.610\ 139\ 535\times10^{-1}$	-0.199 1 <mark>8</mark> × 10 ⁻⁵	kJ kg ⁻¹
S	$-0.147711823 \times 10^{-3}$	$0.147\ 643\ 376\times 10^{-3}$	$-0.684\ 47\times10^{-7}$	${ m kJ} { m kg^{-1} K^{-1}}$
c_p	$0.421\ 943\ 034 \times 10^{1}$	-0.232 959 023	$0.398\ 647\ 132 \times 10^{1}$	${ m kJ} \ { m kg}^{-1} \ { m K}^{-1}$
w	$0.140\ 243\ 979 \times 10^4$	_ a	$0.144\ 907\ 123 \times 10^4$	$\mathrm{m}~\mathrm{s}^{-1}$
$\mu_{ m W}$	0.101 359 446	$-0.235\ 181\ 411\times10^{1}$	$-0.225\ 045\ 466 \times 10^{1}$	kJ kg ⁻¹

^a This value cannot be computed from g^S alone because it is a nonlinear expression in g

History and further procedure

October 2015: Errors in Table A1 of AN5 discovered by Konstantin Orlov and information to

Hans-Joachim Kretzschmar

March 2016: Incorporation of corrections into AN5 by the authors

March 2016: Corrected version of AN5 was sent to Allan Harvey und Ingo Weber

Aim: Formal consideration of the Editorial changes to the Advisory Note in Dresden