THERMAM 2014

International Conference on Thermophysical and Mechanical Properties of Advanced Materials &

3rd Rostocker Symposium on Thermophysical Properties for Technical Thermodynamics

12-15 June 2014 Boyalik Beach Hotel, Cesme - Izmir / Turkey

Abstracts Proceedings ISBN: 978-605-84726-0-0

Organizers:

Dokuz Eylul University Department of Mechanical Engineering, Izmir - Turkey

University of Rostock Institute of Technical Thermodynamics Rostock, Germany

THERMAM 2014 and 3rd ROSTOCKER SYMPOSIUM ON THERMOPHYSICAL PROPERTIES FOR TECHNICAL THERMODYNAMICS, 12-15 June 2014, IZMIR, TURKEY

14 June Saturday						
Keynote Session 4						
		Characterization of heat transport at interfaces in multilayers, nanocomposites				
09:00		and nanofluids				
09.55		Nicolas Horny				
09:35	Heat transfer properties of complex porous media				omplex porous media	
10:10		Dominique Baillis				
10.10		Laser-based linear and nonlinear elastic bulk (3D), surface (2D), and wedge (1D)				
10:10		waves in materials science				
10:55		Peter Hess				
10:55		COFFEE BREAK with Poster Session B (P46-P94)				
11.15	PARALLEL SESSIONS 5					
SALOON A				SALOON B		
11:15 11:30		Thermophysical properties of ionic			Simulation of convection heat	
	30	liquids with [NTf2]—anions		5	transport in open-cell metal foam	
		J. Safarov, A. Shahverdiyev and E. Hassel			A. S. Suleiman and N. Dukhan	
11:30 11:45	117	The density-salinity relation of			Characterization of oscillating water	
		standard seawater		6	transport in metal foam	
		H. Schmidt, H. Wolf and E. Hassel			Ö. Bağcı, N. Dukhan and M. Özdemir	
11:45 12:00	89	Thermophysical characterization of			Madaling of the hubble growth	
		a urea based eutectic mixture for			dynamics in PS/CO2 foaming system	
		thermal energy storage		126		
		S. G. Cavia, G. Diarce, A. Campos-Celador,			M. Salehi, M. Rezaei and M. Salami	
		A. G. Romero and J. M. Sala			Hoseini	
12:00 12:15	94	The IAPWS industrial formulation			Enhancement of compression	
		for the thermodynamic properties			performances of foam core	
		of seawater		128	sandwich composites	
		S. Herrmann, H. J. Kretzschmar, R. Feistel			B M Icten Tuba A and H F Yalkin	
		and W. Wagner	_			
12:15 12:30	72				Mechanical properties,	
		Molecular simulation of nano-			microstructure and density of rigid	
		dispersed fluid phases		132	crosslinked PVC/organoclay	
					nanocomposite foams	
		M. T. Horsch, S. V. Lishchuk, S. J.			R. Izadpanah. A. Karimpour and M. Rezaei	
		Werth and H. Hasse				
12:30		LUNCH				
14.30						

thickness of the shell was considered as the concentration boundary thickness. Since the concentration gradient at the interface of the bubble and shell is needed to calculate the bubble pressure. So using of finite difference method and the gas concentration gradient at the interface has led the results more consistent with the experiments.

Keywords: Polymeric foam; Bubble growth dynamics; Viscoelastic fluid; Mass diffusion; Polystyrene; Carbon dioxide

The IAPWS Industrial Formulation for the Thermodynamic Properties of Seawater

<u>Sebastian Herrmann</u>¹, Hans-Joachim Kretzschmar¹, Rainer Feistel² and Wolfgang Wagner³

Zittau/Goerlitz University of Applied Sciences, Zittau, Germany

² Baltic Sea Research Institute, Warnemuende, Germany

³ Ruhr-University Bochum, Bochum, Germany

Email: <u>s.herrmann@hszg.de</u>

The development and operation of desalination plants or cooling of power plants using seawater require the knowledge of accurate thermodynamic properties of seawater and their fast calculation.

In 2013, the International Association for the Properties of Water and Steam (IAPWS) adopted the "Advisory Note No. 5: Industrial Calculation of the Thermodynamic Properties of Seawater" (IAPWS 2013) [1] as an international standard for the calculation of the thermodynamic properties of seawater for industrial use. This standard contains an equation of state for the Gibbs free energy for seawater consisting of Gibbs free energy equations for pure liquid water and for saline. The water part is computed from the "IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam" (IAPWS-IF97) and the saline part from the "IAPWS Formulation 2008 for the Thermodynamic Properties of Seawater" (IAPWS-08) [2]. For seawater in contact with ice, the "Revised IAPWS Release on an Equation of State 2006 for H_2O Ice Ih" is used.

The industrial formulation is valid for seawater with sea salt of the reference composition at temperatures *T* from 261 K to 353 K, pressures *p* from 0.3 kPa to 100 MPa, and salinities *S* from 0 (pure water) to 120 g kg⁻¹, with some restrictions in certain regions as described in and.

All thermodynamic properties such as density ρ , specific volume v, specific enthalpy h, specific isobaric heat capacity c_p , and specific entropy s, thermodynamic derivatives, and inverse functions from given quantities (p,h,S) and (p,s,S) can be computed. In addition, boiling temperature T_b , freezing temperature T_f , osmotic pressure p_{osm} , and properties for brine-vapor mixtures and brine-ice mixtures are calculable.

When using the industrial formulation IAPWS 2013, the uncertainties of the calculated seawater properties are slightly greater than those of the scientific formulation IAPWS-08. The differences between both formulations result from the use of IAPWS-IF97 for the pure-water part in the industrial formulation and the use of IAPWS-95 in the scientific formulation. They will be discussed in this paper.

The computing speed of the industrial formulation IAPWS 2013 for seawater is increased in the order of 100 to 200 depending on the property function in comparison with the use of the scientific formulation IAPWS-08. Details will be shown in this paper.

The industrial formulation IAPWS 2013 for seawater can be applied in calculations for analyzing, designing, simulating, operating, and optimizing desalination and cooling processes.

Keywords: Seawater, Thermodynamic properties, Industrial standard