Update: Reference Correlation for the Viscosity of Ethane

Sebastian Herrmann¹, Eckhard Vogel², Robert Hellmann²

¹Hochschule Zittau/Görlitz – University of Applied Sciences, FG Technische Thermodynamik, Zittau, Germany

²Universität Rostock, Institut für Chemie, Rostock, Germany

18th Meeting of the International Association for Transport Properties

June 24th, 2018, University of Colorado, Boulder, CO, USA

Universität

Rostock

Traditio et Innovatio

1 Motivation

- Need for update of viscosity correlation for ethane
- Details of new zero-density viscosity correlation by Hellmann

2 Method, Theory, and Results

- Structure-optimization method
- New viscosity formulation including new zero-density viscosity correlation

3 Comparisons

- Viscosity in the limit of zero density and at low densities
- Viscosity in the fluid region

4 Conclusion and Outlook

Mot<u>ivation</u>

Need for update of viscosity correlation for ethane

- Current viscosity correlation published in 2015 by Vogel et al.¹
- η_0 part contains only two coefficients $\eta_0(au)=n_{0,-1} au^{-1}+n_{0,-3} au^{-3}$ with $au=T_{\sf c}/T$
- $\rightarrow\,$ Extrapolation behavior down to low temperatures good, but limited to higher temperatures due to unphysical maximum at 1143 K
 - Hellmann² recently published new zero-density viscosity correlation for ethane based on *ab initio* calculations characterized by a very low uncertainty
- Replacement of zero-density viscosity correlation possible, but would cause little inconsistencies to original work of Vogel *et al.*

Advantages of update

- η_0 consistent to other parts of reference correlation
- Improvement of uncertainty and extrapolation behavior of viscosity correlation
- ¹ Vogel, E., Span, R., Herrmann, S., *J. Phys. Chem. Ref. Data* 44, 043101 (2015).
- ² Hellmann, R., J. Chem. Eng. Data **63**, 470-481 (2018).

Herrmann (Hochschule Zittau/Görlitz)

Update: Viscosity Correlation for Ethane

June 24th, 2018, S. 3

Motivation Method, Theory, and Results Comparisons Conclusion and Outlook

Ethane – New zero-density viscosity correlation of Hellmann

Characteristics and procedure of the new η_0 correlation

- Very low uncertainties (k = 2) of calculated values from (90 to 1200) K: 0.3% for 250 $\leq T/K \leq$ 700 and 1.0% down to 90 K and up to 1200 K
- Approach used for modeling the zero-density viscosity characterized by pure fitting without strong theoretical basis
- Correlation extrapolates very well down to 0 K and up to at least 6000 K
- Zero-density viscosity correlation of Hellmann is given as function of temperature:

$$\eta_0(T) = \frac{\Gamma^{1/2}}{h_1 + \frac{h_2}{\exp(T^{1/3})} + \left[h_3 + \frac{h_4}{\exp(T^{1/3})}\right] \frac{1}{T^{1/2}} + \frac{h_5 T}{\exp(2T^{1/3})}}$$

• Rewritten using reciprocal reduced temperature au and critical temperature \mathcal{T}_{c} :

$$\eta_{0}(\tau) = \frac{(T_{c}/\tau)^{1/2}}{h_{1} + \frac{h_{2}}{\left\{\exp[(1/\tau)^{\frac{1}{3}}]\right\}^{(T_{c})^{\frac{1}{3}}}} + \left[h_{3} + \frac{h_{4}}{\left\{\exp[(1/\tau)^{\frac{1}{3}}]\right\}^{(T_{c})^{\frac{1}{3}}}}\right] \left(\frac{\tau}{T_{c}}\right)^{\frac{1}{2}} + \frac{h_{5}}{\left\{\exp[(1/\tau)^{\frac{1}{3}}]\right\}^{2(T_{c})^{\frac{1}{3}}}} \frac{T_{c}}{\tau}}{\left\{\exp[(1/\tau)^{\frac{1}{3}}]\right\}^{2(T_{c})^{\frac{1}{3}}}}$$

Ethane – Correlation method using structure optimization

Selection criteria

- Combination of different terms
- Requirement of reliable experimental data
- Use of simple functional dependencies, e.g., $\eta = \eta(T, \rho)$

Procedure

- Evaluation and classification of all available viscosity data
- Selection of terms for the complete fluid range of thermodynamic states including the near-critical region
- Using the correlation of Hellmann as pretreated terms
- Assessment of the resulting correlation using statistical parameters and adequate description of experimental data

S. Herrmann (Hochschule Zittau/Görlitz)

Update: Viscosity Correlation for Ethane

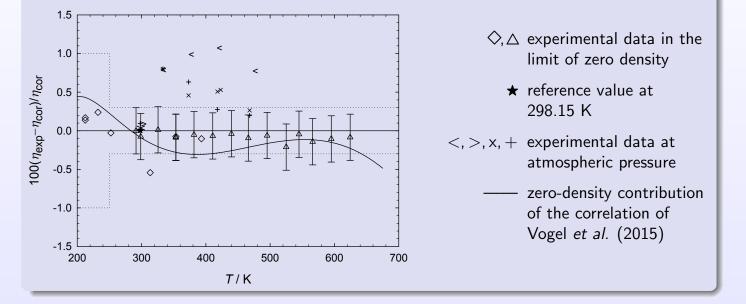
June 24th, 2018, S. 5

Viscosity-surface correlation for Ethane

Motivation Method, Theory, and Results Comparisons Conclusion and Outlook

- Reduced quantities: $\tau = \frac{T_c}{T}$, $\delta = \frac{\rho}{\rho_c}$
- Separate zero-density viscosity of Hellmann included $[\eta_{0,\text{Hellmann}}(\tau)]$
- Bank of terms:

$$\eta_{\mathsf{bank}}(\tau,\delta) = \eta_{0,\mathsf{Hellmann}}(\tau) + \sum_{i=0}^{8} \sum_{j=1}^{20} A_{ij}\tau^{i}\delta^{j} + \sum_{k=0}^{5} \sum_{l=1}^{5} A_{kl}\tau^{k}\delta^{l}e^{-\delta} + \sum_{m=0}^{1} A_{m}\tau\delta e^{-\beta_{m}(\delta-\gamma_{m})^{2}-\varepsilon_{m}|\tau-\zeta_{m}|}.$$


• Final result for ethane:

$$\eta_{\text{cor}, C_{2}H_{6}}(\tau, \delta) = \eta_{0}(\tau) + \sum_{i=1}^{7} A_{i}\tau^{t_{i}}\delta^{d_{i}} + \sum_{i=8}^{11} A_{i}\tau^{t_{i}}\delta^{d_{i}}e^{-\delta} + \sum_{i=12}^{13} A_{i}\tau\delta e^{-\beta_{i}(\delta-1)^{2}-\varepsilon_{i}|\tau-1|}.$$

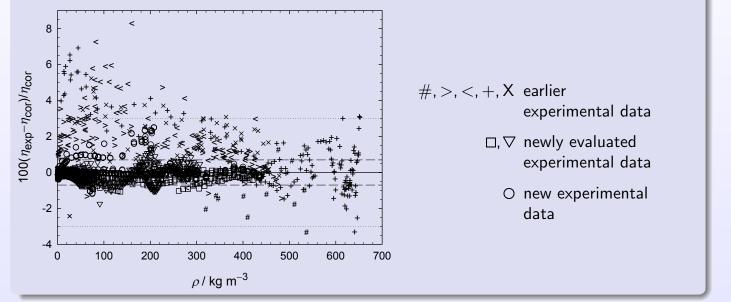
Comparison of new equation to experiment and equation of Vogel et al.

Viscosity in the limit of zero density and at low densities

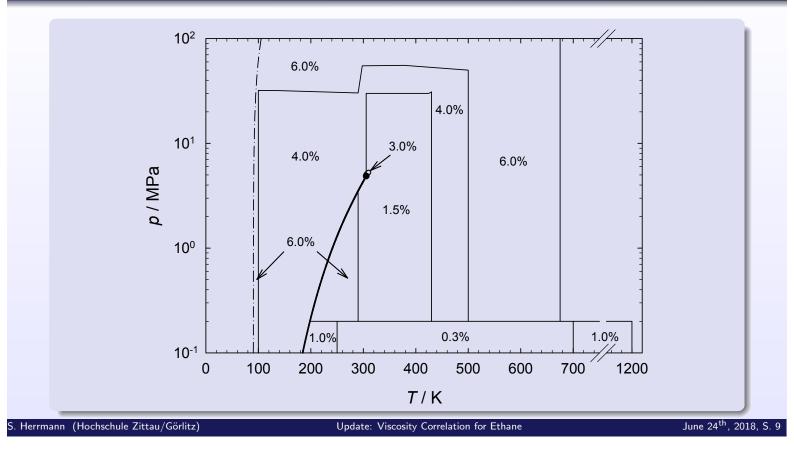
- Agreement within the experimental uncertainty
- Error bars: ± 0.3 %

S. Herrmann (Hochschule Zittau/Görlitz)

Update: Viscosity Correlation for Ethane


June 24th, 2018, S. 7

Motivation Method, Theory, and Results Comparisons Conclusion and Outlook


Comparison equation vs. experiment

Viscosity in the fluid region

- New data dominant
- Large deviations particularly at small and very high densities for earlier primary data

Range of validity extended at low pressures

Motivation Method, Theory, and Results Comparisons Conclusion and Outlook

Conclusion and Outlook

- Update of viscosity formulation for ethane was generated including new zero-density correlation from Hellmann
- The structure-optimization method of Setzmann and Wagner (Ruhr-Universität Bochum) was used
- The zero-density was treated separately as pretreatment
- The viscosity was correlated as $\eta(T, \rho)$
- Critical enhancement was included using newly evaluated and new data of Iwasaki and Takahashi and Seibt *et al.*

Conclusion and Outlook

- Update of viscosity formulation for ethane was generated including new zero-density correlation from Hellmann
- The structure-optimization method of Setzmann and Wagner (Ruhr-Universität Bochum) was used
- The zero-density was treated separately as pretreatment
- The viscosity was correlated as $\eta(au,
 ho)$
- Critical enhancement was included using newly evaluated and new data of Iwasaki and Takahashi and Seibt et al.
- Maybe new equation of state will come up in a few years
- ightarrow Second update using a new eos for ethane could be needed

S. Herrmann (Hochschule Zittau/Görlitz)

Update: Viscosity Correlation for Ethane

June 24th, 2018, S. 10

Motivation Method, Theory, and Results Comparisons Conclusion and Outlook Update published in *J. Phys. Chem. Ref. Data*

Published online on 22nd of June, 2018:

Update: Reference Correlation for the Viscosity of Ethane [J. Phys. Chem. Ref. Data 44, 043101 (2015)]

Sebastian Herrmann

Fachgebiet Technische Thermodynamik, Hochschule Zittau/Görlitz, D-02763 Zittau, Germany

Robert Hellmann and Eckhard Vogel^{a)}

Institut für Chemie, Universität Rostock, D-18059 Rostock, Germany

(Received 20 April 2018; accepted 17 May 2018; published online 22 June 2018)

An update of the reference correlation for the viscosity of ethane [E. Vogel *et al.*, J. Phys. Chem. Ref. Data **44**, 043101 (2015)] was developed because recently a new zero-density viscosity correlation based on theoretically calculated values of the dilute-gas viscosity became available. The original zero-density contribution was replaced, and the generation of the complete viscosity correlation was repeated using the residual viscosity concept and a state-of-the-art linear optimization algorithm. A term representing the critical enhancement was again included, so that a total of 18 coefficients resulted for the final formulation. The viscosity in the limit of zero density is now described with an expanded uncertainty of 0.3% (coverage factor k = 2) in the temperature range $250 \le T/K \le 700$ and of 1.0% at temperatures $90 \le T/K < 250$ and 700 < T/K