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� FluidSplines – Generation of SBTL Functions for Specific Demands



� Density deviations ∆ρ result in:
� inaccurate mass flows and velocities (speeds and directions)

Need for accurate fluid properties in CFD:

Fluid Property Calculations in CFD Analyses of Steam Turbines

� Deviations in caloric properties, e.g. the isobaric heat capacity cp, result in:

� inaccurate energy and entropy balances

Deviations in calculated fluid properties lead to

less accurate simulation results and less efficient steam turbines!

� Accuracy

� Computing speed

Requirements for property calculations in CFD:

� Ideal gas model

� Cubic equations of state (Peng-Robinson, Redlich-Kwong, …)

� Industrial standard IAPWS-IF97 (fundamental equations)

� Table look-up methods (such as the bi-linear interpolation in ANSYS CFX)

Available property calculation algorithms for water and steam:



Deviations in density from real fluid (water and steam):

ideal gas
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Deviations in density from real fluid (water and steam):

cubic equation of state (Peng-Robinson)
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Uncertainties in density of water and steam:

IAPWS-IF97
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Deviations in isobaric heat capacity from real fluid (water and steam):

ideal gas



Deviations in isobaric heat capacity from real fluid (water and steam):

cubic equation of state +
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Temperature T [K]

Uncertainties in isobaric heat capacity of water and steam:

IAPWS-IF97
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Available property calculation algorithms for water and steam

Requirements Ideal gas
Cubic equation

of state

Ind. standard

IAPWS-IF97

Accuracy

Computing 

speed
very high acceptable too slow

Fluid Property Calculations in CFD Analyses of Steam Turbines

20ρ∆ ≤ %

50∆ ≤ %pc

4ρ∆ ≤ %

30∆ ≤pc %

0 3ρ∆ ≤ . %

0 5∆ ≤ . %pc

� Results of the underlying formulation can be reproduced with

high accuracy and high computing speed

� Spline functions represent property functions continuously

� Forward and backward functions, e.g. p(v,u) and u(p,v),

can be calculated with complete numerical consistency

Application of a Spline-Based Table Look-Up Method to available

equations of state (standards):

Table look-up

methods

depends on 

table size and 

algorithm

high



Generation of a spline function pSPL(v,u) from an underlying eq. of state pEOS(v,u):

� Cell definition in the grid of knots:

• spline-polynomial:

• intersects the inner node

• continuous function and first derivatives

� Optimization for:

• required accuracy

• maximum computing speed

• minimum amount of data (table size)
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� Generation of a rectangular grid of nodes:

• each node is calculated from the 

underlying equation of state: 
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� Variable transformations of v, u, and p:

• enhance accuracy

• transform the range of state

Property calculation within CFD:
� transform v und u

� cell (i,j) determination

� computation of the spline polynomial

� inverse transformation of p � Providing the look-up table with the 

determined spline coefficients

Fundamentals of the Spline-Based Table Look-Up Method (SBTL)
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Calculation of inverse spline functions (Example: bi-quadratic polynomial):
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Fundamentals of the Spline-Based Table Look-Up Method (SBTL)

� The inverse spline function is numerically consistent with its forward function.

� The inverse function can be calculated without any iteration.



pSPL(v,u)

sSPL(v,u)

ηSPL(v,u)

TSPL(v,u)

uINV(p,v)

TSPL,sSPL,wSPL,ηSPL,λSPL(v, uINV)

vINV(u,s)

λSPL(v,u)

Spline functions of (v,u):

wSPL(v,u)

(p,v): (u,s):

pSPL,TSPL,wSPL,ηSPL,λSPL(vINV,u)

Calculation of inverse spline functions:

Pressure

Temperature

Spec. entropy

Speed of sound

Dynamic viscosity

Therm. conductivity

� All thermodynamic and transport properties including derivatives and backward 

functions are calculated without iterations.

� Forward and backward functions are calculated with complete numerical 

consistency.

Spline Functions of (v,u) and Inverse Spline Functions Based on IAPWS-IF97



Spline function pL (v,u):
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Spline function pG (v,u):
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Accuracy and Computational Speed of SBTL Functions for Water and Steam –

Deviations from IAPWS-IF97



Inverse spline function uL (p,v): Inverse spline function uG (p,v):

∆ [kJ/kg]u
-210

-310

-410
-4<10

� Inverse spline functions are numerically consistent with their forward spline functions.

Accuracy and Computational Speed of SBTL Functions for Water and Steam –

Deviations from IAPWS-IF97



Accuracy and Computational Speed of SBTL Functions for Water and Steam –

Deviations from IAPWS-IF97

� Spline-based property functions reproduce the industrial standard IAPWS-IF97 

with high accuracy (10 – 100 ppm).

   
SBTL function Max. deviation (L) Max. deviation (G) 

( , )p v u  
2.5 MPap ≤  L / 0.12 %p p∆ <  

G / 0.001 %p p∆ <  
2.5 MPap >  L 0.6 kPap∆ <  

( , )T v u  L 1mKT∆ <  G 1mKT∆ <  

( , )s v u  6 1 1
L 10 kJ kg  Ks

− − −∆ <  
6 1 1

G 10 kJ kg  Ks
− − −∆ <  

( , )w v u  L / 0.001 %w w∆ <  G / 0.001 %w w∆ <  

( , )v uη  L / 0.001 %η η∆ <  G / 0.001 %η η∆ <  

   

 



Accuracy and Computational Speed of SBTL Functions for Water and Steam –

Computing time comparisons with IAPWS-IF97

Computing Time Ratio
Computing time of  the calculation from IAPWS - IF97

CTR =
Computing time of  the calculation from the spline function

Processor: Intel Xeon – 3,2GHz

Operating system: Windows7 (32 Bit)

Compiler: Intel Composer XE 2011

IAPWS-IF97 Region

SBTL 

function

1

(liquid)

2

(vapour)

3

(critical)

4

(two-phase)

5

(high-temp.)

p(v,u) 130 271 161 19.6 470

T(v,u) 161 250 158 20.6 442

s(v,u) 164 261 160 17.8 449

w(v,u) 199 310 234 - 471

ηηηη(v,u) 197 309 239 - -

u(p,v) 2.0 6.4 2.8 5.6 3.2

v(u,s) 43.5 66.4 78.8 16.2 134

� Computing times are reduced by factors up to 300 (500)!



Application of the SBTL Method in CFD –

Condensing Steam Flow Around a Fixed Blade (White et al.)

Dryness fraction:

CFD-Software TRACE (DLR)

German Aerospace Center (DLR)

Institute of Propulsion Technology

Numerical Methods,

Cologne, Germany
"

Dryness fraction 
' "
m

x
m m

=
+

blade profile

system boundary Test-case L3:

Inlet conditions:
• Tot. press.: 41.7 kPa

• Tot. temp.: 357.5 K 

(∆Ts=+7.5 K)

Outlet conditions:
• Stat. pressure: 20.6 kPa

Assumptions:
• equilibrium 

condensation (no sub-

cooling considered)

• homogeneous two-

phase flow



Application of the SBTL Method in CFD –

Condensing Steam Flow Around a Fixed Blade (White et al.)

Pressure distribution:

CFD-Software TRACE (DLR)

German Aerospace Center (DLR)

Institute of Propulsion Technology

Numerical Methods,

Cologne, Germany

blade profile

system boundary Test-case L3:

Inlet conditions:
• Tot. press.: 41.7 kPa

• Tot. temp.: 357.5 K 

(∆Ts=+7.5 K)

Outlet conditions:
• Stat. pressure: 20.6 kPa

Assumptions:
• equilibrium 

condensation (no sub-

cooling considered)

• homogeneous two-

phase flow



Application of the SBTL Method in CFD –

Condensing Steam Flow Around a Fixed Blade (White et al.)

Pressure coefficient along the blade profile:

CFD-Software TRACE (DLR)

German Aerospace Center (DLR)

Institute of Propulsion Technology

Numerical Methods,

Cologne, Germany

Wilson point

pressure surface
shock-wave

Test-case L3:

Inlet conditions:
• Tot. press.: 41.7 kPa

• Tot. temp.: 357.5 K 

(∆Ts=+7.5 K)

Outlet conditions:
• Stat. pressure: 20.6 kPa

Assumptions:
• equilibrium 

condensation (no sub-

cooling considered)

• homogeneous two-

phase flow



Application of the SBTL Method in CFD –

Condensing Steam Flow Around a Fixed Blade (White et al.)

Convergence: CFL-Factor (Courant–Friedrichs–Lewy-Factor)=20

� Calculation with SBTL functions:

• high speed of convergence because of

complete numerical consistency
• calculation accomplished after

1:50min/1000 steps

� Comparison to calculation with ideal gas model:

• calculation accomplished after

1:20min/1000 steps

� Consideration of real fluid behavior with the SBTL Method requires only

40% additional computing time in comparison to a calculation with the ideal gas model. 

Computing time: several hours/days

� Practical calculations:

• stage groups in 3D

• non-stationary processes

� Calculation is approx. 6-10 times faster than the IAPWS-IF97 implementation in TRACE.



Generation of SBTL Functions for Specific Demands

FluidSplines
Software for generating

spline-based property functions

Input:

(Thermodynamic Properties)

REFPROP©

Property-Libraries

(Zittau/Goerlitz Univ.)

Output:

• optimized source code for 

high computing speed

• static/dynamic libraries

• documentation of accuracy 

and computing speed

Generation of SBTL-Functions for:

• specified range of validity

• required accuracy

Additional Features:

• generation of inverse spline-functions

• accuracy tests

• computing time tests



Summary

� Spline-Based Table Look-Up Method (SBTL):

• Provides high accuracy and high computing speed at the same time

• Property functions of available fundamental equations/standards are reproduced 

with an accuracy of 10 – 100 ppm - the results of a process simulation will not change

• Computing speeds can be increased by factors > 100 in comparison to

the calculation from fundamental equations

• Complete numerical consistency of forward and backward functions is possible

� Applicability in Computational Fluid Dynamics (CFD) has been demonstrated

• Enables consideration of the real fluid behavior with high accuracy

• 6-10 times faster than simulations with IAPWS-IF97

• Only 40% slower than simulations with the ideal gas model 

• Next step: implementation of a nucleation model, heterogeneous two-phase flow

“IAPWS Guideline on the Fast Calculation of Steam and Water Properties

With the Spline-Based Table Look-Up Method (SBTL)”

� Proposal:

Thank you for your attention!

� SBTL functions for specific demands can be generated with FluidSplines:

• Tailored for the required range of validity and accuracy

• Applicable for any property function and any fluid


